--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/25 18:36:55 1.9 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2002/02/28 19:32:19 1.12 @@ -1,8 +1,8 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.9 2001/10/25 18:36:55 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.12 2002/02/28 19:32:19 cnh Exp $ % $Name: $ -\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} -\label{sec:eg-fourlayer} +\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} +\label{sect:eg-fourlayer} \bodytext{bgcolor="#FFFFFFFF"} @@ -19,7 +19,7 @@ This document describes an example experiment using MITgcm to simulate a baroclinic ocean gyre in spherical polar coordinates. The barotropic -example experiment in section \ref{sec:eg-baro} +example experiment in section \ref{sect:eg-baro} illustrated how to configure the code for a single layer simulation in a Cartesian grid. In this example a similar physical problem is simulated, but the code is now configured @@ -43,7 +43,7 @@ according to latitude, $\varphi$ \begin{equation} -\label{EQ:fcori} +\label{EQ:eg-fourlayer-fcori} f(\varphi) = 2 \Omega \sin( \varphi ) \end{equation} @@ -61,9 +61,9 @@ $\tau_0$ is set to $0.1N m^{-2}$. \\ -Figure \ref{FIG:simulation_config} +Figure \ref{FIG:eg-fourlayer-simulation_config} summarizes the configuration simulated. -In contrast to the example in section \ref{sec:eg-baro}, the +In contrast to the example in section \ref{sect:eg-baro}, the current experiment simulates a spherical polar domain. As indicated by the axes in the lower left of the figure the model code works internally in a locally orthogonal coordinate $(x,y,z)$. For this experiment description @@ -82,14 +82,14 @@ linear \begin{equation} -\label{EQ:linear1_eos} +\label{EQ:eg-fourlayer-linear1_eos} \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) \end{equation} \noindent which is implemented in the model as a density anomaly equation \begin{equation} -\label{EQ:linear1_eos_pert} +\label{EQ:eg-fourlayer-linear1_eos_pert} \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} \end{equation} @@ -114,13 +114,13 @@ imposed by setting the potential temperature, $\theta$, in each layer. The vertical spacing, $\Delta z$, is constant and equal to $500$m. } -\label{FIG:simulation_config} +\label{FIG:eg-fourlayer-simulation_config} \end{figure} \subsection{Equations solved} For this problem -the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the -equations described in Marshall et. al \cite{Marshall97a} are +the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the +equations described in Marshall et. al \cite{marshall:97a} are employed. The flow is three-dimensional with just temperature, $\theta$, as an active tracer. The equation of state is linear. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous @@ -133,7 +133,7 @@ follows \begin{eqnarray} -\label{EQ:model_equations} +\label{EQ:eg-fourlayer-model_equations} \frac{Du}{Dt} - fv + \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} @@ -221,7 +221,7 @@ The procedure for generating a set of internal grid variables from a spherical polar grid specification is discussed in section -\ref{sec:spatial_discrete_horizontal_grid}. +\ref{sect:spatial_discrete_horizontal_grid}. \noindent\fbox{ \begin{minipage}{5.5in} {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em @@ -242,15 +242,15 @@ -As described in \ref{sec:tracer_equations}, the time evolution of potential +As described in \ref{sect:tracer_equations}, the time evolution of potential temperature, $\theta$, (equation \ref{eq:eg_fourl_theta}) is evaluated prognostically. The centered second-order scheme with Adams-Bashforth time stepping described in section -\ref{sec:tracer_equations_abII} is used to step forward the temperature +\ref{sect:tracer_equations_abII} is used to step forward the temperature equation. Prognostic terms in the momentum equations are solved using flux form as -described in section \ref{sec:flux-form_momentum_eqautions}. +described in section \ref{sect:flux-form_momentum_eqautions}. The pressure forces that drive the fluid motions, ( $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the @@ -258,7 +258,7 @@ height, $\eta$, is diagnosed using an implicit scheme. The pressure field solution method is described in sections \ref{sect:pressure-method-linear-backward} and -\ref{sec:finding_the_pressure_field}. +\ref{sect:finding_the_pressure_field}. \subsubsection{Numerical Stability Criteria} @@ -266,7 +266,7 @@ This value is chosen to yield a Munk layer width, \begin{eqnarray} -\label{EQ:munk_layer} +\label{EQ:eg-fourlayer-munk_layer} M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} \end{eqnarray} @@ -282,7 +282,7 @@ parameter to the horizontal Laplacian friction \begin{eqnarray} -\label{EQ:laplacian_stability} +\label{EQ:eg-fourlayer-laplacian_stability} S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} \end{eqnarray} @@ -294,7 +294,7 @@ $1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit \begin{eqnarray} -\label{EQ:laplacian_stability_z} +\label{EQ:eg-fourlayer-laplacian_stability_z} S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} \end{eqnarray} @@ -307,7 +307,7 @@ \noindent The numerical stability for inertial oscillations \begin{eqnarray} -\label{EQ:inertial_stability} +\label{EQ:eg-fourlayer-inertial_stability} S_{i} = f^{2} {\delta t}^2 \end{eqnarray} @@ -320,7 +320,7 @@ speed of $ | \vec{u} | = 2 ms^{-1}$ \begin{eqnarray} -\label{EQ:cfl_stability} +\label{EQ:eg-fourlayer-cfl_stability} C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} \end{eqnarray} @@ -332,7 +332,7 @@ propagating at $2~{\rm m}~{\rm s}^{-1}$ \begin{eqnarray} -\label{EQ:igw_stability} +\label{EQ:eg-fourlayer-igw_stability} S_{c} = \frac{c_{g} \delta t}{ \Delta x} \end{eqnarray}