1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_model.F,v 1.100 2012/03/02 18:56:06 heimbach Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: SEAICE_MODEL |
8 |
|
9 |
C !INTERFACE: ========================================================== |
10 |
SUBROUTINE SEAICE_MODEL( myTime, myIter, myThid ) |
11 |
|
12 |
C !DESCRIPTION: \bv |
13 |
C *===========================================================* |
14 |
C | SUBROUTINE SEAICE_MODEL | |
15 |
C | o Time stepping of a dynamic/thermodynamic sea ice model. | |
16 |
C | Dynamics solver: Zhang/Hibler, JGR, 102, 8691-8702, 1997 | |
17 |
C | Thermodynamics: Hibler, MWR, 108, 1943-1973, 1980 | |
18 |
C | Rheology: Hibler, JPO, 9, 815- 846, 1979 | |
19 |
C | Snow: Zhang et al. , JPO, 28, 191- 217, 1998 | |
20 |
C | Parallel forward ice model written by Jinlun Zhang PSC/UW| |
21 |
C | & coupled into MITgcm by Dimitris Menemenlis (JPL) 2/2001| |
22 |
C | zhang@apl.washington.edu / menemenlis@jpl.nasa.gov | |
23 |
C *===========================================================* |
24 |
C *===========================================================* |
25 |
IMPLICIT NONE |
26 |
C \ev |
27 |
|
28 |
C !USES: =============================================================== |
29 |
#include "SIZE.h" |
30 |
#include "EEPARAMS.h" |
31 |
#include "DYNVARS.h" |
32 |
#include "PARAMS.h" |
33 |
#include "GRID.h" |
34 |
#include "FFIELDS.h" |
35 |
#include "SEAICE_SIZE.h" |
36 |
#include "SEAICE_PARAMS.h" |
37 |
#include "SEAICE.h" |
38 |
#include "SEAICE_TRACER.h" |
39 |
#ifdef ALLOW_EXF |
40 |
# include "EXF_OPTIONS.h" |
41 |
# include "EXF_FIELDS.h" |
42 |
#endif |
43 |
#ifdef ALLOW_AUTODIFF_TAMC |
44 |
# include "tamc.h" |
45 |
#endif |
46 |
|
47 |
C !INPUT PARAMETERS: =================================================== |
48 |
C myTime - Simulation time |
49 |
C myIter - Simulation timestep number |
50 |
C myThid - Thread no. that called this routine. |
51 |
_RL myTime |
52 |
INTEGER myIter |
53 |
INTEGER myThid |
54 |
CEndOfInterface |
55 |
|
56 |
C !LOCAL VARIABLES: ==================================================== |
57 |
C i,j,bi,bj :: Loop counters |
58 |
CToM<<< |
59 |
C msgBuf :: Informational/error message buffer |
60 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
61 |
CHARACTER*10 HlimitMsgFormat |
62 |
C ToM a random number to generate divergence and convergence randomly for the 1-D case |
63 |
_RL rand_num |
64 |
_RL divergence |
65 |
INTEGER IT |
66 |
C#if defined(SEAICE_GROWTH_LEGACY) || defined(ALLOW_AUTODIFF_TAMC) |
67 |
#if defined(SEAICE_GROWTH_LEGACY) || defined(ALLOW_AUTODIFF_TAMC) || defined(SEAICE_ITD) |
68 |
C>>>ToM |
69 |
INTEGER i, j, bi, bj |
70 |
#endif |
71 |
#ifdef ALLOW_SITRACER |
72 |
INTEGER iTr |
73 |
#endif |
74 |
CEOP |
75 |
|
76 |
#ifdef ALLOW_DEBUG |
77 |
IF (debugMode) CALL DEBUG_ENTER( 'SEAICE_MODEL', myThid ) |
78 |
#endif |
79 |
|
80 |
C-- Winds are from pkg/exf, which does not update edges. |
81 |
CALL EXCH_UV_AGRID_3D_RL( uwind, vwind, .TRUE., 1, myThid ) |
82 |
|
83 |
#ifdef ALLOW_THSICE |
84 |
IF ( useThSice ) THEN |
85 |
C-- Map thSice-variables to HEFF and AREA |
86 |
CALL SEAICE_MAP_THSICE( myTime, myIter, myThid ) |
87 |
ENDIF |
88 |
#endif /* ALLOW_THSICE */ |
89 |
|
90 |
#ifdef SEAICE_GROWTH_LEGACY |
91 |
IF ( .NOT.useThSice ) THEN |
92 |
#ifdef ALLOW_AUTODIFF_TAMC |
93 |
CADJ STORE heff = comlev1, key=ikey_dynamics, kind=isbyte |
94 |
CADJ STORE heffm = comlev1, key=ikey_dynamics, kind=isbyte |
95 |
CADJ STORE area = comlev1, key=ikey_dynamics, kind=isbyte |
96 |
CADJ STORE hsnow = comlev1, key=ikey_dynamics, kind=isbyte |
97 |
CADJ STORE tice = comlev1, key=ikey_dynamics, kind=isbyte |
98 |
#ifdef SEAICE_VARIABLE_SALINITY |
99 |
CADJ STORE hsalt = comlev1, key=ikey_dynamics, kind=isbyte |
100 |
#endif |
101 |
#endif |
102 |
DO bj=myByLo(myThid),myByHi(myThid) |
103 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
104 |
DO j=1-OLy,sNy+OLy |
105 |
DO i=1-OLx,sNx+OLx |
106 |
IF ( (heff(i,j,bi,bj).EQ.0.) |
107 |
& .OR.(area(i,j,bi,bj).EQ.0.) |
108 |
& ) THEN |
109 |
HEFF(i,j,bi,bj) = 0. _d 0 |
110 |
AREA(i,j,bi,bj) = 0. _d 0 |
111 |
HSNOW(i,j,bi,bj) = 0. _d 0 |
112 |
TICE(i,j,bi,bj) = celsius2K |
113 |
#ifdef SEAICE_VARIABLE_SALINITY |
114 |
HSALT(i,j,bi,bj) = 0. _d 0 |
115 |
#endif |
116 |
ENDIF |
117 |
ENDDO |
118 |
ENDDO |
119 |
ENDDO |
120 |
ENDDO |
121 |
ENDIF |
122 |
#endif |
123 |
|
124 |
#ifdef ALLOW_AUTODIFF_TAMC |
125 |
DO bj=myByLo(myThid),myByHi(myThid) |
126 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
127 |
DO j=1-OLy,sNy+OLy |
128 |
DO i=1-OLx,sNx+OLx |
129 |
# ifdef SEAICE_GROWTH_LEGACY |
130 |
areaNm1(i,j,bi,bj) = 0. _d 0 |
131 |
hEffNm1(i,j,bi,bj) = 0. _d 0 |
132 |
# endif |
133 |
uIceNm1(i,j,bi,bj) = 0. _d 0 |
134 |
vIceNm1(i,j,bi,bj) = 0. _d 0 |
135 |
# ifdef ALLOW_SITRACER |
136 |
DO iTr = 1, SItrMaxNum |
137 |
SItrBucket(i,j,bi,bj,iTr) = 0. _d 0 |
138 |
ENDDO |
139 |
# endif |
140 |
ENDDO |
141 |
ENDDO |
142 |
ENDDO |
143 |
ENDDO |
144 |
CADJ STORE uwind = comlev1, key=ikey_dynamics, kind=isbyte |
145 |
CADJ STORE vwind = comlev1, key=ikey_dynamics, kind=isbyte |
146 |
CADJ STORE heff = comlev1, key=ikey_dynamics, kind=isbyte |
147 |
CADJ STORE heffm = comlev1, key=ikey_dynamics, kind=isbyte |
148 |
CADJ STORE area = comlev1, key=ikey_dynamics, kind=isbyte |
149 |
# ifdef SEAICE_ALLOW_DYNAMICS |
150 |
# ifdef SEAICE_CGRID |
151 |
CADJ STORE seaicemasku = comlev1, key=ikey_dynamics, kind=isbyte |
152 |
CADJ STORE seaicemaskv = comlev1, key=ikey_dynamics, kind=isbyte |
153 |
CADJ STORE fu = comlev1, key=ikey_dynamics, kind=isbyte |
154 |
CADJ STORE fv = comlev1, key=ikey_dynamics, kind=isbyte |
155 |
CADJ STORE uice = comlev1, key=ikey_dynamics, kind=isbyte |
156 |
CADJ STORE vice = comlev1, key=ikey_dynamics, kind=isbyte |
157 |
cphCADJ STORE eta = comlev1, key=ikey_dynamics, kind=isbyte |
158 |
cphCADJ STORE zeta = comlev1, key=ikey_dynamics, kind=isbyte |
159 |
cph( |
160 |
CADJ STORE dwatn = comlev1, key=ikey_dynamics, kind=isbyte |
161 |
cccCADJ STORE press0 = comlev1, key=ikey_dynamics, kind=isbyte |
162 |
cccCADJ STORE taux = comlev1, key=ikey_dynamics, kind=isbyte |
163 |
cccCADJ STORE tauy = comlev1, key=ikey_dynamics, kind=isbyte |
164 |
cccCADJ STORE zmax = comlev1, key=ikey_dynamics, kind=isbyte |
165 |
cccCADJ STORE zmin = comlev1, key=ikey_dynamics, kind=isbyte |
166 |
cph) |
167 |
# ifdef SEAICE_ALLOW_EVP |
168 |
CADJ STORE seaice_sigma1 = comlev1, key=ikey_dynamics, kind=isbyte |
169 |
CADJ STORE seaice_sigma2 = comlev1, key=ikey_dynamics, kind=isbyte |
170 |
CADJ STORE seaice_sigma12 = comlev1, key=ikey_dynamics, kind=isbyte |
171 |
# endif |
172 |
# endif |
173 |
# endif |
174 |
# ifdef ALLOW_SITRACER |
175 |
CADJ STORE siceload = comlev1, key=ikey_dynamics, kind=isbyte |
176 |
CADJ STORE sitracer = comlev1, key=ikey_dynamics, kind=isbyte |
177 |
# endif |
178 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
179 |
|
180 |
C solve ice momentum equations and calculate ocean surface stress |
181 |
#ifdef ALLOW_DEBUG |
182 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_DYNSOLVER', myThid ) |
183 |
#endif |
184 |
#ifdef SEAICE_CGRID |
185 |
CALL TIMER_START('SEAICE_DYNSOLVER [SEAICE_MODEL]',myThid) |
186 |
CALL SEAICE_DYNSOLVER ( myTime, myIter, myThid ) |
187 |
CALL TIMER_STOP ('SEAICE_DYNSOLVER [SEAICE_MODEL]',myThid) |
188 |
#else |
189 |
CALL TIMER_START('DYNSOLVER [SEAICE_MODEL]',myThid) |
190 |
CALL DYNSOLVER ( myTime, myIter, myThid ) |
191 |
CALL TIMER_STOP ('DYNSOLVER [SEAICE_MODEL]',myThid) |
192 |
#endif /* SEAICE_CGRID */ |
193 |
|
194 |
C-- Apply ice velocity open boundary conditions |
195 |
#ifdef ALLOW_OBCS |
196 |
# ifndef DISABLE_SEAICE_OBCS |
197 |
IF ( useOBCS ) CALL OBCS_ADJUST_UVICE( uice, vice, myThid ) |
198 |
# endif /* DISABLE_SEAICE_OBCS */ |
199 |
#endif /* ALLOW_OBCS */ |
200 |
|
201 |
#ifdef ALLOW_THSICE |
202 |
IF ( .NOT.useThSice ) THEN |
203 |
#endif |
204 |
C-- Only call advection of heff, area, snow, and salt and |
205 |
C-- growth for the generic 0-layer thermodynamics of seaice |
206 |
C-- if useThSice=.false., otherwise the 3-layer Winton thermodynamics |
207 |
C-- (called from DO_OCEANIC_PHYSICS) take care of this |
208 |
|
209 |
C NOW DO ADVECTION and DIFFUSION |
210 |
IF ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow |
211 |
& .OR. SEAICEadvSalt ) THEN |
212 |
CToM<<< |
213 |
#ifdef SEAICE_ITD |
214 |
C ToM: generate some test output |
215 |
WRITE(HlimitMsgFormat,'(A,I2,A)') '(A,',nITD,'F8.4)' |
216 |
DO bj=myByLo(myThid),myByHi(myThid) |
217 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
218 |
c DO j=1-OLy,sNy+OLy |
219 |
c DO i=1-OLx,sNx+OLx |
220 |
ccc WRITE(msgBuf,HlimitMsgFormat) |
221 |
WRITE(msgBuf,'(A,F8.4,x,F8.4)') |
222 |
& ' SEAICE_MODEL: AREA and HEFF before advection: ', |
223 |
& AREA(1,1,bi,bj), HEFF(1,1,bi,bj) |
224 |
c & ' SEAICE_MODEL: AREA and HEFF/AREA before advection: ', |
225 |
c & AREA(1,1,bi,bj), HEFF(1,1,bi,bj)/AREA(1,1,bi,bj) |
226 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
227 |
& SQUEEZE_RIGHT , myThid) |
228 |
WRITE(msgBuf,HlimitMsgFormat) |
229 |
& ' SEAICE_MODEL: HEFFITD before advection: ', |
230 |
& HEFFITD(1,1,:,bi,bj) |
231 |
c & ' SEAICE_MODEL: HEFFITD/AREAITD before advection: ', |
232 |
c & HEFFITD(1,1,:,bi,bj) / AREAITD(1,1,:,bi,bj) |
233 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
234 |
& SQUEEZE_RIGHT , myThid) |
235 |
WRITE(msgBuf,HlimitMsgFormat) |
236 |
& ' SEAICE_MODEL: AREAITD before advection: ', |
237 |
& AREAITD(1,1,:,bi,bj) |
238 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
239 |
& SQUEEZE_RIGHT , myThid) |
240 |
c ENDDO |
241 |
c ENDDO |
242 |
ENDDO |
243 |
ENDDO |
244 |
#endif |
245 |
C>>>ToM |
246 |
#ifdef ALLOW_DEBUG |
247 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_ADVDIFF', myThid ) |
248 |
#endif |
249 |
CALL SEAICE_ADVDIFF( myTime, myIter, myThid ) |
250 |
CToM<<< |
251 |
#ifdef SEAICE_ITD |
252 |
C ToM: generate some test output |
253 |
WRITE(HlimitMsgFormat,'(A,I2,A)') '(A,',nITD,'F8.4)' |
254 |
DO bj=myByLo(myThid),myByHi(myThid) |
255 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
256 |
WRITE(msgBuf,HlimitMsgFormat) |
257 |
& ' SEAICE_MODEL: HEFFITD after advection: ', |
258 |
& HEFFITD(1,1,:,bi,bj) |
259 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
260 |
& SQUEEZE_RIGHT , myThid) |
261 |
WRITE(msgBuf,HlimitMsgFormat) |
262 |
& ' SEAICE_MODEL: AREAITD after advection: ', |
263 |
& AREAITD(1,1,:,bi,bj) |
264 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
265 |
& SQUEEZE_RIGHT , myThid) |
266 |
WRITE(msgBuf,'(A)') |
267 |
& ' --------------------------------------------- ' |
268 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
269 |
& SQUEEZE_RIGHT , myThid) |
270 |
ENDDO |
271 |
ENDDO |
272 |
C |
273 |
C check that all ice thickness categories meet their limits |
274 |
C (includes Hibler-type ridging) |
275 |
#ifdef ALLOW_DEBUG |
276 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_ITD_REDIST', myThid ) |
277 |
#endif |
278 |
DO bj=myByLo(myThid),myByHi(myThid) |
279 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
280 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
281 |
ENDDO |
282 |
ENDDO |
283 |
C update mean ice thickness HEFF and total ice concentration AREA |
284 |
C to match single category values |
285 |
#ifdef ALLOW_DEBUG |
286 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_ITD_SUM', myThid ) |
287 |
#endif |
288 |
DO bj=myByLo(myThid),myByHi(myThid) |
289 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
290 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
291 |
ENDDO |
292 |
ENDDO |
293 |
#endif |
294 |
C>>>ToM |
295 |
#ifdef SEAICE_GROWTH_LEGACY |
296 |
ELSE |
297 |
DO bj=myByLo(myThid),myByHi(myThid) |
298 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
299 |
DO j=1-OLy,sNy+OLy |
300 |
DO i=1-OLx,sNx+OLx |
301 |
areaNm1(i,j,bi,bj) = AREA(i,j,bi,bj) |
302 |
hEffNm1(i,j,bi,bj) = HEFF(i,j,bi,bj) |
303 |
ENDDO |
304 |
ENDDO |
305 |
ENDDO |
306 |
ENDDO |
307 |
#endif /* SEAICE_GROWTH_LEGACY */ |
308 |
ENDIF |
309 |
#ifdef ALLOW_AUTODIFF_TAMC |
310 |
CADJ STORE heffm = comlev1, key=ikey_dynamics, kind=isbyte |
311 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
312 |
|
313 |
#ifdef SEAICE_ITD |
314 |
c create some open water |
315 |
divergence = 1.0/(5*365.*86400./SEAICE_deltaTtherm) |
316 |
DO bj=myByLo(myThid),myByHi(myThid) |
317 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
318 |
DO IT=1,nITD |
319 |
DO J=1-OLy,sNy+OLy |
320 |
DO I=1-OLx,sNx+OLx |
321 |
AREAITD(I,J,IT,bi,bj)=MAX(0.0,AREAITD(I,J,IT,bi,bj) |
322 |
& -divergence) |
323 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj) |
324 |
& -divergence*HEFFITD(I,J,IT,bi,bj) |
325 |
ENDDO |
326 |
ENDDO |
327 |
ENDDO |
328 |
ENDDO |
329 |
ENDDO |
330 |
C ToM: generate some test output |
331 |
WRITE(HlimitMsgFormat,'(A,I2,A)') '(A,',nITD,'F8.4)' |
332 |
DO bj=myByLo(myThid),myByHi(myThid) |
333 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
334 |
WRITE(msgBuf,HlimitMsgFormat) |
335 |
& ' SEAICE_MODEL: HEFFITD before growth: ', |
336 |
& HEFFITD(1,1,:,bi,bj) |
337 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
338 |
& SQUEEZE_RIGHT , myThid) |
339 |
WRITE(msgBuf,HlimitMsgFormat) |
340 |
& ' SEAICE_MODEL: AREAITD before growth: ', |
341 |
& AREAITD(1,1,:,bi,bj) |
342 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
343 |
& SQUEEZE_RIGHT , myThid) |
344 |
WRITE(msgBuf,HlimitMsgFormat) |
345 |
& ' SEAICE_MODEL: HSNOWITD before growth: ', |
346 |
& HSNOWITD(1,1,:,bi,bj) |
347 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
348 |
& SQUEEZE_RIGHT , myThid) |
349 |
ENDDO |
350 |
ENDDO |
351 |
#endif |
352 |
|
353 |
#ifndef DISABLE_SEAICE_GROWTH |
354 |
C thermodynamics growth |
355 |
C must call growth after calling advection |
356 |
C because of ugly time level business |
357 |
IF ( usePW79thermodynamics ) THEN |
358 |
#ifdef ALLOW_DEBUG |
359 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_GROWTH', myThid ) |
360 |
#endif |
361 |
CALL SEAICE_GROWTH( myTime, myIter, myThid ) |
362 |
CToM<<< |
363 |
#ifdef SEAICE_ITD |
364 |
C ToM: generate some test output |
365 |
WRITE(HlimitMsgFormat,'(A,I2,A)') '(A,',nITD,'F8.4)' |
366 |
DO bj=myByLo(myThid),myByHi(myThid) |
367 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
368 |
WRITE(msgBuf,HlimitMsgFormat) |
369 |
& ' SEAICE_MODEL: HEFFITD after growth: ', |
370 |
& HEFFITD(1,1,:,bi,bj) |
371 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
372 |
& SQUEEZE_RIGHT , myThid) |
373 |
WRITE(msgBuf,HlimitMsgFormat) |
374 |
& ' SEAICE_MODEL: AREAITD after growth: ', |
375 |
& AREAITD(1,1,:,bi,bj) |
376 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
377 |
& SQUEEZE_RIGHT , myThid) |
378 |
WRITE(msgBuf,HlimitMsgFormat) |
379 |
& ' SEAICE_MODEL: HSNOWITD after growth: ', |
380 |
& HSNOWITD(1,1,:,bi,bj) |
381 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
382 |
& SQUEEZE_RIGHT , myThid) |
383 |
WRITE(msgBuf,'(A)') |
384 |
& ' --------------------------------------------- ' |
385 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
386 |
& SQUEEZE_RIGHT , myThid) |
387 |
ENDDO |
388 |
ENDDO |
389 |
C |
390 |
C redistribute sea ice into proper sea ice category after growth/melt |
391 |
C in case model runs with ice thickness distribution |
392 |
C---+-|--1----+----2----+----3----+----4----+----5----+----6----+----7-| |
393 |
#ifdef ALLOW_DEBUG |
394 |
IF (debugMode) CALL DEBUG_CALL( 'SEAICE_ITD_REDIST', myThid ) |
395 |
#endif |
396 |
DO bj=myByLo(myThid),myByHi(myThid) |
397 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
398 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
399 |
ENDDO |
400 |
ENDDO |
401 |
C store the mean ice thickness in HEFF (for dynamic solver and diagnostics) |
402 |
DO bj=myByLo(myThid),myByHi(myThid) |
403 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
404 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
405 |
ENDDO |
406 |
ENDDO |
407 |
|
408 |
C ToM: generate some test output |
409 |
WRITE(HlimitMsgFormat,'(A,I2,A)') '(A,',nITD,'F8.4)' |
410 |
DO bj=myByLo(myThid),myByHi(myThid) |
411 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
412 |
WRITE(msgBuf,HlimitMsgFormat) |
413 |
& ' SEAICE_MODEL: HEFFITD after final sorting: ', |
414 |
& HEFFITD(1,1,:,bi,bj) |
415 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
416 |
& SQUEEZE_RIGHT , myThid) |
417 |
WRITE(msgBuf,HlimitMsgFormat) |
418 |
& ' SEAICE_MODEL: AREAITD after final sorting: ', |
419 |
& AREAITD(1,1,:,bi,bj) |
420 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
421 |
& SQUEEZE_RIGHT , myThid) |
422 |
WRITE(msgBuf,HlimitMsgFormat) |
423 |
& ' SEAICE_MODEL: HSNOWITD after final sorting: ', |
424 |
& HSNOWITD(1,1,:,bi,bj) |
425 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
426 |
& SQUEEZE_RIGHT , myThid) |
427 |
WRITE(msgBuf,'(A)') |
428 |
& ' ============================================= ' |
429 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
430 |
& SQUEEZE_RIGHT , myThid) |
431 |
ENDDO |
432 |
ENDDO |
433 |
#endif |
434 |
C |
435 |
C>>>ToM |
436 |
ENDIF |
437 |
#endif /* DISABLE_SEAICE_GROWTH */ |
438 |
|
439 |
#ifdef ALLOW_SITRACER |
440 |
# ifdef ALLOW_AUTODIFF_TAMC |
441 |
CADJ STORE sitracer = comlev1, key=ikey_dynamics, kind=isbyte |
442 |
# endif |
443 |
CALL SEAICE_TRACER_PHYS ( myTime, myIter, myThid ) |
444 |
#endif |
445 |
|
446 |
C-- Apply ice tracer open boundary conditions |
447 |
#ifdef ALLOW_OBCS |
448 |
# ifndef DISABLE_SEAICE_OBCS |
449 |
IF ( useOBCS ) CALL OBCS_APPLY_SEAICE( myThid ) |
450 |
# endif /* DISABLE_SEAICE_OBCS */ |
451 |
#endif /* ALLOW_OBCS */ |
452 |
|
453 |
C-- Update overlap regions for a bunch of stuff |
454 |
_EXCH_XY_RL( HEFF, myThid ) |
455 |
_EXCH_XY_RL( AREA, myThid ) |
456 |
_EXCH_XY_RL( HSNOW, myThid ) |
457 |
#ifdef SEAICE_VARIABLE_SALINITY |
458 |
_EXCH_XY_RL( HSALT, myThid ) |
459 |
#endif |
460 |
#ifdef ALLOW_SITRACER |
461 |
DO iTr = 1, SItrNumInUse |
462 |
_EXCH_XY_RL( SItracer(1-OLx,1-OLy,1,1,iTr),myThid ) |
463 |
ENDDO |
464 |
#endif |
465 |
_EXCH_XY_RS(EmPmR, myThid ) |
466 |
_EXCH_XY_RS(saltFlux, myThid ) |
467 |
_EXCH_XY_RS(Qnet , myThid ) |
468 |
#ifdef SHORTWAVE_HEATING |
469 |
_EXCH_XY_RS(Qsw , myThid ) |
470 |
#endif /* SHORTWAVE_HEATING */ |
471 |
#ifdef ATMOSPHERIC_LOADING |
472 |
IF ( useRealFreshWaterFlux ) |
473 |
& _EXCH_XY_RS( sIceLoad, myThid ) |
474 |
#endif |
475 |
|
476 |
#ifdef ALLOW_OBCS |
477 |
C-- In case we use scheme with a large stencil that extends into overlap: |
478 |
C no longer needed with the right masking in advection & diffusion S/R. |
479 |
c IF ( useOBCS ) THEN |
480 |
c DO bj=myByLo(myThid),myByHi(myThid) |
481 |
c DO bi=myBxLo(myThid),myBxHi(myThid) |
482 |
c CALL OBCS_COPY_TRACER( HEFF(1-OLx,1-OLy,bi,bj), |
483 |
c I 1, bi, bj, myThid ) |
484 |
c CALL OBCS_COPY_TRACER( AREA(1-OLx,1-OLy,bi,bj), |
485 |
c I 1, bi, bj, myThid ) |
486 |
c CALL OBCS_COPY_TRACER( HSNOW(1-OLx,1-OLy,bi,bj), |
487 |
c I 1, bi, bj, myThid ) |
488 |
#ifdef SEAICE_VARIABLE_SALINITY |
489 |
c CALL OBCS_COPY_TRACER( HSALT(1-OLx,1-OLy,bi,bj), |
490 |
c I 1, bi, bj, myThid ) |
491 |
#endif |
492 |
c ENDDO |
493 |
c ENDDO |
494 |
c ENDIF |
495 |
#endif /* ALLOW_OBCS */ |
496 |
|
497 |
#ifdef ALLOW_DIAGNOSTICS |
498 |
IF ( useDiagnostics ) THEN |
499 |
C diagnostics for "non-state variables" that are modified by |
500 |
C the seaice model |
501 |
# ifdef ALLOW_EXF |
502 |
CALL DIAGNOSTICS_FILL(UWIND ,'SIuwind ',0,1 ,0,1,1,myThid) |
503 |
CALL DIAGNOSTICS_FILL(VWIND ,'SIvwind ',0,1 ,0,1,1,myThid) |
504 |
# endif |
505 |
CALL DIAGNOSTICS_FILL_RS(FU ,'SIfu ',0,1 ,0,1,1,myThid) |
506 |
CALL DIAGNOSTICS_FILL_RS(FV ,'SIfv ',0,1 ,0,1,1,myThid) |
507 |
CALL DIAGNOSTICS_FILL_RS(EmPmR,'SIempmr ',0,1 ,0,1,1,myThid) |
508 |
CALL DIAGNOSTICS_FILL_RS(Qnet ,'SIqnet ',0,1 ,0,1,1,myThid) |
509 |
CALL DIAGNOSTICS_FILL_RS(Qsw ,'SIqsw ',0,1 ,0,1,1,myThid) |
510 |
#ifdef SEAICE_ITD |
511 |
CALL DIAGNOSTICS_FILL(HEFFITD ,'SIheffN ',0,nITD,0,1,1,myThid) |
512 |
CALL DIAGNOSTICS_FILL(AREAITD ,'SIareaN ',0,nITD,0,1,1,myThid) |
513 |
#endif |
514 |
ENDIF |
515 |
#endif /* ALLOW_DIAGNOSTICS */ |
516 |
|
517 |
#ifdef ALLOW_THSICE |
518 |
C endif .not.useThSice |
519 |
ENDIF |
520 |
#endif /* ALLOW_THSICE */ |
521 |
CML This has already been done in seaice_ocean_stress/ostres, so why repeat? |
522 |
CML CALL EXCH_UV_XY_RS(fu,fv,.TRUE.,myThid) |
523 |
|
524 |
#ifdef ALLOW_EXF |
525 |
# ifdef ALLOW_AUTODIFF_TAMC |
526 |
# if (defined (ALLOW_AUTODIFF_MONITOR)) |
527 |
CALL EXF_ADJOINT_SNAPSHOTS( 3, myTime, myIter, myThid ) |
528 |
# endif |
529 |
# endif |
530 |
#endif |
531 |
|
532 |
#ifdef ALLOW_DEBUG |
533 |
IF (debugMode) CALL DEBUG_LEAVE( 'SEAICE_MODEL', myThid ) |
534 |
#endif |
535 |
|
536 |
RETURN |
537 |
END |