--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2003/09/15 19:39:04 1.16 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2010/08/27 13:25:31 1.27 @@ -1,9 +1,15 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.16 2003/09/15 19:39:04 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.27 2010/08/27 13:25:31 jmc Exp $ % $Name: $ -\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} +\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} \label{www:tutorials} \label{sect:eg-fourlayer} +\begin{rawhtml} + +\end{rawhtml} +\begin{center} +(in directory: {\it verification/tutorial\_baroclinic\_gyre/}) +\end{center} \bodytext{bgcolor="#FFFFFFFF"} @@ -18,13 +24,9 @@ %\end{center} This document describes an example experiment using MITgcm -to simulate a baroclinic ocean gyre in spherical -polar coordinates. The barotropic -example experiment in section \ref{sect:eg-baro} -illustrated how to configure the code for a single layer -simulation in a Cartesian grid. In this example a similar physical problem -is simulated, but the code is now configured -for four layers and in a spherical polar coordinate system. +to simulate a baroclinic ocean gyre for four layers in spherical +polar coordinates. The files for this experiment can be found +in the verification directory under tutorial\_baroclinic\_gyre. \subsection{Overview} \label{www:tutorials} @@ -104,11 +106,15 @@ the quantity that is carried in the model core equations. \begin{figure} -\begin{center} - \resizebox{7.5in}{5.5in}{ - \includegraphics*[0.2in,0.7in][10.5in,10.5in] - {part3/case_studies/fourlayer_gyre/simulation_config.eps} } -\end{center} +%% \begin{center} +%% \resizebox{7.5in}{5.5in}{ +%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] +%% {s_examples/baroclinic_gyre/simulation_config.eps} } +%% \end{center} +\centerline{ + \scalefig{.95} + \epsfbox{s_examples/baroclinic_gyre/simulation_config.eps} +} \caption{Schematic of simulation domain and wind-stress forcing function for the four-layer gyre numerical experiment. The domain is enclosed by solid walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. @@ -349,7 +355,8 @@ \label{SEC:eg_fourl_code_config} The model configuration for this experiment resides under the -directory {\it verification/exp2/}. The experiment files +directory {\it verification/tutorial\_barotropic\_gyre/}. +The experiment files \begin{itemize} \item {\it input/data} \item {\it input/data.pkg} @@ -376,7 +383,7 @@ \item Line 4, \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} this line sets the initial and reference values of potential -temperature at each model level in units of $^{\circ}$C. The entries +temperature at each model level in units of $^{\circ}\mathrm{C}$. The entries are ordered from surface to depth. For each depth level the initial and reference profiles will be uniform in $x$ and $y$. The values specified here are read into the variable \varlink{tRef}{tRef} in the @@ -414,18 +421,12 @@ coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions for this operator are specified later. The variable \varlink{viscAh}{viscAh} is read in the routine - \varlink{INI\_PARMS}{INI_PARMS} and applied in routines - \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS} and - \varlink{CALC\_GW}{CALC_GW}. + \varlink{INI\_PARMS}{INI_PARMS} and applied in routine + \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) - \end{minipage} -} -\fbox{ - \begin{minipage}{5.0in} - {\it S/R CALC\_GW}({\it calc\_gw.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } @@ -443,10 +444,10 @@ \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } - \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F} + \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} \item Lines 9, \begin{verbatim} @@ -457,14 +458,14 @@ at $z=-H$, where $H$ is the local depth of the domain. The variable \varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine \filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the - routine \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS}. + routine \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } - \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F} + \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} \item Line 10, \begin{verbatim} @@ -558,7 +559,7 @@ \item Line 41, \begin{verbatim} -phiMin=0., +ygOrigin=0., \end{verbatim} This line sets the southern boundary of the modeled domain to $0^{\circ}$ latitude. This value affects both the generation of the @@ -566,7 +567,7 @@ the initialization of the coriolis force. Note - it is not required to set a longitude boundary, since the absolute longitude does not alter the kernel equation discretisation. The variable - \varlink{phiMin}{phiMin} is read in the + \varlink{ygOrigin}{ygOrigin} is read in the routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine \fbox{ @@ -678,7 +679,7 @@ \begin{rawhtml}
\end{rawhtml}
 \begin{small}
-\input{part3/case_studies/fourlayer_gyre/input/data}
+\input{s_examples/baroclinic_gyre/input/data}
 \end{small}
 \begin{rawhtml}
\end{rawhtml} @@ -743,7 +744,7 @@ \end{itemize} \begin{small} -\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} +\include{s_examples/baroclinic_gyre/code/SIZE.h} \end{small} \subsubsection{File {\it code/CPP\_OPTIONS.h}}