/[MITgcm]/manual/s_examples/held_suarez_cs/held_suarez_cs.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/held_suarez_cs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Mon Aug 1 22:58:25 2005 UTC (19 years, 11 months ago) by jmc
Branch: MAIN
File MIME type: application/x-tex
moved from hs_atmosphere/hs_atmos.tex

1 jmc 1.1 % $Header: $
2     % $Name: $
3    
4     \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation
5     on cube-sphere grid with 32 square cube faces.}
6     \label{www:tutorials}
7     \label{sect:eg-hs}
8     \begin{rawhtml}
9     <!-- CMIREDIR:eg-hs: -->
10     \end{rawhtml}
11    
12     \bodytext{bgcolor="#FFFFFFFF"}
13    
14     %\begin{center}
15     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
16     %At Four Degree Resolution with Asynchronous Time Stepping}
17     %
18     %\vspace*{4mm}
19     %
20     %\vspace*{3mm}
21     %{\large May 2001}
22     %\end{center}
23    
24     This example illustrates the use of the MITgcm as an Atmospheric GCM,
25     using simple %Held and Suarez
26     \cite{held-suar:94} forcing
27     to simulate Atmospheric Dynamics on global scale.
28     The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a}
29     in the vertical direction, with 20 equaly-spaced levels, and
30     the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}.
31    
32     This example illustrates the use of the MITgcm for large scale atmospheric
33     circulation simulation. Two simulations are described
34     \begin{itemize}
35     \item global atmospheric circulation on a latitude-longitude grid and
36     \item global atmospheric circulation on a cube-sphere grid
37     \end{itemize}
38     The examples show how to use the isomorphic 'p-coordinate' scheme in
39     MITgcm to enable atmospheric simulation.
40    
41    
42     \subsection{Overview}
43     \label{www:tutorials}
44    
45     This example demonstrates using the MITgcm to simulate
46     the planetary atmospheric circulation, with flat orography
47     and simplified forcing.
48     In particular, only dry air processes are considered and
49     radiation effects are represented by a simple newtownien cooling,
50     Thus this exemple does not rely on any particular atmospheric
51     physics package.
52     This kind of simplified atmospheric simulation has been widely
53     used in GFD-type experiments and in intercomparison projects of
54     AGCM dynamical cores \cite[]{held-suar:94}.
55    
56     The horizontal grid is obtain from the projection of a uniform gridded cube
57     to the sphere. Each of the 6 faces has the same resolution, with
58     $32 \times 32$ grid points. The equator line coincide with a grid line
59     and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces
60     for the Northern and Southern polar regions.
61     This curvilinear grid requires the use of the 2nd generation exchange
62     topology ({\it pkg/exch2}) to connect tile and face edges,
63     but without any limitation on the number of processors.
64    
65     The use of the $p^*$ coordinate with 20 equally spaced levels
66     ($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the
67     top of the atmosphere) follows the choice of \cite{held-suar:94} study,
68     where normalized pressure coordinate ($\sigma_p$) was used.
69     Note that without topography, the 2 coordinates systems are identical.
70    
71     At this resolution, the configuration can be integrated forward
72     for many years on a single processor desktop computer.
73     \\
74    
75     The model is forced by relaxation to a radiative equilibrium temperature from
76     %Held and Suarez
77     \cite{held-suar:94}.
78     A linear frictional drag (Rayleigh damping) is applied in the lower
79     part of the atmosphere and account from surface friction and momentum
80     dissipation in the boundary layer.
81     Altogether, this yields the following forcing
82     \cite[from][]{held-suar:94} that is applied to the fluid:
83    
84     \begin{eqnarray}
85     \label{EQ:eg-hs-global_forcing}
86     \label{EQ:eg-hs-global_forcing_fu}
87     \vec{{\cal F}_{u}} & = & -k_{v}(p)\vec{u}
88     \\
89     \label{EQ:eg-hs-global_forcing_ft}
90     {\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)]
91     \\
92     \end{eqnarray}
93    
94     \noindent where ${\vec{\cal F}_{u}}$, ${\cal F}_{\theta}$,
95     are the forcing terms in the zonal and meridional
96     momentum and in the potential temperature equations respectively.
97     The term $k_{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fu}) applies a
98     linear frictional drag (Rayleigh damping) that is active within the
99     planetary boundary layer. It is defined so as to decay with
100     height according to
101     \begin{eqnarray}
102     \label{EQ:eg-hs-define_kv}
103     k_{v} & = & k_{f}~{\rm max}[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
104     \\
105     \sigma_{b} & = & 0.7
106     \\
107     k_{f} & = & 1/86400 ~{\rm s}^{-1}
108     \end{eqnarray}
109    
110     where $p^*$ is the pressure level of the cell center
111     and $P^{0}_{s} = 10^5 {\rm Pa}$ is the pressure at the base of the atmospheric column.
112    
113     The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$
114     are set to:
115     \begin{eqnarray}
116     \label{EQ:eg-hs-define_kT}
117     \theta_{eq}(\phi,p^*) & = &
118     \\
119     k_{\theta}(\phi,p^*) & = &
120     \end{eqnarray}
121    
122     Initial conditions correspond to a resting state with horizontally uniform
123     stratified fluid. The initial temperature profile is simply the
124     horizontally average of the radiative equilibrium temperature.
125    
126     \subsection{Discrete Numerical Configuration}
127     \label{www:tutorials}
128    
129    
130     The model is configured in hydrostatic form. The domain is discretised with
131     a uniform grid spacing in latitude and longitude on the sphere
132     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
133     that there are ninety grid cells in the zonal and forty in the
134     meridional direction. The internal model coordinate variables
135     $x$ and $y$ are initialized according to
136     \begin{eqnarray}
137     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
138     y=r\lambda,~\Delta x &= &r\Delta \lambda
139     \end{eqnarray}
140    
141     Arctic polar regions are not
142     included in this experiment. Meridionally the model extends from
143     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
144     Vertically the model is configured with twenty layers with the
145     following thicknesses
146     $\Delta z_{1} = 50\,{\rm m},\,
147     \Delta z_{2} = 50\,{\rm m},\,
148     \Delta z_{3} = 55\,{\rm m},\,
149     \Delta z_{4} = 60\,{\rm m},\,
150     \Delta z_{5} = 65\,{\rm m},\,
151     $
152     $
153     \Delta z_{6}~=~70\,{\rm m},\,
154     \Delta z_{7}~=~80\,{\rm m},\,
155     \Delta z_{8}~=95\,{\rm m},\,
156     \Delta z_{9}=120\,{\rm m},\,
157     \Delta z_{10}=155\,{\rm m},\,
158     $
159     $
160     \Delta z_{11}=200\,{\rm m},\,
161     \Delta z_{12}=260\,{\rm m},\,
162     \Delta z_{13}=320\,{\rm m},\,
163     \Delta z_{14}=400\,{\rm m},\,
164     \Delta z_{15}=480\,{\rm m},\,
165     $
166     $
167     \Delta z_{16}=570\,{\rm m},\,
168     \Delta z_{17}=655\,{\rm m},\,
169     \Delta z_{18}=725\,{\rm m},\,
170     \Delta z_{19}=775\,{\rm m},\,
171     \Delta z_{20}=815\,{\rm m}
172     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
173     The implicit free surface form of the pressure equation described in Marshall et. al
174     \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
175     dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
176    
177     Wind-stress forcing is added to the momentum equations for both
178     the zonal flow, $u$ and the meridional flow $v$, according to equations
179     (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).
180     Thermodynamic forcing inputs are added to the equations for
181     potential temperature, $\theta$, and salinity, $S$, according to equations
182     (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
183     This produces a set of equations solved in this configuration as follows:
184    
185     \begin{eqnarray}
186     \label{EQ:eg-hs-model_equations}
187     \frac{Du}{Dt} - fv +
188     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
189     \nabla_{h}\cdot A_{h}\nabla_{h}u -
190     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
191     & = &
192     \begin{cases}
193     {\cal F}_u & \text{(surface)} \\
194     0 & \text{(interior)}
195     \end{cases}
196     \\
197     \frac{Dv}{Dt} + fu +
198     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
199     \nabla_{h}\cdot A_{h}\nabla_{h}v -
200     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
201     & = &
202     \begin{cases}
203     {\cal F}_v & \text{(surface)} \\
204     0 & \text{(interior)}
205     \end{cases}
206     \\
207     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
208     &=&
209     0
210     \\
211     \frac{D\theta}{Dt} -
212     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
213     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
214     & = &
215     \begin{cases}
216     {\cal F}_\theta & \text{(surface)} \\
217     0 & \text{(interior)}
218     \end{cases}
219     \\
220     \frac{D s}{Dt} -
221     \nabla_{h}\cdot K_{h}\nabla_{h}s
222     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
223     & = &
224     \begin{cases}
225     {\cal F}_s & \text{(surface)} \\
226     0 & \text{(interior)}
227     \end{cases}
228     \\
229     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
230     \end{eqnarray}
231    
232     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
233     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
234     are the zonal and meridional components of the
235     flow vector, $\vec{u}$, on the sphere. As described in
236     MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
237     evolution of potential temperature, $\theta$, equation is solved prognostically.
238     The total pressure, $p$, is diagnosed by summing pressure due to surface
239     elevation $\eta$ and the hydrostatic pressure.
240     \\
241    
242     \subsubsection{Numerical Stability Criteria}
243     \label{www:tutorials}
244    
245     The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
246     This value is chosen to yield a Munk layer width \cite{adcroft:95},
247     \begin{eqnarray}
248     \label{EQ:eg-hs-munk_layer}
249     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
250     \end{eqnarray}
251    
252     \noindent of $\approx 600$km. This is greater than the model
253     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
254     boundary layer is adequately resolved.
255     \\
256    
257     \noindent The model is stepped forward with a
258     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
259     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
260     parameter to the horizontal Laplacian friction \cite{adcroft:95}
261     \begin{eqnarray}
262     \label{EQ:eg-hs-laplacian_stability}
263     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
264     \end{eqnarray}
265    
266     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
267     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
268     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
269     \\
270    
271     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
272     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
273     \begin{eqnarray}
274     \label{EQ:eg-hs-laplacian_stability_z}
275     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
276     \end{eqnarray}
277    
278     \noindent evaluates to $0.015$ for the smallest model
279     level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
280     the upper stability limit.
281     \\
282    
283     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
284     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
285     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
286     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
287     Here the stability parameter
288     \begin{eqnarray}
289     \label{EQ:eg-hs-laplacian_stability_xtheta}
290     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
291     \end{eqnarray}
292     evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
293     stability parameter related to $K_{z}$
294     \begin{eqnarray}
295     \label{EQ:eg-hs-laplacian_stability_ztheta}
296     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
297     \end{eqnarray}
298     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
299     of $S_{l} \approx 0.5$.
300     \\
301    
302     \noindent The numerical stability for inertial oscillations
303     \cite{adcroft:95}
304    
305     \begin{eqnarray}
306     \label{EQ:eg-hs-inertial_stability}
307     S_{i} = f^{2} {\delta t_v}^2
308     \end{eqnarray}
309    
310     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
311     the $S_{i} < 1$ upper limit for stability.
312     \\
313    
314     \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
315     horizontal flow
316     speed of $ | \vec{u} | = 2 ms^{-1}$
317    
318     \begin{eqnarray}
319     \label{EQ:eg-hs-cfl_stability}
320     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
321     \end{eqnarray}
322    
323     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
324     limit of 0.5.
325     \\
326    
327     \noindent The stability parameter for internal gravity waves propagating
328     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
329     \cite{adcroft:95}
330    
331     \begin{eqnarray}
332     \label{EQ:eg-hs-gfl_stability}
333     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
334     \end{eqnarray}
335    
336     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
337     stability limit of 0.5.
338    
339     \subsection{Experiment Configuration}
340     \label{www:tutorials}
341     \label{SEC:eg-hs_examp_exp_config}
342    
343     The model configuration for this experiment resides under the
344     directory {\it verification/hs94.128x64x5}. The experiment files
345     \begin{itemize}
346     \item {\it input/data}
347     \item {\it input/data.pkg}
348     \item {\it input/eedata},
349     \item {\it input/windx.bin},
350     \item {\it input/windy.bin},
351     \item {\it input/salt.bin},
352     \item {\it input/theta.bin},
353     \item {\it input/SSS.bin},
354     \item {\it input/SST.bin},
355     \item {\it input/topog.bin},
356     \item {\it code/CPP\_EEOPTIONS.h}
357     \item {\it code/CPP\_OPTIONS.h},
358     \item {\it code/SIZE.h}.
359     \end{itemize}
360     contain the code customizations and parameter settings for these
361     experiments. Below we describe the customizations
362     to these files associated with this experiment.
363    
364     \subsubsection{File {\it input/data}}
365     \label{www:tutorials}
366    
367     This file, reproduced completely below, specifies the main parameters
368     for the experiment. The parameters that are significant for this configuration
369     are
370    
371     \begin{itemize}
372    
373     \item Lines 7-10 and 11-14
374     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
375     $\cdots$ \\
376     set reference values for potential
377     temperature and salinity at each model level in units of $^{\circ}$C and
378     ${\rm ppt}$. The entries are ordered from surface to depth.
379     Density is calculated from anomalies at each level evaluated
380     with respect to the reference values set here.\\
381     \fbox{
382     \begin{minipage}{5.0in}
383     {\it S/R INI\_THETA}({\it ini\_theta.F})
384     \end{minipage}
385     }
386    
387    
388     \item Line 15,
389     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
390     this line sets the vertical Laplacian dissipation coefficient to
391     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
392     for this operator are specified later. This variable is copied into
393     model general vertical coordinate variable {\bf viscAr}.
394    
395     \fbox{
396     \begin{minipage}{5.0in}
397     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
398     \end{minipage}
399     }
400    
401     \item Line 16,
402     \begin{verbatim}
403     viscAh=5.E5,
404     \end{verbatim}
405     this line sets the horizontal Laplacian frictional dissipation coefficient to
406     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
407     for this operator are specified later.
408    
409     \item Lines 17,
410     \begin{verbatim}
411     no_slip_sides=.FALSE.
412     \end{verbatim}
413     this line selects a free-slip lateral boundary condition for
414     the horizontal Laplacian friction operator
415     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
416     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
417    
418     \item Lines 9,
419     \begin{verbatim}
420     no_slip_bottom=.TRUE.
421     \end{verbatim}
422     this line selects a no-slip boundary condition for bottom
423     boundary condition in the vertical Laplacian friction operator
424     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
425    
426     \item Line 19,
427     \begin{verbatim}
428     diffKhT=1.E3,
429     \end{verbatim}
430     this line sets the horizontal diffusion coefficient for temperature
431     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
432     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
433     all boundaries.
434    
435     \item Line 20,
436     \begin{verbatim}
437     diffKzT=3.E-5,
438     \end{verbatim}
439     this line sets the vertical diffusion coefficient for temperature
440     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
441     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
442     the upper and lower boundaries.
443    
444     \item Line 21,
445     \begin{verbatim}
446     diffKhS=1.E3,
447     \end{verbatim}
448     this line sets the horizontal diffusion coefficient for salinity
449     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
450     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
451     all boundaries.
452    
453     \item Line 22,
454     \begin{verbatim}
455     diffKzS=3.E-5,
456     \end{verbatim}
457     this line sets the vertical diffusion coefficient for salinity
458     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
459     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
460     the upper and lower boundaries.
461    
462     \item Lines 23-26
463     \begin{verbatim}
464     beta=1.E-11,
465     \end{verbatim}
466     \vspace{-5mm}$\cdots$\\
467     These settings do not apply for this experiment.
468    
469     \item Line 27,
470     \begin{verbatim}
471     gravity=9.81,
472     \end{verbatim}
473     Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
474     \fbox{
475     \begin{minipage}{5.0in}
476     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
477     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
478     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
479     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
480     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
481     \end{minipage}
482     }
483    
484    
485     \item Line 28-29,
486     \begin{verbatim}
487     rigidLid=.FALSE.,
488     implicitFreeSurface=.TRUE.,
489     \end{verbatim}
490     Selects the barotropic pressure equation to be the implicit free surface
491     formulation.
492    
493     \item Line 30,
494     \begin{verbatim}
495     eosType='POLY3',
496     \end{verbatim}
497     Selects the third order polynomial form of the equation of state.\\
498     \fbox{
499     \begin{minipage}{5.0in}
500     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
501     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
502     \end{minipage}
503     }
504    
505     \item Line 31,
506     \begin{verbatim}
507     readBinaryPrec=32,
508     \end{verbatim}
509     Sets format for reading binary input datasets holding model fields to
510     use 32-bit representation for floating-point numbers.\\
511     \fbox{
512     \begin{minipage}{5.0in}
513     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
514     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
515     \end{minipage}
516     }
517    
518     \item Line 36,
519     \begin{verbatim}
520     cg2dMaxIters=1000,
521     \end{verbatim}
522     Sets maximum number of iterations the two-dimensional, conjugate
523     gradient solver will use, {\bf irrespective of convergence
524     criteria being met}.\\
525     \fbox{
526     \begin{minipage}{5.0in}
527     {\it S/R CG2D}~({\it cg2d.F})
528     \end{minipage}
529     }
530    
531     \item Line 37,
532     \begin{verbatim}
533     cg2dTargetResidual=1.E-13,
534     \end{verbatim}
535     Sets the tolerance which the two-dimensional, conjugate
536     gradient solver will use to test for convergence in equation
537     \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
538     Solver will iterate until
539     tolerance falls below this value or until the maximum number of
540     solver iterations is reached.\\
541     \fbox{
542     \begin{minipage}{5.0in}
543     {\it S/R CG2D}~({\it cg2d.F})
544     \end{minipage}
545     }
546    
547     \item Line 42,
548     \begin{verbatim}
549     startTime=0,
550     \end{verbatim}
551     Sets the starting time for the model internal time counter.
552     When set to non-zero this option implicitly requests a
553     checkpoint file be read for initial state.
554     By default the checkpoint file is named according to
555     the integer number of time steps in the {\bf startTime} value.
556     The internal time counter works in seconds.
557    
558     \item Line 43,
559     \begin{verbatim}
560     endTime=2808000.,
561     \end{verbatim}
562     Sets the time (in seconds) at which this simulation will terminate.
563     At the end of a simulation a checkpoint file is automatically
564     written so that a numerical experiment can consist of multiple
565     stages.
566    
567     \item Line 44,
568     \begin{verbatim}
569     #endTime=62208000000,
570     \end{verbatim}
571     A commented out setting for endTime for a 2000 year simulation.
572    
573     \item Line 45,
574     \begin{verbatim}
575     deltaTmom=2400.0,
576     \end{verbatim}
577     Sets the timestep $\delta t_{v}$ used in the momentum equations to
578     $20~{\rm mins}$.
579     See section \ref{SEC:mom_time_stepping}.
580    
581     \fbox{
582     \begin{minipage}{5.0in}
583     {\it S/R TIMESTEP}({\it timestep.F})
584     \end{minipage}
585     }
586    
587     \item Line 46,
588     \begin{verbatim}
589     tauCD=321428.,
590     \end{verbatim}
591     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
592     See section \ref{SEC:cd_scheme}.
593    
594     \fbox{
595     \begin{minipage}{5.0in}
596     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
597     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
598     \end{minipage}
599     }
600    
601     \item Line 47,
602     \begin{verbatim}
603     deltaTtracer=108000.,
604     \end{verbatim}
605     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
606     $30~{\rm hours}$.
607     See section \ref{SEC:tracer_time_stepping}.
608    
609     \fbox{
610     \begin{minipage}{5.0in}
611     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
612     \end{minipage}
613     }
614    
615     \item Line 47,
616     \begin{verbatim}
617     bathyFile='topog.box'
618     \end{verbatim}
619     This line specifies the name of the file from which the domain
620     bathymetry is read. This file is a two-dimensional ($x,y$) map of
621     depths. This file is assumed to contain 64-bit binary numbers
622     giving the depth of the model at each grid cell, ordered with the x
623     coordinate varying fastest. The points are ordered from low coordinate
624     to high coordinate for both axes. The units and orientation of the
625     depths in this file are the same as used in the MITgcm code. In this
626     experiment, a depth of $0m$ indicates a solid wall and a depth
627     of $-2000m$ indicates open ocean. The matlab program
628     {\it input/gendata.m} shows an example of how to generate a
629     bathymetry file.
630    
631    
632     \item Line 50,
633     \begin{verbatim}
634     zonalWindFile='windx.sin_y'
635     \end{verbatim}
636     This line specifies the name of the file from which the x-direction
637     surface wind stress is read. This file is also a two-dimensional
638     ($x,y$) map and is enumerated and formatted in the same manner as the
639     bathymetry file. The matlab program {\it input/gendata.m} includes example
640     code to generate a valid
641     {\bf zonalWindFile}
642     file.
643    
644     \end{itemize}
645    
646     \noindent other lines in the file {\it input/data} are standard values
647     that are described in the MITgcm Getting Started and MITgcm Parameters
648     notes.
649    
650     \begin{small}
651     \input{part3/case_studies/climatalogical_ogcm/input/data}
652     \end{small}
653    
654     \subsubsection{File {\it input/data.pkg}}
655     \label{www:tutorials}
656    
657     This file uses standard default values and does not contain
658     customisations for this experiment.
659    
660     \subsubsection{File {\it input/eedata}}
661     \label{www:tutorials}
662    
663     This file uses standard default values and does not contain
664     customisations for this experiment.
665    
666     \subsubsection{File {\it input/windx.sin\_y}}
667     \label{www:tutorials}
668    
669     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
670     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
671     Although $\tau_{x}$ is only a function of $y$n in this experiment
672     this file must still define a complete two-dimensional map in order
673     to be compatible with the standard code for loading forcing fields
674     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
675     code for creating the {\it input/windx.sin\_y} file.
676    
677     \subsubsection{File {\it input/topog.box}}
678     \label{www:tutorials}
679    
680    
681     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
682     map of depth values. For this experiment values are either
683     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
684     ocean. The file contains a raw binary stream of data that is enumerated
685     in the same way as standard MITgcm two-dimensional, horizontal arrays.
686     The included matlab program {\it input/gendata.m} gives a complete
687     code for creating the {\it input/topog.box} file.
688    
689     \subsubsection{File {\it code/SIZE.h}}
690     \label{www:tutorials}
691    
692     Two lines are customized in this file for the current experiment
693    
694     \begin{itemize}
695    
696     \item Line 39,
697     \begin{verbatim} sNx=60, \end{verbatim} this line sets
698     the lateral domain extent in grid points for the
699     axis aligned with the x-coordinate.
700    
701     \item Line 40,
702     \begin{verbatim} sNy=60, \end{verbatim} this line sets
703     the lateral domain extent in grid points for the
704     axis aligned with the y-coordinate.
705    
706     \item Line 49,
707     \begin{verbatim} Nr=4, \end{verbatim} this line sets
708     the vertical domain extent in grid points.
709    
710     \end{itemize}
711    
712     \begin{small}
713     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
714     \end{small}
715    
716     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
717     \label{www:tutorials}
718    
719     This file uses standard default values and does not contain
720     customisations for this experiment.
721    
722    
723     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
724     \label{www:tutorials}
725    
726     This file uses standard default values and does not contain
727     customisations for this experiment.
728    
729     \subsubsection{Other Files }
730     \label{www:tutorials}
731    
732     Other files relevant to this experiment are
733     \begin{itemize}
734     \item {\it model/src/ini\_cori.F}. This file initializes the model
735     coriolis variables {\bf fCorU}.
736     \item {\it model/src/ini\_spherical\_polar\_grid.F}
737     \item {\it model/src/ini\_parms.F},
738     \item {\it input/windx.sin\_y},
739     \end{itemize}
740     contain the code customisations and parameter settings for this
741     experiments. Below we describe the customisations
742     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22