/[MITgcm]/manual/s_examples/held_suarez_cs/held_suarez_cs.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/held_suarez_cs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Tue Aug 2 23:32:02 2005 UTC (19 years, 11 months ago) by jmc
Branch: MAIN
Changes since 1.1: +131 -138 lines
File MIME type: application/x-tex
updated

1 jmc 1.2 % $Header: /u/gcmpack/manual/part3/case_studies/held_suarez_cs/held_suarez_cs.tex,v 1.1 2005/08/01 22:58:25 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4     \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation
5     on cube-sphere grid with 32 square cube faces.}
6     \label{www:tutorials}
7     \label{sect:eg-hs}
8     \begin{rawhtml}
9     <!-- CMIREDIR:eg-hs: -->
10     \end{rawhtml}
11    
12     \bodytext{bgcolor="#FFFFFFFF"}
13    
14     %\begin{center}
15     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
16     %At Four Degree Resolution with Asynchronous Time Stepping}
17     %
18     %\vspace*{4mm}
19     %
20     %\vspace*{3mm}
21     %{\large May 2001}
22     %\end{center}
23    
24     This example illustrates the use of the MITgcm as an Atmospheric GCM,
25 jmc 1.2 using simple \cite{held-suar:94} forcing
26 jmc 1.1 to simulate Atmospheric Dynamics on global scale.
27     The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a}
28     in the vertical direction, with 20 equaly-spaced levels, and
29     the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}.
30    
31     This example illustrates the use of the MITgcm for large scale atmospheric
32     circulation simulation. Two simulations are described
33     \begin{itemize}
34     \item global atmospheric circulation on a latitude-longitude grid and
35     \item global atmospheric circulation on a cube-sphere grid
36     \end{itemize}
37     The examples show how to use the isomorphic 'p-coordinate' scheme in
38     MITgcm to enable atmospheric simulation.
39    
40    
41     \subsection{Overview}
42     \label{www:tutorials}
43    
44     This example demonstrates using the MITgcm to simulate
45     the planetary atmospheric circulation, with flat orography
46     and simplified forcing.
47     In particular, only dry air processes are considered and
48     radiation effects are represented by a simple newtownien cooling,
49     Thus this exemple does not rely on any particular atmospheric
50     physics package.
51     This kind of simplified atmospheric simulation has been widely
52     used in GFD-type experiments and in intercomparison projects of
53     AGCM dynamical cores \cite[]{held-suar:94}.
54    
55     The horizontal grid is obtain from the projection of a uniform gridded cube
56     to the sphere. Each of the 6 faces has the same resolution, with
57     $32 \times 32$ grid points. The equator line coincide with a grid line
58     and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces
59     for the Northern and Southern polar regions.
60     This curvilinear grid requires the use of the 2nd generation exchange
61     topology ({\it pkg/exch2}) to connect tile and face edges,
62     but without any limitation on the number of processors.
63    
64     The use of the $p^*$ coordinate with 20 equally spaced levels
65     ($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the
66 jmc 1.2 top of the atmosphere) follows the choice of \cite{held-suar:94}.
67     Note that without topography, the $p^*$ coordinate and the normalized
68     pressure coordinate ($\sigma_p$) coincide exactly.
69     No viscosity and zero diffusion are used here, but
70     a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and
71     potential temperature, to remove selectively grid scale noise.
72     Apart from the horizontal grid, this experiment is made very similar to
73     the grid-point model case used in \cite{held-suar:94} study.
74 jmc 1.1
75     At this resolution, the configuration can be integrated forward
76     for many years on a single processor desktop computer.
77     \\
78    
79 jmc 1.2 \subsection{Forcing}
80     \label{www:tutorials}
81    
82 jmc 1.1 The model is forced by relaxation to a radiative equilibrium temperature from
83     \cite{held-suar:94}.
84     A linear frictional drag (Rayleigh damping) is applied in the lower
85     part of the atmosphere and account from surface friction and momentum
86     dissipation in the boundary layer.
87     Altogether, this yields the following forcing
88     \cite[from][]{held-suar:94} that is applied to the fluid:
89    
90     \begin{eqnarray}
91     \label{EQ:eg-hs-global_forcing}
92 jmc 1.2 \label{EQ:eg-hs-global_forcing_fv}
93     \vec{{\cal F}_v} & = & -k_v(p)\vec{v}_h
94 jmc 1.1 \\
95     \label{EQ:eg-hs-global_forcing_ft}
96     {\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)]
97     \end{eqnarray}
98    
99 jmc 1.2 \noindent where ${\vec{\cal F}_{v}}$, ${\cal F}_{\theta}$,
100 jmc 1.1 are the forcing terms in the zonal and meridional
101     momentum and in the potential temperature equations respectively.
102 jmc 1.2 The term $k_{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fv}) applies a
103     Rayleigh damping that is active within the planetary boundary layer.
104     It is defined so as to decay as pressure decreases according to
105     \begin{eqnarray*}
106 jmc 1.1 \label{EQ:eg-hs-define_kv}
107 jmc 1.2 k_{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
108 jmc 1.1 \\
109 jmc 1.2 \sigma_{b} & = & 0.7 ~~{\rm and}~~
110     k_{f} = 1/86400 ~{\rm s}^{-1}
111     \end{eqnarray*}
112 jmc 1.1
113     where $p^*$ is the pressure level of the cell center
114 jmc 1.2 and $P^{0}_{s}$ is the pressure at the base of the atmospheric column,
115     which is constant and uniform here ($= 10^5 {\rm Pa}$), in the abcence
116     of topography.
117 jmc 1.1
118     The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$
119     are set to:
120     \begin{eqnarray}
121 jmc 1.2 \label{EQ:eg-hs-define_Teq}
122     \theta_{eq}(\phi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\
123     \nonumber
124     & & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\Phi)
125     - \Delta \theta_z \cos^2(\Phi) \log(p^*/P^{0}_s) \}
126     \\
127 jmc 1.1 \label{EQ:eg-hs-define_kT}
128     k_{\theta}(\phi,p^*) & = &
129 jmc 1.2 k_a + (k_s -k_a)~\cos^4(\Phi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
130 jmc 1.1 \end{eqnarray}
131 jmc 1.2 with:
132     \begin{eqnarray*}
133     \Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\
134     \Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1}
135     \end{eqnarray*}
136 jmc 1.1
137     Initial conditions correspond to a resting state with horizontally uniform
138     stratified fluid. The initial temperature profile is simply the
139     horizontally average of the radiative equilibrium temperature.
140    
141     \subsection{Discrete Numerical Configuration}
142     \label{www:tutorials}
143    
144 jmc 1.2 The model is configured in hydrostatic form, using non-boussinesq
145     $p^*$ coordinate.
146     The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$,
147     with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top.
148     The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b}
149     that cover the whole sphere with a relatively uniform grid-spacing.
150     The resolution at the equator or along the Greenwitch meridian
151     is similar to the $128 \times 64$ equaly spaced longitude-latitude grid,
152     but requires $25\%$ less grid points.
153     Grid spacing and grid-point location are not computed by the model but
154     read from files.
155    
156     The vector-invariant form of the momentum equation (see section
157     \ref{sect:vect-inv_momentum_equations}) is used so that no explicit
158     metrics are necessary.
159    
160     Applying the vector-invariant discretization to the
161     atmospheric equations \ref{eq:atmos-prime}, and adding the
162     forcing term
163     (\ref{EQ:eg-hs-global_forcing_fv}, \ref{EQ:eg-hs-global_forcing_ft})
164     on the right-hand-side,
165     leads to the set of equations that are solved in this configuration:
166    
167     %the The set of equations solved here is der
168     %Wind-stress forcing is added to the momentum equations for both
169     %the zonal flow, $u$ and the meridional flow $v$, according to equations
170     %(\ref{EQ:eg-hs-global_forcing_fv}) and (\ref{EQ:eg-hs-global_forcing_fv}).
171     %Thermodynamic forcing inputs are added to the equations for
172     %potential temperature, $\theta$, and salinity, $S$, according to equations
173     %(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
174 jmc 1.1
175     \begin{eqnarray}
176     \label{EQ:eg-hs-model_equations}
177 jmc 1.2 \frac{\partial \vec{\mathbf{v}}_h}{\partial t}
178     +(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h
179     %+\mathbf{\nabla }_{p} ({\rm KE})
180     +\mathbf{\nabla }_{p} (\mbox{\sc ke})
181     + \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p}
182     +\mathbf{\nabla }_p \phi ^{\prime }
183     &=&
184     % \vec{{\cal F}_v} =
185     -k_v\vec{v}_h
186     \\
187     \frac{\partial \phi ^{\prime }}{\partial p}
188     +\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0
189     \\
190     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{
191     \partial p} &=&0
192     \\
193     \frac{\partial \theta }{\partial t}
194     + \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h)
195     + \frac{\partial (\theta \omega)}{\partial p}
196     %= \frac{\mathcal{Q}}{\Pi }
197     &=& -k_{\theta}[\theta-\theta_{eq}]
198     \end{eqnarray}
199    
200     %\begin{equation}
201     %\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
202     %- b \hat{r}
203     %+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
204     %\end{equation}
205     %{\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)]
206    
207     \noindent where $\vec{v}_h$ and $\omega = \frac{Dp}{Dt}$ are the horizontal
208     velocity vector and the vertical velocity in pressure coordinate,
209     $\zeta$ is the relative vorticity and $f$ the Coriolis parameter,
210     $\hat{\mathbf{k}}$ is the vertical unity vector,
211     {\sc ke} is the kinetic energy, $\Phi$ is the geopotential
212     and $\Pi$ the Exner function
213     ($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$).
214     Variables marqued with $^{prime}$ corresponds to annomaly from
215     the resting, uniformly stratified state.
216    
217     As described in MITgcm Numerical Solution Procedure \ref{chap:discretization},
218     the continuity equation is integrated vertically, to give a prognostic
219     equation for the surface pressure $p_s$:
220     \begin{equation}
221     \frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{v}_h dp
222     = 0
223     \end{equation}
224    
225     The implicit free surface form of the pressure equation described in
226     \cite{marshall:97a} is employed to solve for $p_s$;
227     Integrating vertically the hydrostatic balance
228     gives the geopotential $\phi'$ and allow to step forward the momentum equation
229     \ref{EQ:eg-hs-model_equations}.
230     The potential temperature, $\theta$, is stepped forward using the
231     new velocity field ({\it staggered time-step}, section
232     \ref{sect:adams-bashforth-staggered}).
233 jmc 1.1 \\
234    
235     \subsubsection{Numerical Stability Criteria}
236     \label{www:tutorials}
237    
238 jmc 1.2 The Laplacian dissipation coefficient, $A_h$, is set to $5 \times 10^5 m s^{-1}$.
239 jmc 1.1 This value is chosen to yield a Munk layer width \cite{adcroft:95},
240     \begin{eqnarray}
241     \label{EQ:eg-hs-munk_layer}
242 jmc 1.2 M_{w} = \pi ( \frac { A_h }{ \beta } )^{\frac{1}{3}}
243 jmc 1.1 \end{eqnarray}
244    
245     \noindent of $\approx 600$km. This is greater than the model
246     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
247     boundary layer is adequately resolved.
248     \\
249    
250     \noindent The model is stepped forward with a
251     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
252     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
253     parameter to the horizontal Laplacian friction \cite{adcroft:95}
254     \begin{eqnarray}
255     \label{EQ:eg-hs-laplacian_stability}
256 jmc 1.2 S_{l} = 4 \frac{A_h \delta t_{v}}{{\Delta x}^2}
257 jmc 1.1 \end{eqnarray}
258    
259     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
260     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
261     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
262     \\
263    
264     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
265     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
266     \begin{eqnarray}
267     \label{EQ:eg-hs-laplacian_stability_z}
268     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
269     \end{eqnarray}
270    
271     \noindent evaluates to $0.015$ for the smallest model
272     level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
273     the upper stability limit.
274     \\
275    
276 jmc 1.2 The values of the horizontal ($K_h$) and vertical ($K_{z}$) diffusion coefficients
277 jmc 1.1 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
278     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
279 jmc 1.2 related to $K_h$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
280 jmc 1.1 Here the stability parameter
281     \begin{eqnarray}
282     \label{EQ:eg-hs-laplacian_stability_xtheta}
283 jmc 1.2 S_{l} = \frac{4 K_h \delta t_{\theta}}{{\Delta x}^2}
284 jmc 1.1 \end{eqnarray}
285     evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
286     stability parameter related to $K_{z}$
287     \begin{eqnarray}
288     \label{EQ:eg-hs-laplacian_stability_ztheta}
289     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
290     \end{eqnarray}
291     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
292     of $S_{l} \approx 0.5$.
293     \\
294    
295     \noindent The numerical stability for inertial oscillations
296     \cite{adcroft:95}
297    
298     \begin{eqnarray}
299     \label{EQ:eg-hs-inertial_stability}
300     S_{i} = f^{2} {\delta t_v}^2
301     \end{eqnarray}
302    
303     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
304     the $S_{i} < 1$ upper limit for stability.
305     \\
306    
307     \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
308     horizontal flow
309     speed of $ | \vec{u} | = 2 ms^{-1}$
310    
311     \begin{eqnarray}
312     \label{EQ:eg-hs-cfl_stability}
313     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
314     \end{eqnarray}
315    
316     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
317     limit of 0.5.
318     \\
319    
320     \noindent The stability parameter for internal gravity waves propagating
321     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
322     \cite{adcroft:95}
323    
324     \begin{eqnarray}
325     \label{EQ:eg-hs-gfl_stability}
326     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
327     \end{eqnarray}
328    
329     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
330     stability limit of 0.5.
331    
332     \subsection{Experiment Configuration}
333     \label{www:tutorials}
334     \label{SEC:eg-hs_examp_exp_config}
335    
336     The model configuration for this experiment resides under the
337     directory {\it verification/hs94.128x64x5}. The experiment files
338     \begin{itemize}
339     \item {\it input/data}
340     \item {\it input/data.pkg}
341     \item {\it input/eedata},
342     \item {\it input/windx.bin},
343     \item {\it input/windy.bin},
344     \item {\it input/salt.bin},
345     \item {\it input/theta.bin},
346     \item {\it input/SSS.bin},
347     \item {\it input/SST.bin},
348     \item {\it input/topog.bin},
349     \item {\it code/CPP\_EEOPTIONS.h}
350     \item {\it code/CPP\_OPTIONS.h},
351     \item {\it code/SIZE.h}.
352     \end{itemize}
353     contain the code customizations and parameter settings for these
354     experiments. Below we describe the customizations
355     to these files associated with this experiment.
356    
357     \subsubsection{File {\it input/data}}
358     \label{www:tutorials}
359    
360     This file, reproduced completely below, specifies the main parameters
361     for the experiment. The parameters that are significant for this configuration
362     are
363    
364     \begin{itemize}
365    
366     \item Lines 7-10 and 11-14
367     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
368     $\cdots$ \\
369     set reference values for potential
370     temperature and salinity at each model level in units of $^{\circ}$C and
371     ${\rm ppt}$. The entries are ordered from surface to depth.
372     Density is calculated from anomalies at each level evaluated
373     with respect to the reference values set here.\\
374     \fbox{
375     \begin{minipage}{5.0in}
376     {\it S/R INI\_THETA}({\it ini\_theta.F})
377     \end{minipage}
378     }
379    
380    
381     \item Line 15,
382     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
383     this line sets the vertical Laplacian dissipation coefficient to
384     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
385     for this operator are specified later. This variable is copied into
386     model general vertical coordinate variable {\bf viscAr}.
387    
388     \fbox{
389     \begin{minipage}{5.0in}
390     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
391     \end{minipage}
392     }
393    
394     \item Line 16,
395     \begin{verbatim}
396     viscAh=5.E5,
397     \end{verbatim}
398     this line sets the horizontal Laplacian frictional dissipation coefficient to
399     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
400     for this operator are specified later.
401    
402     \item Lines 17,
403     \begin{verbatim}
404     no_slip_sides=.FALSE.
405     \end{verbatim}
406     this line selects a free-slip lateral boundary condition for
407     the horizontal Laplacian friction operator
408     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
409     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
410    
411     \item Lines 9,
412     \begin{verbatim}
413     no_slip_bottom=.TRUE.
414     \end{verbatim}
415     this line selects a no-slip boundary condition for bottom
416     boundary condition in the vertical Laplacian friction operator
417     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
418    
419     \item Line 19,
420     \begin{verbatim}
421     diffKhT=1.E3,
422     \end{verbatim}
423     this line sets the horizontal diffusion coefficient for temperature
424     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
425     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
426     all boundaries.
427    
428     \item Line 20,
429     \begin{verbatim}
430     diffKzT=3.E-5,
431     \end{verbatim}
432     this line sets the vertical diffusion coefficient for temperature
433     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
434     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
435     the upper and lower boundaries.
436    
437     \item Line 21,
438     \begin{verbatim}
439     diffKhS=1.E3,
440     \end{verbatim}
441     this line sets the horizontal diffusion coefficient for salinity
442     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
443     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
444     all boundaries.
445    
446     \item Line 22,
447     \begin{verbatim}
448     diffKzS=3.E-5,
449     \end{verbatim}
450     this line sets the vertical diffusion coefficient for salinity
451     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
452     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
453     the upper and lower boundaries.
454    
455     \item Lines 23-26
456     \begin{verbatim}
457     beta=1.E-11,
458     \end{verbatim}
459     \vspace{-5mm}$\cdots$\\
460     These settings do not apply for this experiment.
461    
462     \item Line 27,
463     \begin{verbatim}
464     gravity=9.81,
465     \end{verbatim}
466     Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
467     \fbox{
468     \begin{minipage}{5.0in}
469     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
470     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
471     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
472     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
473     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
474     \end{minipage}
475     }
476    
477    
478     \item Line 28-29,
479     \begin{verbatim}
480     rigidLid=.FALSE.,
481     implicitFreeSurface=.TRUE.,
482     \end{verbatim}
483     Selects the barotropic pressure equation to be the implicit free surface
484     formulation.
485    
486     \item Line 30,
487     \begin{verbatim}
488     eosType='POLY3',
489     \end{verbatim}
490     Selects the third order polynomial form of the equation of state.\\
491     \fbox{
492     \begin{minipage}{5.0in}
493     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
494     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
495     \end{minipage}
496     }
497    
498     \item Line 31,
499     \begin{verbatim}
500     readBinaryPrec=32,
501     \end{verbatim}
502     Sets format for reading binary input datasets holding model fields to
503     use 32-bit representation for floating-point numbers.\\
504     \fbox{
505     \begin{minipage}{5.0in}
506     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
507     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
508     \end{minipage}
509     }
510    
511     \item Line 36,
512     \begin{verbatim}
513     cg2dMaxIters=1000,
514     \end{verbatim}
515     Sets maximum number of iterations the two-dimensional, conjugate
516     gradient solver will use, {\bf irrespective of convergence
517     criteria being met}.\\
518     \fbox{
519     \begin{minipage}{5.0in}
520     {\it S/R CG2D}~({\it cg2d.F})
521     \end{minipage}
522     }
523    
524     \item Line 37,
525     \begin{verbatim}
526     cg2dTargetResidual=1.E-13,
527     \end{verbatim}
528     Sets the tolerance which the two-dimensional, conjugate
529     gradient solver will use to test for convergence in equation
530     \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
531     Solver will iterate until
532     tolerance falls below this value or until the maximum number of
533     solver iterations is reached.\\
534     \fbox{
535     \begin{minipage}{5.0in}
536     {\it S/R CG2D}~({\it cg2d.F})
537     \end{minipage}
538     }
539    
540     \item Line 42,
541     \begin{verbatim}
542     startTime=0,
543     \end{verbatim}
544     Sets the starting time for the model internal time counter.
545     When set to non-zero this option implicitly requests a
546     checkpoint file be read for initial state.
547     By default the checkpoint file is named according to
548     the integer number of time steps in the {\bf startTime} value.
549     The internal time counter works in seconds.
550    
551     \item Line 43,
552     \begin{verbatim}
553     endTime=2808000.,
554     \end{verbatim}
555     Sets the time (in seconds) at which this simulation will terminate.
556     At the end of a simulation a checkpoint file is automatically
557     written so that a numerical experiment can consist of multiple
558     stages.
559    
560     \item Line 44,
561     \begin{verbatim}
562     #endTime=62208000000,
563     \end{verbatim}
564     A commented out setting for endTime for a 2000 year simulation.
565    
566     \item Line 45,
567     \begin{verbatim}
568     deltaTmom=2400.0,
569     \end{verbatim}
570     Sets the timestep $\delta t_{v}$ used in the momentum equations to
571     $20~{\rm mins}$.
572     See section \ref{SEC:mom_time_stepping}.
573    
574     \fbox{
575     \begin{minipage}{5.0in}
576     {\it S/R TIMESTEP}({\it timestep.F})
577     \end{minipage}
578     }
579    
580     \item Line 46,
581     \begin{verbatim}
582     tauCD=321428.,
583     \end{verbatim}
584     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
585     See section \ref{SEC:cd_scheme}.
586    
587     \fbox{
588     \begin{minipage}{5.0in}
589     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
590     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
591     \end{minipage}
592     }
593    
594     \item Line 47,
595     \begin{verbatim}
596     deltaTtracer=108000.,
597     \end{verbatim}
598     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
599     $30~{\rm hours}$.
600     See section \ref{SEC:tracer_time_stepping}.
601    
602     \fbox{
603     \begin{minipage}{5.0in}
604     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
605     \end{minipage}
606     }
607    
608     \item Line 47,
609     \begin{verbatim}
610     bathyFile='topog.box'
611     \end{verbatim}
612     This line specifies the name of the file from which the domain
613     bathymetry is read. This file is a two-dimensional ($x,y$) map of
614     depths. This file is assumed to contain 64-bit binary numbers
615     giving the depth of the model at each grid cell, ordered with the x
616     coordinate varying fastest. The points are ordered from low coordinate
617     to high coordinate for both axes. The units and orientation of the
618     depths in this file are the same as used in the MITgcm code. In this
619     experiment, a depth of $0m$ indicates a solid wall and a depth
620     of $-2000m$ indicates open ocean. The matlab program
621     {\it input/gendata.m} shows an example of how to generate a
622     bathymetry file.
623    
624    
625     \item Line 50,
626     \begin{verbatim}
627     zonalWindFile='windx.sin_y'
628     \end{verbatim}
629     This line specifies the name of the file from which the x-direction
630     surface wind stress is read. This file is also a two-dimensional
631     ($x,y$) map and is enumerated and formatted in the same manner as the
632     bathymetry file. The matlab program {\it input/gendata.m} includes example
633     code to generate a valid
634     {\bf zonalWindFile}
635     file.
636    
637     \end{itemize}
638    
639     \noindent other lines in the file {\it input/data} are standard values
640     that are described in the MITgcm Getting Started and MITgcm Parameters
641     notes.
642    
643     \begin{small}
644     \input{part3/case_studies/climatalogical_ogcm/input/data}
645     \end{small}
646    
647     \subsubsection{File {\it input/data.pkg}}
648     \label{www:tutorials}
649    
650     This file uses standard default values and does not contain
651     customisations for this experiment.
652    
653     \subsubsection{File {\it input/eedata}}
654     \label{www:tutorials}
655    
656     This file uses standard default values and does not contain
657     customisations for this experiment.
658    
659     \subsubsection{File {\it input/windx.sin\_y}}
660     \label{www:tutorials}
661    
662     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
663     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
664     Although $\tau_{x}$ is only a function of $y$n in this experiment
665     this file must still define a complete two-dimensional map in order
666     to be compatible with the standard code for loading forcing fields
667     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
668     code for creating the {\it input/windx.sin\_y} file.
669    
670     \subsubsection{File {\it input/topog.box}}
671     \label{www:tutorials}
672    
673    
674     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
675     map of depth values. For this experiment values are either
676     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
677     ocean. The file contains a raw binary stream of data that is enumerated
678     in the same way as standard MITgcm two-dimensional, horizontal arrays.
679     The included matlab program {\it input/gendata.m} gives a complete
680     code for creating the {\it input/topog.box} file.
681    
682     \subsubsection{File {\it code/SIZE.h}}
683     \label{www:tutorials}
684    
685     Two lines are customized in this file for the current experiment
686    
687     \begin{itemize}
688    
689     \item Line 39,
690     \begin{verbatim} sNx=60, \end{verbatim} this line sets
691     the lateral domain extent in grid points for the
692     axis aligned with the x-coordinate.
693    
694     \item Line 40,
695     \begin{verbatim} sNy=60, \end{verbatim} this line sets
696     the lateral domain extent in grid points for the
697     axis aligned with the y-coordinate.
698    
699     \item Line 49,
700     \begin{verbatim} Nr=4, \end{verbatim} this line sets
701     the vertical domain extent in grid points.
702    
703     \end{itemize}
704    
705     \begin{small}
706     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
707     \end{small}
708    
709     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
710     \label{www:tutorials}
711    
712     This file uses standard default values and does not contain
713     customisations for this experiment.
714    
715    
716     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
717     \label{www:tutorials}
718    
719     This file uses standard default values and does not contain
720     customisations for this experiment.
721    
722     \subsubsection{Other Files }
723     \label{www:tutorials}
724    
725     Other files relevant to this experiment are
726     \begin{itemize}
727     \item {\it model/src/ini\_cori.F}. This file initializes the model
728     coriolis variables {\bf fCorU}.
729     \item {\it model/src/ini\_spherical\_polar\_grid.F}
730     \item {\it model/src/ini\_parms.F},
731     \item {\it input/windx.sin\_y},
732     \end{itemize}
733     contain the code customisations and parameter settings for this
734     experiments. Below we describe the customisations
735     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22