1 |
jmc |
1.2 |
% $Header: /u/gcmpack/manual/part3/case_studies/held_suarez_cs/held_suarez_cs.tex,v 1.1 2005/08/01 22:58:25 jmc Exp $ |
2 |
jmc |
1.1 |
% $Name: $ |
3 |
|
|
|
4 |
|
|
\section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation |
5 |
|
|
on cube-sphere grid with 32 square cube faces.} |
6 |
|
|
\label{www:tutorials} |
7 |
|
|
\label{sect:eg-hs} |
8 |
|
|
\begin{rawhtml} |
9 |
|
|
<!-- CMIREDIR:eg-hs: --> |
10 |
|
|
\end{rawhtml} |
11 |
|
|
|
12 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
13 |
|
|
|
14 |
|
|
%\begin{center} |
15 |
|
|
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
16 |
|
|
%At Four Degree Resolution with Asynchronous Time Stepping} |
17 |
|
|
% |
18 |
|
|
%\vspace*{4mm} |
19 |
|
|
% |
20 |
|
|
%\vspace*{3mm} |
21 |
|
|
%{\large May 2001} |
22 |
|
|
%\end{center} |
23 |
|
|
|
24 |
|
|
This example illustrates the use of the MITgcm as an Atmospheric GCM, |
25 |
jmc |
1.2 |
using simple \cite{held-suar:94} forcing |
26 |
jmc |
1.1 |
to simulate Atmospheric Dynamics on global scale. |
27 |
|
|
The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a} |
28 |
|
|
in the vertical direction, with 20 equaly-spaced levels, and |
29 |
|
|
the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}. |
30 |
|
|
|
31 |
|
|
This example illustrates the use of the MITgcm for large scale atmospheric |
32 |
|
|
circulation simulation. Two simulations are described |
33 |
|
|
\begin{itemize} |
34 |
|
|
\item global atmospheric circulation on a latitude-longitude grid and |
35 |
|
|
\item global atmospheric circulation on a cube-sphere grid |
36 |
|
|
\end{itemize} |
37 |
|
|
The examples show how to use the isomorphic 'p-coordinate' scheme in |
38 |
|
|
MITgcm to enable atmospheric simulation. |
39 |
|
|
|
40 |
|
|
|
41 |
|
|
\subsection{Overview} |
42 |
|
|
\label{www:tutorials} |
43 |
|
|
|
44 |
|
|
This example demonstrates using the MITgcm to simulate |
45 |
|
|
the planetary atmospheric circulation, with flat orography |
46 |
|
|
and simplified forcing. |
47 |
|
|
In particular, only dry air processes are considered and |
48 |
|
|
radiation effects are represented by a simple newtownien cooling, |
49 |
|
|
Thus this exemple does not rely on any particular atmospheric |
50 |
|
|
physics package. |
51 |
|
|
This kind of simplified atmospheric simulation has been widely |
52 |
|
|
used in GFD-type experiments and in intercomparison projects of |
53 |
|
|
AGCM dynamical cores \cite[]{held-suar:94}. |
54 |
|
|
|
55 |
|
|
The horizontal grid is obtain from the projection of a uniform gridded cube |
56 |
|
|
to the sphere. Each of the 6 faces has the same resolution, with |
57 |
|
|
$32 \times 32$ grid points. The equator line coincide with a grid line |
58 |
|
|
and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces |
59 |
|
|
for the Northern and Southern polar regions. |
60 |
|
|
This curvilinear grid requires the use of the 2nd generation exchange |
61 |
|
|
topology ({\it pkg/exch2}) to connect tile and face edges, |
62 |
|
|
but without any limitation on the number of processors. |
63 |
|
|
|
64 |
|
|
The use of the $p^*$ coordinate with 20 equally spaced levels |
65 |
|
|
($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the |
66 |
jmc |
1.2 |
top of the atmosphere) follows the choice of \cite{held-suar:94}. |
67 |
|
|
Note that without topography, the $p^*$ coordinate and the normalized |
68 |
|
|
pressure coordinate ($\sigma_p$) coincide exactly. |
69 |
|
|
No viscosity and zero diffusion are used here, but |
70 |
|
|
a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and |
71 |
|
|
potential temperature, to remove selectively grid scale noise. |
72 |
|
|
Apart from the horizontal grid, this experiment is made very similar to |
73 |
|
|
the grid-point model case used in \cite{held-suar:94} study. |
74 |
jmc |
1.1 |
|
75 |
|
|
At this resolution, the configuration can be integrated forward |
76 |
|
|
for many years on a single processor desktop computer. |
77 |
|
|
\\ |
78 |
|
|
|
79 |
jmc |
1.2 |
\subsection{Forcing} |
80 |
|
|
\label{www:tutorials} |
81 |
|
|
|
82 |
jmc |
1.1 |
The model is forced by relaxation to a radiative equilibrium temperature from |
83 |
|
|
\cite{held-suar:94}. |
84 |
|
|
A linear frictional drag (Rayleigh damping) is applied in the lower |
85 |
|
|
part of the atmosphere and account from surface friction and momentum |
86 |
|
|
dissipation in the boundary layer. |
87 |
|
|
Altogether, this yields the following forcing |
88 |
|
|
\cite[from][]{held-suar:94} that is applied to the fluid: |
89 |
|
|
|
90 |
|
|
\begin{eqnarray} |
91 |
|
|
\label{EQ:eg-hs-global_forcing} |
92 |
jmc |
1.2 |
\label{EQ:eg-hs-global_forcing_fv} |
93 |
|
|
\vec{{\cal F}_v} & = & -k_v(p)\vec{v}_h |
94 |
jmc |
1.1 |
\\ |
95 |
|
|
\label{EQ:eg-hs-global_forcing_ft} |
96 |
|
|
{\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)] |
97 |
|
|
\end{eqnarray} |
98 |
|
|
|
99 |
jmc |
1.2 |
\noindent where ${\vec{\cal F}_{v}}$, ${\cal F}_{\theta}$, |
100 |
jmc |
1.1 |
are the forcing terms in the zonal and meridional |
101 |
|
|
momentum and in the potential temperature equations respectively. |
102 |
jmc |
1.2 |
The term $k_{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fv}) applies a |
103 |
|
|
Rayleigh damping that is active within the planetary boundary layer. |
104 |
|
|
It is defined so as to decay as pressure decreases according to |
105 |
|
|
\begin{eqnarray*} |
106 |
jmc |
1.1 |
\label{EQ:eg-hs-define_kv} |
107 |
jmc |
1.2 |
k_{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})] |
108 |
jmc |
1.1 |
\\ |
109 |
jmc |
1.2 |
\sigma_{b} & = & 0.7 ~~{\rm and}~~ |
110 |
|
|
k_{f} = 1/86400 ~{\rm s}^{-1} |
111 |
|
|
\end{eqnarray*} |
112 |
jmc |
1.1 |
|
113 |
|
|
where $p^*$ is the pressure level of the cell center |
114 |
jmc |
1.2 |
and $P^{0}_{s}$ is the pressure at the base of the atmospheric column, |
115 |
|
|
which is constant and uniform here ($= 10^5 {\rm Pa}$), in the abcence |
116 |
|
|
of topography. |
117 |
jmc |
1.1 |
|
118 |
|
|
The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$ |
119 |
|
|
are set to: |
120 |
|
|
\begin{eqnarray} |
121 |
jmc |
1.2 |
\label{EQ:eg-hs-define_Teq} |
122 |
|
|
\theta_{eq}(\phi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\ |
123 |
|
|
\nonumber |
124 |
|
|
& & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\Phi) |
125 |
|
|
- \Delta \theta_z \cos^2(\Phi) \log(p^*/P^{0}_s) \} |
126 |
|
|
\\ |
127 |
jmc |
1.1 |
\label{EQ:eg-hs-define_kT} |
128 |
|
|
k_{\theta}(\phi,p^*) & = & |
129 |
jmc |
1.2 |
k_a + (k_s -k_a)~\cos^4(\Phi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})] |
130 |
jmc |
1.1 |
\end{eqnarray} |
131 |
jmc |
1.2 |
with: |
132 |
|
|
\begin{eqnarray*} |
133 |
|
|
\Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\ |
134 |
|
|
\Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1} |
135 |
|
|
\end{eqnarray*} |
136 |
jmc |
1.1 |
|
137 |
|
|
Initial conditions correspond to a resting state with horizontally uniform |
138 |
|
|
stratified fluid. The initial temperature profile is simply the |
139 |
|
|
horizontally average of the radiative equilibrium temperature. |
140 |
|
|
|
141 |
|
|
\subsection{Discrete Numerical Configuration} |
142 |
|
|
\label{www:tutorials} |
143 |
|
|
|
144 |
jmc |
1.2 |
The model is configured in hydrostatic form, using non-boussinesq |
145 |
|
|
$p^*$ coordinate. |
146 |
|
|
The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$, |
147 |
|
|
with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top. |
148 |
|
|
The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b} |
149 |
|
|
that cover the whole sphere with a relatively uniform grid-spacing. |
150 |
|
|
The resolution at the equator or along the Greenwitch meridian |
151 |
|
|
is similar to the $128 \times 64$ equaly spaced longitude-latitude grid, |
152 |
|
|
but requires $25\%$ less grid points. |
153 |
|
|
Grid spacing and grid-point location are not computed by the model but |
154 |
|
|
read from files. |
155 |
|
|
|
156 |
|
|
The vector-invariant form of the momentum equation (see section |
157 |
|
|
\ref{sect:vect-inv_momentum_equations}) is used so that no explicit |
158 |
|
|
metrics are necessary. |
159 |
|
|
|
160 |
|
|
Applying the vector-invariant discretization to the |
161 |
|
|
atmospheric equations \ref{eq:atmos-prime}, and adding the |
162 |
|
|
forcing term |
163 |
|
|
(\ref{EQ:eg-hs-global_forcing_fv}, \ref{EQ:eg-hs-global_forcing_ft}) |
164 |
|
|
on the right-hand-side, |
165 |
|
|
leads to the set of equations that are solved in this configuration: |
166 |
|
|
|
167 |
|
|
%the The set of equations solved here is der |
168 |
|
|
%Wind-stress forcing is added to the momentum equations for both |
169 |
|
|
%the zonal flow, $u$ and the meridional flow $v$, according to equations |
170 |
|
|
%(\ref{EQ:eg-hs-global_forcing_fv}) and (\ref{EQ:eg-hs-global_forcing_fv}). |
171 |
|
|
%Thermodynamic forcing inputs are added to the equations for |
172 |
|
|
%potential temperature, $\theta$, and salinity, $S$, according to equations |
173 |
|
|
%(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}). |
174 |
jmc |
1.1 |
|
175 |
|
|
\begin{eqnarray} |
176 |
|
|
\label{EQ:eg-hs-model_equations} |
177 |
jmc |
1.2 |
\frac{\partial \vec{\mathbf{v}}_h}{\partial t} |
178 |
|
|
+(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h |
179 |
|
|
%+\mathbf{\nabla }_{p} ({\rm KE}) |
180 |
|
|
+\mathbf{\nabla }_{p} (\mbox{\sc ke}) |
181 |
|
|
+ \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p} |
182 |
|
|
+\mathbf{\nabla }_p \phi ^{\prime } |
183 |
|
|
&=& |
184 |
|
|
% \vec{{\cal F}_v} = |
185 |
|
|
-k_v\vec{v}_h |
186 |
|
|
\\ |
187 |
|
|
\frac{\partial \phi ^{\prime }}{\partial p} |
188 |
|
|
+\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0 |
189 |
|
|
\\ |
190 |
|
|
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{ |
191 |
|
|
\partial p} &=&0 |
192 |
|
|
\\ |
193 |
|
|
\frac{\partial \theta }{\partial t} |
194 |
|
|
+ \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h) |
195 |
|
|
+ \frac{\partial (\theta \omega)}{\partial p} |
196 |
|
|
%= \frac{\mathcal{Q}}{\Pi } |
197 |
|
|
&=& -k_{\theta}[\theta-\theta_{eq}] |
198 |
|
|
\end{eqnarray} |
199 |
|
|
|
200 |
|
|
%\begin{equation} |
201 |
|
|
%\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v} |
202 |
|
|
%- b \hat{r} |
203 |
|
|
%+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau} |
204 |
|
|
%\end{equation} |
205 |
|
|
%{\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)] |
206 |
|
|
|
207 |
|
|
\noindent where $\vec{v}_h$ and $\omega = \frac{Dp}{Dt}$ are the horizontal |
208 |
|
|
velocity vector and the vertical velocity in pressure coordinate, |
209 |
|
|
$\zeta$ is the relative vorticity and $f$ the Coriolis parameter, |
210 |
|
|
$\hat{\mathbf{k}}$ is the vertical unity vector, |
211 |
|
|
{\sc ke} is the kinetic energy, $\Phi$ is the geopotential |
212 |
|
|
and $\Pi$ the Exner function |
213 |
|
|
($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$). |
214 |
|
|
Variables marqued with $^{prime}$ corresponds to annomaly from |
215 |
|
|
the resting, uniformly stratified state. |
216 |
|
|
|
217 |
|
|
As described in MITgcm Numerical Solution Procedure \ref{chap:discretization}, |
218 |
|
|
the continuity equation is integrated vertically, to give a prognostic |
219 |
|
|
equation for the surface pressure $p_s$: |
220 |
|
|
\begin{equation} |
221 |
|
|
\frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{v}_h dp |
222 |
|
|
= 0 |
223 |
|
|
\end{equation} |
224 |
|
|
|
225 |
|
|
The implicit free surface form of the pressure equation described in |
226 |
|
|
\cite{marshall:97a} is employed to solve for $p_s$; |
227 |
|
|
Integrating vertically the hydrostatic balance |
228 |
|
|
gives the geopotential $\phi'$ and allow to step forward the momentum equation |
229 |
|
|
\ref{EQ:eg-hs-model_equations}. |
230 |
|
|
The potential temperature, $\theta$, is stepped forward using the |
231 |
|
|
new velocity field ({\it staggered time-step}, section |
232 |
|
|
\ref{sect:adams-bashforth-staggered}). |
233 |
jmc |
1.1 |
\\ |
234 |
|
|
|
235 |
|
|
\subsubsection{Numerical Stability Criteria} |
236 |
|
|
\label{www:tutorials} |
237 |
|
|
|
238 |
jmc |
1.2 |
The Laplacian dissipation coefficient, $A_h$, is set to $5 \times 10^5 m s^{-1}$. |
239 |
jmc |
1.1 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
240 |
|
|
\begin{eqnarray} |
241 |
|
|
\label{EQ:eg-hs-munk_layer} |
242 |
jmc |
1.2 |
M_{w} = \pi ( \frac { A_h }{ \beta } )^{\frac{1}{3}} |
243 |
jmc |
1.1 |
\end{eqnarray} |
244 |
|
|
|
245 |
|
|
\noindent of $\approx 600$km. This is greater than the model |
246 |
|
|
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
247 |
|
|
boundary layer is adequately resolved. |
248 |
|
|
\\ |
249 |
|
|
|
250 |
|
|
\noindent The model is stepped forward with a |
251 |
|
|
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
252 |
|
|
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
253 |
|
|
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
254 |
|
|
\begin{eqnarray} |
255 |
|
|
\label{EQ:eg-hs-laplacian_stability} |
256 |
jmc |
1.2 |
S_{l} = 4 \frac{A_h \delta t_{v}}{{\Delta x}^2} |
257 |
jmc |
1.1 |
\end{eqnarray} |
258 |
|
|
|
259 |
|
|
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
260 |
|
|
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
261 |
|
|
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
262 |
|
|
\\ |
263 |
|
|
|
264 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
265 |
|
|
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
266 |
|
|
\begin{eqnarray} |
267 |
|
|
\label{EQ:eg-hs-laplacian_stability_z} |
268 |
|
|
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
269 |
|
|
\end{eqnarray} |
270 |
|
|
|
271 |
|
|
\noindent evaluates to $0.015$ for the smallest model |
272 |
|
|
level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below |
273 |
|
|
the upper stability limit. |
274 |
|
|
\\ |
275 |
|
|
|
276 |
jmc |
1.2 |
The values of the horizontal ($K_h$) and vertical ($K_{z}$) diffusion coefficients |
277 |
jmc |
1.1 |
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
278 |
|
|
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
279 |
jmc |
1.2 |
related to $K_h$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
280 |
jmc |
1.1 |
Here the stability parameter |
281 |
|
|
\begin{eqnarray} |
282 |
|
|
\label{EQ:eg-hs-laplacian_stability_xtheta} |
283 |
jmc |
1.2 |
S_{l} = \frac{4 K_h \delta t_{\theta}}{{\Delta x}^2} |
284 |
jmc |
1.1 |
\end{eqnarray} |
285 |
|
|
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
286 |
|
|
stability parameter related to $K_{z}$ |
287 |
|
|
\begin{eqnarray} |
288 |
|
|
\label{EQ:eg-hs-laplacian_stability_ztheta} |
289 |
|
|
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
290 |
|
|
\end{eqnarray} |
291 |
|
|
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
292 |
|
|
of $S_{l} \approx 0.5$. |
293 |
|
|
\\ |
294 |
|
|
|
295 |
|
|
\noindent The numerical stability for inertial oscillations |
296 |
|
|
\cite{adcroft:95} |
297 |
|
|
|
298 |
|
|
\begin{eqnarray} |
299 |
|
|
\label{EQ:eg-hs-inertial_stability} |
300 |
|
|
S_{i} = f^{2} {\delta t_v}^2 |
301 |
|
|
\end{eqnarray} |
302 |
|
|
|
303 |
|
|
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
304 |
|
|
the $S_{i} < 1$ upper limit for stability. |
305 |
|
|
\\ |
306 |
|
|
|
307 |
|
|
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
308 |
|
|
horizontal flow |
309 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
310 |
|
|
|
311 |
|
|
\begin{eqnarray} |
312 |
|
|
\label{EQ:eg-hs-cfl_stability} |
313 |
|
|
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
314 |
|
|
\end{eqnarray} |
315 |
|
|
|
316 |
|
|
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
317 |
|
|
limit of 0.5. |
318 |
|
|
\\ |
319 |
|
|
|
320 |
|
|
\noindent The stability parameter for internal gravity waves propagating |
321 |
|
|
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
322 |
|
|
\cite{adcroft:95} |
323 |
|
|
|
324 |
|
|
\begin{eqnarray} |
325 |
|
|
\label{EQ:eg-hs-gfl_stability} |
326 |
|
|
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
327 |
|
|
\end{eqnarray} |
328 |
|
|
|
329 |
|
|
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
330 |
|
|
stability limit of 0.5. |
331 |
|
|
|
332 |
|
|
\subsection{Experiment Configuration} |
333 |
|
|
\label{www:tutorials} |
334 |
|
|
\label{SEC:eg-hs_examp_exp_config} |
335 |
|
|
|
336 |
|
|
The model configuration for this experiment resides under the |
337 |
|
|
directory {\it verification/hs94.128x64x5}. The experiment files |
338 |
|
|
\begin{itemize} |
339 |
|
|
\item {\it input/data} |
340 |
|
|
\item {\it input/data.pkg} |
341 |
|
|
\item {\it input/eedata}, |
342 |
|
|
\item {\it input/windx.bin}, |
343 |
|
|
\item {\it input/windy.bin}, |
344 |
|
|
\item {\it input/salt.bin}, |
345 |
|
|
\item {\it input/theta.bin}, |
346 |
|
|
\item {\it input/SSS.bin}, |
347 |
|
|
\item {\it input/SST.bin}, |
348 |
|
|
\item {\it input/topog.bin}, |
349 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
350 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
351 |
|
|
\item {\it code/SIZE.h}. |
352 |
|
|
\end{itemize} |
353 |
|
|
contain the code customizations and parameter settings for these |
354 |
|
|
experiments. Below we describe the customizations |
355 |
|
|
to these files associated with this experiment. |
356 |
|
|
|
357 |
|
|
\subsubsection{File {\it input/data}} |
358 |
|
|
\label{www:tutorials} |
359 |
|
|
|
360 |
|
|
This file, reproduced completely below, specifies the main parameters |
361 |
|
|
for the experiment. The parameters that are significant for this configuration |
362 |
|
|
are |
363 |
|
|
|
364 |
|
|
\begin{itemize} |
365 |
|
|
|
366 |
|
|
\item Lines 7-10 and 11-14 |
367 |
|
|
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
368 |
|
|
$\cdots$ \\ |
369 |
|
|
set reference values for potential |
370 |
|
|
temperature and salinity at each model level in units of $^{\circ}$C and |
371 |
|
|
${\rm ppt}$. The entries are ordered from surface to depth. |
372 |
|
|
Density is calculated from anomalies at each level evaluated |
373 |
|
|
with respect to the reference values set here.\\ |
374 |
|
|
\fbox{ |
375 |
|
|
\begin{minipage}{5.0in} |
376 |
|
|
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
377 |
|
|
\end{minipage} |
378 |
|
|
} |
379 |
|
|
|
380 |
|
|
|
381 |
|
|
\item Line 15, |
382 |
|
|
\begin{verbatim} viscAz=1.E-3, \end{verbatim} |
383 |
|
|
this line sets the vertical Laplacian dissipation coefficient to |
384 |
|
|
$1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions |
385 |
|
|
for this operator are specified later. This variable is copied into |
386 |
|
|
model general vertical coordinate variable {\bf viscAr}. |
387 |
|
|
|
388 |
|
|
\fbox{ |
389 |
|
|
\begin{minipage}{5.0in} |
390 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
391 |
|
|
\end{minipage} |
392 |
|
|
} |
393 |
|
|
|
394 |
|
|
\item Line 16, |
395 |
|
|
\begin{verbatim} |
396 |
|
|
viscAh=5.E5, |
397 |
|
|
\end{verbatim} |
398 |
|
|
this line sets the horizontal Laplacian frictional dissipation coefficient to |
399 |
|
|
$5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions |
400 |
|
|
for this operator are specified later. |
401 |
|
|
|
402 |
|
|
\item Lines 17, |
403 |
|
|
\begin{verbatim} |
404 |
|
|
no_slip_sides=.FALSE. |
405 |
|
|
\end{verbatim} |
406 |
|
|
this line selects a free-slip lateral boundary condition for |
407 |
|
|
the horizontal Laplacian friction operator |
408 |
|
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
409 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
410 |
|
|
|
411 |
|
|
\item Lines 9, |
412 |
|
|
\begin{verbatim} |
413 |
|
|
no_slip_bottom=.TRUE. |
414 |
|
|
\end{verbatim} |
415 |
|
|
this line selects a no-slip boundary condition for bottom |
416 |
|
|
boundary condition in the vertical Laplacian friction operator |
417 |
|
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
418 |
|
|
|
419 |
|
|
\item Line 19, |
420 |
|
|
\begin{verbatim} |
421 |
|
|
diffKhT=1.E3, |
422 |
|
|
\end{verbatim} |
423 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
424 |
|
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
425 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
426 |
|
|
all boundaries. |
427 |
|
|
|
428 |
|
|
\item Line 20, |
429 |
|
|
\begin{verbatim} |
430 |
|
|
diffKzT=3.E-5, |
431 |
|
|
\end{verbatim} |
432 |
|
|
this line sets the vertical diffusion coefficient for temperature |
433 |
|
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
434 |
|
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
435 |
|
|
the upper and lower boundaries. |
436 |
|
|
|
437 |
|
|
\item Line 21, |
438 |
|
|
\begin{verbatim} |
439 |
|
|
diffKhS=1.E3, |
440 |
|
|
\end{verbatim} |
441 |
|
|
this line sets the horizontal diffusion coefficient for salinity |
442 |
|
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
443 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
444 |
|
|
all boundaries. |
445 |
|
|
|
446 |
|
|
\item Line 22, |
447 |
|
|
\begin{verbatim} |
448 |
|
|
diffKzS=3.E-5, |
449 |
|
|
\end{verbatim} |
450 |
|
|
this line sets the vertical diffusion coefficient for salinity |
451 |
|
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
452 |
|
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
453 |
|
|
the upper and lower boundaries. |
454 |
|
|
|
455 |
|
|
\item Lines 23-26 |
456 |
|
|
\begin{verbatim} |
457 |
|
|
beta=1.E-11, |
458 |
|
|
\end{verbatim} |
459 |
|
|
\vspace{-5mm}$\cdots$\\ |
460 |
|
|
These settings do not apply for this experiment. |
461 |
|
|
|
462 |
|
|
\item Line 27, |
463 |
|
|
\begin{verbatim} |
464 |
|
|
gravity=9.81, |
465 |
|
|
\end{verbatim} |
466 |
|
|
Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\ |
467 |
|
|
\fbox{ |
468 |
|
|
\begin{minipage}{5.0in} |
469 |
|
|
{\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ |
470 |
|
|
{\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ |
471 |
|
|
{\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ |
472 |
|
|
{\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ |
473 |
|
|
{\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) |
474 |
|
|
\end{minipage} |
475 |
|
|
} |
476 |
|
|
|
477 |
|
|
|
478 |
|
|
\item Line 28-29, |
479 |
|
|
\begin{verbatim} |
480 |
|
|
rigidLid=.FALSE., |
481 |
|
|
implicitFreeSurface=.TRUE., |
482 |
|
|
\end{verbatim} |
483 |
|
|
Selects the barotropic pressure equation to be the implicit free surface |
484 |
|
|
formulation. |
485 |
|
|
|
486 |
|
|
\item Line 30, |
487 |
|
|
\begin{verbatim} |
488 |
|
|
eosType='POLY3', |
489 |
|
|
\end{verbatim} |
490 |
|
|
Selects the third order polynomial form of the equation of state.\\ |
491 |
|
|
\fbox{ |
492 |
|
|
\begin{minipage}{5.0in} |
493 |
|
|
{\it S/R FIND\_RHO}~({\it find\_rho.F})\\ |
494 |
|
|
{\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) |
495 |
|
|
\end{minipage} |
496 |
|
|
} |
497 |
|
|
|
498 |
|
|
\item Line 31, |
499 |
|
|
\begin{verbatim} |
500 |
|
|
readBinaryPrec=32, |
501 |
|
|
\end{verbatim} |
502 |
|
|
Sets format for reading binary input datasets holding model fields to |
503 |
|
|
use 32-bit representation for floating-point numbers.\\ |
504 |
|
|
\fbox{ |
505 |
|
|
\begin{minipage}{5.0in} |
506 |
|
|
{\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ |
507 |
|
|
{\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) |
508 |
|
|
\end{minipage} |
509 |
|
|
} |
510 |
|
|
|
511 |
|
|
\item Line 36, |
512 |
|
|
\begin{verbatim} |
513 |
|
|
cg2dMaxIters=1000, |
514 |
|
|
\end{verbatim} |
515 |
|
|
Sets maximum number of iterations the two-dimensional, conjugate |
516 |
|
|
gradient solver will use, {\bf irrespective of convergence |
517 |
|
|
criteria being met}.\\ |
518 |
|
|
\fbox{ |
519 |
|
|
\begin{minipage}{5.0in} |
520 |
|
|
{\it S/R CG2D}~({\it cg2d.F}) |
521 |
|
|
\end{minipage} |
522 |
|
|
} |
523 |
|
|
|
524 |
|
|
\item Line 37, |
525 |
|
|
\begin{verbatim} |
526 |
|
|
cg2dTargetResidual=1.E-13, |
527 |
|
|
\end{verbatim} |
528 |
|
|
Sets the tolerance which the two-dimensional, conjugate |
529 |
|
|
gradient solver will use to test for convergence in equation |
530 |
|
|
\ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$. |
531 |
|
|
Solver will iterate until |
532 |
|
|
tolerance falls below this value or until the maximum number of |
533 |
|
|
solver iterations is reached.\\ |
534 |
|
|
\fbox{ |
535 |
|
|
\begin{minipage}{5.0in} |
536 |
|
|
{\it S/R CG2D}~({\it cg2d.F}) |
537 |
|
|
\end{minipage} |
538 |
|
|
} |
539 |
|
|
|
540 |
|
|
\item Line 42, |
541 |
|
|
\begin{verbatim} |
542 |
|
|
startTime=0, |
543 |
|
|
\end{verbatim} |
544 |
|
|
Sets the starting time for the model internal time counter. |
545 |
|
|
When set to non-zero this option implicitly requests a |
546 |
|
|
checkpoint file be read for initial state. |
547 |
|
|
By default the checkpoint file is named according to |
548 |
|
|
the integer number of time steps in the {\bf startTime} value. |
549 |
|
|
The internal time counter works in seconds. |
550 |
|
|
|
551 |
|
|
\item Line 43, |
552 |
|
|
\begin{verbatim} |
553 |
|
|
endTime=2808000., |
554 |
|
|
\end{verbatim} |
555 |
|
|
Sets the time (in seconds) at which this simulation will terminate. |
556 |
|
|
At the end of a simulation a checkpoint file is automatically |
557 |
|
|
written so that a numerical experiment can consist of multiple |
558 |
|
|
stages. |
559 |
|
|
|
560 |
|
|
\item Line 44, |
561 |
|
|
\begin{verbatim} |
562 |
|
|
#endTime=62208000000, |
563 |
|
|
\end{verbatim} |
564 |
|
|
A commented out setting for endTime for a 2000 year simulation. |
565 |
|
|
|
566 |
|
|
\item Line 45, |
567 |
|
|
\begin{verbatim} |
568 |
|
|
deltaTmom=2400.0, |
569 |
|
|
\end{verbatim} |
570 |
|
|
Sets the timestep $\delta t_{v}$ used in the momentum equations to |
571 |
|
|
$20~{\rm mins}$. |
572 |
|
|
See section \ref{SEC:mom_time_stepping}. |
573 |
|
|
|
574 |
|
|
\fbox{ |
575 |
|
|
\begin{minipage}{5.0in} |
576 |
|
|
{\it S/R TIMESTEP}({\it timestep.F}) |
577 |
|
|
\end{minipage} |
578 |
|
|
} |
579 |
|
|
|
580 |
|
|
\item Line 46, |
581 |
|
|
\begin{verbatim} |
582 |
|
|
tauCD=321428., |
583 |
|
|
\end{verbatim} |
584 |
|
|
Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations. |
585 |
|
|
See section \ref{SEC:cd_scheme}. |
586 |
|
|
|
587 |
|
|
\fbox{ |
588 |
|
|
\begin{minipage}{5.0in} |
589 |
|
|
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
590 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
591 |
|
|
\end{minipage} |
592 |
|
|
} |
593 |
|
|
|
594 |
|
|
\item Line 47, |
595 |
|
|
\begin{verbatim} |
596 |
|
|
deltaTtracer=108000., |
597 |
|
|
\end{verbatim} |
598 |
|
|
Sets the default timestep, $\delta t_{\theta}$, for tracer equations to |
599 |
|
|
$30~{\rm hours}$. |
600 |
|
|
See section \ref{SEC:tracer_time_stepping}. |
601 |
|
|
|
602 |
|
|
\fbox{ |
603 |
|
|
\begin{minipage}{5.0in} |
604 |
|
|
{\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) |
605 |
|
|
\end{minipage} |
606 |
|
|
} |
607 |
|
|
|
608 |
|
|
\item Line 47, |
609 |
|
|
\begin{verbatim} |
610 |
|
|
bathyFile='topog.box' |
611 |
|
|
\end{verbatim} |
612 |
|
|
This line specifies the name of the file from which the domain |
613 |
|
|
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
614 |
|
|
depths. This file is assumed to contain 64-bit binary numbers |
615 |
|
|
giving the depth of the model at each grid cell, ordered with the x |
616 |
|
|
coordinate varying fastest. The points are ordered from low coordinate |
617 |
|
|
to high coordinate for both axes. The units and orientation of the |
618 |
|
|
depths in this file are the same as used in the MITgcm code. In this |
619 |
|
|
experiment, a depth of $0m$ indicates a solid wall and a depth |
620 |
|
|
of $-2000m$ indicates open ocean. The matlab program |
621 |
|
|
{\it input/gendata.m} shows an example of how to generate a |
622 |
|
|
bathymetry file. |
623 |
|
|
|
624 |
|
|
|
625 |
|
|
\item Line 50, |
626 |
|
|
\begin{verbatim} |
627 |
|
|
zonalWindFile='windx.sin_y' |
628 |
|
|
\end{verbatim} |
629 |
|
|
This line specifies the name of the file from which the x-direction |
630 |
|
|
surface wind stress is read. This file is also a two-dimensional |
631 |
|
|
($x,y$) map and is enumerated and formatted in the same manner as the |
632 |
|
|
bathymetry file. The matlab program {\it input/gendata.m} includes example |
633 |
|
|
code to generate a valid |
634 |
|
|
{\bf zonalWindFile} |
635 |
|
|
file. |
636 |
|
|
|
637 |
|
|
\end{itemize} |
638 |
|
|
|
639 |
|
|
\noindent other lines in the file {\it input/data} are standard values |
640 |
|
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
641 |
|
|
notes. |
642 |
|
|
|
643 |
|
|
\begin{small} |
644 |
|
|
\input{part3/case_studies/climatalogical_ogcm/input/data} |
645 |
|
|
\end{small} |
646 |
|
|
|
647 |
|
|
\subsubsection{File {\it input/data.pkg}} |
648 |
|
|
\label{www:tutorials} |
649 |
|
|
|
650 |
|
|
This file uses standard default values and does not contain |
651 |
|
|
customisations for this experiment. |
652 |
|
|
|
653 |
|
|
\subsubsection{File {\it input/eedata}} |
654 |
|
|
\label{www:tutorials} |
655 |
|
|
|
656 |
|
|
This file uses standard default values and does not contain |
657 |
|
|
customisations for this experiment. |
658 |
|
|
|
659 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
660 |
|
|
\label{www:tutorials} |
661 |
|
|
|
662 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
663 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
664 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
665 |
|
|
this file must still define a complete two-dimensional map in order |
666 |
|
|
to be compatible with the standard code for loading forcing fields |
667 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
668 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
669 |
|
|
|
670 |
|
|
\subsubsection{File {\it input/topog.box}} |
671 |
|
|
\label{www:tutorials} |
672 |
|
|
|
673 |
|
|
|
674 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
675 |
|
|
map of depth values. For this experiment values are either |
676 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
677 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
678 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
679 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
680 |
|
|
code for creating the {\it input/topog.box} file. |
681 |
|
|
|
682 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
683 |
|
|
\label{www:tutorials} |
684 |
|
|
|
685 |
|
|
Two lines are customized in this file for the current experiment |
686 |
|
|
|
687 |
|
|
\begin{itemize} |
688 |
|
|
|
689 |
|
|
\item Line 39, |
690 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
691 |
|
|
the lateral domain extent in grid points for the |
692 |
|
|
axis aligned with the x-coordinate. |
693 |
|
|
|
694 |
|
|
\item Line 40, |
695 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
696 |
|
|
the lateral domain extent in grid points for the |
697 |
|
|
axis aligned with the y-coordinate. |
698 |
|
|
|
699 |
|
|
\item Line 49, |
700 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
701 |
|
|
the vertical domain extent in grid points. |
702 |
|
|
|
703 |
|
|
\end{itemize} |
704 |
|
|
|
705 |
|
|
\begin{small} |
706 |
|
|
\input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} |
707 |
|
|
\end{small} |
708 |
|
|
|
709 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
710 |
|
|
\label{www:tutorials} |
711 |
|
|
|
712 |
|
|
This file uses standard default values and does not contain |
713 |
|
|
customisations for this experiment. |
714 |
|
|
|
715 |
|
|
|
716 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
717 |
|
|
\label{www:tutorials} |
718 |
|
|
|
719 |
|
|
This file uses standard default values and does not contain |
720 |
|
|
customisations for this experiment. |
721 |
|
|
|
722 |
|
|
\subsubsection{Other Files } |
723 |
|
|
\label{www:tutorials} |
724 |
|
|
|
725 |
|
|
Other files relevant to this experiment are |
726 |
|
|
\begin{itemize} |
727 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
728 |
|
|
coriolis variables {\bf fCorU}. |
729 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
730 |
|
|
\item {\it model/src/ini\_parms.F}, |
731 |
|
|
\item {\it input/windx.sin\_y}, |
732 |
|
|
\end{itemize} |
733 |
|
|
contain the code customisations and parameter settings for this |
734 |
|
|
experiments. Below we describe the customisations |
735 |
|
|
to these files associated with this experiment. |