--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2003/09/15 19:39:04 1.16 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2010/08/30 23:09:19 1.28 @@ -1,9 +1,15 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.16 2003/09/15 19:39:04 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.28 2010/08/30 23:09:19 jmc Exp $ % $Name: $ -\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} -\label{www:tutorials} -\label{sect:eg-fourlayer} +\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} +%\label{www:tutorials} +\label{sec:eg-fourlayer} +\begin{rawhtml} + +\end{rawhtml} +\begin{center} +(in directory: {\it verification/tutorial\_baroclinic\_gyre/}) +\end{center} \bodytext{bgcolor="#FFFFFFFF"} @@ -18,16 +24,12 @@ %\end{center} This document describes an example experiment using MITgcm -to simulate a baroclinic ocean gyre in spherical -polar coordinates. The barotropic -example experiment in section \ref{sect:eg-baro} -illustrated how to configure the code for a single layer -simulation in a Cartesian grid. In this example a similar physical problem -is simulated, but the code is now configured -for four layers and in a spherical polar coordinate system. +to simulate a baroclinic ocean gyre for four layers in spherical +polar coordinates. The files for this experiment can be found +in the verification directory under tutorial\_baroclinic\_gyre. \subsection{Overview} -\label{www:tutorials} +%\label{www:tutorials} This example experiment demonstrates using the MITgcm to simulate a baroclinic, wind-forced, ocean gyre circulation. The experiment @@ -45,7 +47,7 @@ according to latitude, $\varphi$ \begin{equation} -\label{EQ:eg-fourlayer-fcori} +\label{eq:eg-fourlayer-fcori} f(\varphi) = 2 \Omega \sin( \varphi ) \end{equation} @@ -55,7 +57,7 @@ The sinusoidal wind-stress variations are defined according to \begin{equation} -\label{EQ:taux} +\label{eq:taux} \tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) \end{equation} @@ -63,9 +65,9 @@ $\tau_0$ is set to $0.1N m^{-2}$. \\ -Figure \ref{FIG:eg-fourlayer-simulation_config} +Figure \ref{fig:eg-fourlayer-simulation_config} summarizes the configuration simulated. -In contrast to the example in section \ref{sect:eg-baro}, the +In contrast to the example in section \ref{sec:eg-baro}, the current experiment simulates a spherical polar domain. As indicated by the axes in the lower left of the figure the model code works internally in a locally orthogonal coordinate $(x,y,z)$. For this experiment description @@ -84,14 +86,14 @@ linear \begin{equation} -\label{EQ:eg-fourlayer-linear1_eos} +\label{eq:eg-fourlayer-linear1_eos} \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) \end{equation} \noindent which is implemented in the model as a density anomaly equation \begin{equation} -\label{EQ:eg-fourlayer-linear1_eos_pert} +\label{eq:eg-fourlayer-linear1_eos_pert} \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} \end{equation} @@ -104,11 +106,15 @@ the quantity that is carried in the model core equations. \begin{figure} -\begin{center} - \resizebox{7.5in}{5.5in}{ - \includegraphics*[0.2in,0.7in][10.5in,10.5in] - {part3/case_studies/fourlayer_gyre/simulation_config.eps} } -\end{center} +%% \begin{center} +%% \resizebox{7.5in}{5.5in}{ +%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] +%% {s_examples/baroclinic_gyre/simulation_config.eps} } +%% \end{center} +\centerline{ + \scalefig{.95} + \epsfbox{s_examples/baroclinic_gyre/simulation_config.eps} +} \caption{Schematic of simulation domain and wind-stress forcing function for the four-layer gyre numerical experiment. The domain is enclosed by solid walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. @@ -116,13 +122,13 @@ imposed by setting the potential temperature, $\theta$, in each layer. The vertical spacing, $\Delta z$, is constant and equal to $500$m. } -\label{FIG:eg-fourlayer-simulation_config} +\label{fig:eg-fourlayer-simulation_config} \end{figure} \subsection{Equations solved} -\label{www:tutorials} +%\label{www:tutorials} For this problem -the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the +the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the equations described in Marshall et. al \cite{marshall:97a} are employed. The flow is three-dimensional with just temperature, $\theta$, as an active tracer. The equation of state is linear. @@ -131,12 +137,12 @@ temperature equation. A wind-stress momentum forcing is added to the momentum equation for the zonal flow, $u$. Other terms in the model are explicitly switched off for this experiment configuration (see section -\ref{SEC:eg_fourl_code_config} ). This yields an active set of equations +\ref{sec:eg_fourl_code_config} ). This yields an active set of equations solved in this configuration, written in spherical polar coordinates as follows \begin{eqnarray} -\label{EQ:eg-fourlayer-model_equations} +\label{eq:eg-fourlayer-model_equations} \frac{Du}{Dt} - fv + \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} @@ -175,11 +181,11 @@ flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical integral term given in equation \ref{eq:free-surface} and -explained in more detail in section \ref{sect:pressure-method-linear-backward}. +explained in more detail in section \ref{sec:pressure-method-linear-backward}. However, for the problem presented here, the continuity relation (equation \ref{eq:fourl_example_continuity}) differs from the general form given -in section \ref{sect:pressure-method-linear-backward}, -equation \ref{eq:linear-free-surface=P-E+R}, because the source terms +in section \ref{sec:pressure-method-linear-backward}, +equation \ref{eq:linear-free-surface=P-E}, because the source terms ${\cal P}-{\cal E}+{\cal R}$ are all $0$. @@ -197,7 +203,7 @@ lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified when the numerical simulation is run - see section -\ref{SEC:eg_fourl_code_config}. For temperature +\ref{sec:eg_fourl_code_config}. For temperature the boundary condition is ``zero-flux'' e.g. $\frac{\partial \theta}{\partial \varphi}= \frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. @@ -205,7 +211,7 @@ \subsection{Discrete Numerical Configuration} -\label{www:tutorials} +%\label{www:tutorials} The domain is discretised with a uniform grid spacing in latitude and longitude @@ -225,7 +231,7 @@ The procedure for generating a set of internal grid variables from a spherical polar grid specification is discussed in section -\ref{sect:spatial_discrete_horizontal_grid}. +\ref{sec:spatial_discrete_horizontal_grid}. \noindent\fbox{ \begin{minipage}{5.5in} {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em @@ -246,32 +252,32 @@ -As described in \ref{sect:tracer_equations}, the time evolution of potential +As described in \ref{sec:tracer_equations}, the time evolution of potential temperature, $\theta$, (equation \ref{eq:eg_fourl_theta}) is evaluated prognostically. The centered second-order scheme with Adams-Bashforth time stepping described in section -\ref{sect:tracer_equations_abII} is used to step forward the temperature +\ref{sec:tracer_equations_abII} is used to step forward the temperature equation. Prognostic terms in the momentum equations are solved using flux form as -described in section \ref{sect:flux-form_momentum_eqautions}. +described in section \ref{sec:flux-form_momentum_equations}. The pressure forces that drive the fluid motions, ( $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the pressure is diagnosed explicitly by integrating density. The sea-surface height, $\eta$, is diagnosed using an implicit scheme. The pressure field solution method is described in sections -\ref{sect:pressure-method-linear-backward} and -\ref{sect:finding_the_pressure_field}. +\ref{sec:pressure-method-linear-backward} and +\ref{sec:finding_the_pressure_field}. \subsubsection{Numerical Stability Criteria} -\label{www:tutorials} +%\label{www:tutorials} The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. This value is chosen to yield a Munk layer width, \begin{eqnarray} -\label{EQ:eg-fourlayer-munk_layer} +\label{eq:eg-fourlayer-munk_layer} M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} \end{eqnarray} @@ -287,7 +293,7 @@ parameter to the horizontal Laplacian friction \begin{eqnarray} -\label{EQ:eg-fourlayer-laplacian_stability} +\label{eq:eg-fourlayer-laplacian_stability} S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} \end{eqnarray} @@ -299,7 +305,7 @@ $1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit \begin{eqnarray} -\label{EQ:eg-fourlayer-laplacian_stability_z} +\label{eq:eg-fourlayer-laplacian_stability_z} S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} \end{eqnarray} @@ -312,7 +318,7 @@ \noindent The numerical stability for inertial oscillations \begin{eqnarray} -\label{EQ:eg-fourlayer-inertial_stability} +\label{eq:eg-fourlayer-inertial_stability} S_{i} = f^{2} {\delta t}^2 \end{eqnarray} @@ -325,7 +331,7 @@ speed of $ | \vec{u} | = 2 ms^{-1}$ \begin{eqnarray} -\label{EQ:eg-fourlayer-cfl_stability} +\label{eq:eg-fourlayer-cfl_stability} C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} \end{eqnarray} @@ -337,7 +343,7 @@ propagating at $2~{\rm m}~{\rm s}^{-1}$ \begin{eqnarray} -\label{EQ:eg-fourlayer-igw_stability} +\label{eq:eg-fourlayer-igw_stability} S_{c} = \frac{c_{g} \delta t}{ \Delta x} \end{eqnarray} @@ -345,11 +351,12 @@ stability limit of 0.25. \subsection{Code Configuration} -\label{www:tutorials} -\label{SEC:eg_fourl_code_config} +%\label{www:tutorials} +\label{sec:eg_fourl_code_config} The model configuration for this experiment resides under the -directory {\it verification/exp2/}. The experiment files +directory {\it verification/tutorial\_barotropic\_gyre/}. +The experiment files \begin{itemize} \item {\it input/data} \item {\it input/data.pkg} @@ -365,7 +372,7 @@ associated with this experiment. \subsubsection{File {\it input/data}} -\label{www:tutorials} +%\label{www:tutorials} This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are significant for this configuration @@ -376,7 +383,7 @@ \item Line 4, \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} this line sets the initial and reference values of potential -temperature at each model level in units of $^{\circ}$C. The entries +temperature at each model level in units of $^{\circ}\mathrm{C}$. The entries are ordered from surface to depth. For each depth level the initial and reference profiles will be uniform in $x$ and $y$. The values specified here are read into the variable \varlink{tRef}{tRef} in the @@ -414,18 +421,12 @@ coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions for this operator are specified later. The variable \varlink{viscAh}{viscAh} is read in the routine - \varlink{INI\_PARMS}{INI_PARMS} and applied in routines - \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS} and - \varlink{CALC\_GW}{CALC_GW}. + \varlink{INI\_PARMS}{INI_PARMS} and applied in routine + \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) - \end{minipage} -} -\fbox{ - \begin{minipage}{5.0in} - {\it S/R CALC\_GW}({\it calc\_gw.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } @@ -443,10 +444,10 @@ \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } - \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F} + \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} \item Lines 9, \begin{verbatim} @@ -457,14 +458,14 @@ at $z=-H$, where $H$ is the local depth of the domain. The variable \varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine \filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the - routine \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS}. + routine \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. \fbox{ \begin{minipage}{5.0in} - {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) + {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \end{minipage} } - \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F} + \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} \item Line 10, \begin{verbatim} @@ -558,7 +559,7 @@ \item Line 41, \begin{verbatim} -phiMin=0., +ygOrigin=0., \end{verbatim} This line sets the southern boundary of the modeled domain to $0^{\circ}$ latitude. This value affects both the generation of the @@ -566,7 +567,7 @@ the initialization of the coriolis force. Note - it is not required to set a longitude boundary, since the absolute longitude does not alter the kernel equation discretisation. The variable - \varlink{phiMin}{phiMin} is read in the + \varlink{ygOrigin}{ygOrigin} is read in the routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine \fbox{ @@ -678,24 +679,24 @@ \begin{rawhtml}
\end{rawhtml}
 \begin{small}
-\input{part3/case_studies/fourlayer_gyre/input/data}
+\input{s_examples/baroclinic_gyre/input/data}
 \end{small}
 \begin{rawhtml}
\end{rawhtml} \subsubsection{File {\it input/data.pkg}} -\label{www:tutorials} +%\label{www:tutorials} This file uses standard default values and does not contain customisations for this experiment. \subsubsection{File {\it input/eedata}} -\label{www:tutorials} +%\label{www:tutorials} This file uses standard default values and does not contain customisations for this experiment. \subsubsection{File {\it input/windx.sin\_y}} -\label{www:tutorials} +%\label{www:tutorials} The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ @@ -708,7 +709,7 @@ input/windx.sin\_y} file. \subsubsection{File {\it input/topog.box}} -\label{www:tutorials} +%\label{www:tutorials} The {\it input/topog.box} file specifies a two-dimensional ($x,y$) @@ -720,7 +721,7 @@ code for creating the {\it input/topog.box} file. \subsubsection{File {\it code/SIZE.h}} -\label{www:tutorials} +%\label{www:tutorials} Two lines are customized in this file for the current experiment @@ -743,24 +744,24 @@ \end{itemize} \begin{small} -\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} +\include{s_examples/baroclinic_gyre/code/SIZE.h} \end{small} \subsubsection{File {\it code/CPP\_OPTIONS.h}} -\label{www:tutorials} +%\label{www:tutorials} This file uses standard default values and does not contain customisations for this experiment. \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} -\label{www:tutorials} +%\label{www:tutorials} This file uses standard default values and does not contain customisations for this experiment. \subsubsection{Other Files } -\label{www:tutorials} +%\label{www:tutorials} Other files relevant to this experiment are \begin{itemize} @@ -773,18 +774,18 @@ \end{itemize} \subsection{Running The Example} -\label{www:tutorials} -\label{SEC:running_the_example} +%\label{www:tutorials} +%\label{sec:running_the_example} \subsubsection{Code Download} -\label{www:tutorials} +%\label{www:tutorials} In order to run the examples you must first download the code distribution. Instructions for downloading the code can be found in section -\ref{sect:obtainingCode}. +\ref{sec:obtainingCode}. \subsubsection{Experiment Location} -\label{www:tutorials} +%\label{www:tutorials} This example experiments is located under the release sub-directory @@ -792,7 +793,7 @@ {\it verification/exp2/ } \subsubsection{Running the Experiment} -\label{www:tutorials} +%\label{www:tutorials} To run the experiment