/[MITgcm]/manual/s_examples/held_suarez_cs/held_suarez_cs.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/held_suarez_cs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Mon Aug 8 21:09:38 2005 UTC (19 years, 11 months ago) by jmc
Branch: MAIN
Changes since 1.2: +96 -411 lines
File MIME type: application/x-tex
update tutorial documentation.

1 jmc 1.3 % $Header: /u/gcmpack/manual/part3/case_studies/held_suarez_cs/held_suarez_cs.tex,v 1.2 2005/08/02 23:32:02 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4     \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation
5     on cube-sphere grid with 32 square cube faces.}
6     \label{www:tutorials}
7     \label{sect:eg-hs}
8     \begin{rawhtml}
9     <!-- CMIREDIR:eg-hs: -->
10     \end{rawhtml}
11    
12     \bodytext{bgcolor="#FFFFFFFF"}
13    
14     %\begin{center}
15     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
16     %At Four Degree Resolution with Asynchronous Time Stepping}
17     %
18     %\vspace*{4mm}
19     %
20     %\vspace*{3mm}
21     %{\large May 2001}
22     %\end{center}
23    
24     This example illustrates the use of the MITgcm as an Atmospheric GCM,
25 jmc 1.2 using simple \cite{held-suar:94} forcing
26 jmc 1.1 to simulate Atmospheric Dynamics on global scale.
27     The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a}
28     in the vertical direction, with 20 equaly-spaced levels, and
29     the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}.
30    
31     This example illustrates the use of the MITgcm for large scale atmospheric
32     circulation simulation. Two simulations are described
33     \begin{itemize}
34     \item global atmospheric circulation on a latitude-longitude grid and
35     \item global atmospheric circulation on a cube-sphere grid
36     \end{itemize}
37     The examples show how to use the isomorphic 'p-coordinate' scheme in
38     MITgcm to enable atmospheric simulation.
39    
40    
41     \subsection{Overview}
42     \label{www:tutorials}
43    
44     This example demonstrates using the MITgcm to simulate
45     the planetary atmospheric circulation, with flat orography
46     and simplified forcing.
47     In particular, only dry air processes are considered and
48     radiation effects are represented by a simple newtownien cooling,
49     Thus this exemple does not rely on any particular atmospheric
50     physics package.
51     This kind of simplified atmospheric simulation has been widely
52     used in GFD-type experiments and in intercomparison projects of
53     AGCM dynamical cores \cite[]{held-suar:94}.
54    
55     The horizontal grid is obtain from the projection of a uniform gridded cube
56     to the sphere. Each of the 6 faces has the same resolution, with
57     $32 \times 32$ grid points. The equator line coincide with a grid line
58     and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces
59     for the Northern and Southern polar regions.
60     This curvilinear grid requires the use of the 2nd generation exchange
61     topology ({\it pkg/exch2}) to connect tile and face edges,
62     but without any limitation on the number of processors.
63    
64     The use of the $p^*$ coordinate with 20 equally spaced levels
65     ($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the
66 jmc 1.2 top of the atmosphere) follows the choice of \cite{held-suar:94}.
67     Note that without topography, the $p^*$ coordinate and the normalized
68     pressure coordinate ($\sigma_p$) coincide exactly.
69     No viscosity and zero diffusion are used here, but
70     a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and
71     potential temperature, to remove selectively grid scale noise.
72     Apart from the horizontal grid, this experiment is made very similar to
73     the grid-point model case used in \cite{held-suar:94} study.
74 jmc 1.1
75     At this resolution, the configuration can be integrated forward
76     for many years on a single processor desktop computer.
77     \\
78    
79 jmc 1.2 \subsection{Forcing}
80     \label{www:tutorials}
81    
82 jmc 1.1 The model is forced by relaxation to a radiative equilibrium temperature from
83     \cite{held-suar:94}.
84     A linear frictional drag (Rayleigh damping) is applied in the lower
85     part of the atmosphere and account from surface friction and momentum
86     dissipation in the boundary layer.
87     Altogether, this yields the following forcing
88     \cite[from][]{held-suar:94} that is applied to the fluid:
89    
90     \begin{eqnarray}
91     \label{EQ:eg-hs-global_forcing}
92 jmc 1.2 \label{EQ:eg-hs-global_forcing_fv}
93     \vec{{\cal F}_v} & = & -k_v(p)\vec{v}_h
94 jmc 1.1 \\
95     \label{EQ:eg-hs-global_forcing_ft}
96     {\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)]
97     \end{eqnarray}
98    
99 jmc 1.2 \noindent where ${\vec{\cal F}_{v}}$, ${\cal F}_{\theta}$,
100 jmc 1.1 are the forcing terms in the zonal and meridional
101     momentum and in the potential temperature equations respectively.
102 jmc 1.2 The term $k_{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fv}) applies a
103     Rayleigh damping that is active within the planetary boundary layer.
104     It is defined so as to decay as pressure decreases according to
105     \begin{eqnarray*}
106 jmc 1.1 \label{EQ:eg-hs-define_kv}
107 jmc 1.2 k_{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
108 jmc 1.1 \\
109 jmc 1.2 \sigma_{b} & = & 0.7 ~~{\rm and}~~
110     k_{f} = 1/86400 ~{\rm s}^{-1}
111     \end{eqnarray*}
112 jmc 1.1
113     where $p^*$ is the pressure level of the cell center
114 jmc 1.2 and $P^{0}_{s}$ is the pressure at the base of the atmospheric column,
115     which is constant and uniform here ($= 10^5 {\rm Pa}$), in the abcence
116     of topography.
117 jmc 1.1
118     The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$
119     are set to:
120     \begin{eqnarray}
121 jmc 1.2 \label{EQ:eg-hs-define_Teq}
122     \theta_{eq}(\phi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\
123     \nonumber
124     & & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\Phi)
125     - \Delta \theta_z \cos^2(\Phi) \log(p^*/P^{0}_s) \}
126     \\
127 jmc 1.1 \label{EQ:eg-hs-define_kT}
128     k_{\theta}(\phi,p^*) & = &
129 jmc 1.2 k_a + (k_s -k_a)~\cos^4(\Phi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
130 jmc 1.1 \end{eqnarray}
131 jmc 1.2 with:
132     \begin{eqnarray*}
133     \Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\
134     \Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1}
135     \end{eqnarray*}
136 jmc 1.1
137     Initial conditions correspond to a resting state with horizontally uniform
138     stratified fluid. The initial temperature profile is simply the
139     horizontally average of the radiative equilibrium temperature.
140    
141 jmc 1.3 \subsection{Set-up description}
142     %\subsection{Discrete Numerical Configuration}
143 jmc 1.1 \label{www:tutorials}
144    
145 jmc 1.2 The model is configured in hydrostatic form, using non-boussinesq
146     $p^*$ coordinate.
147     The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$,
148     with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top.
149     The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b}
150     that cover the whole sphere with a relatively uniform grid-spacing.
151     The resolution at the equator or along the Greenwitch meridian
152     is similar to the $128 \times 64$ equaly spaced longitude-latitude grid,
153     but requires $25\%$ less grid points.
154     Grid spacing and grid-point location are not computed by the model but
155     read from files.
156    
157     The vector-invariant form of the momentum equation (see section
158     \ref{sect:vect-inv_momentum_equations}) is used so that no explicit
159     metrics are necessary.
160    
161     Applying the vector-invariant discretization to the
162     atmospheric equations \ref{eq:atmos-prime}, and adding the
163     forcing term
164     (\ref{EQ:eg-hs-global_forcing_fv}, \ref{EQ:eg-hs-global_forcing_ft})
165     on the right-hand-side,
166     leads to the set of equations that are solved in this configuration:
167    
168     %the The set of equations solved here is der
169     %Wind-stress forcing is added to the momentum equations for both
170     %the zonal flow, $u$ and the meridional flow $v$, according to equations
171     %(\ref{EQ:eg-hs-global_forcing_fv}) and (\ref{EQ:eg-hs-global_forcing_fv}).
172     %Thermodynamic forcing inputs are added to the equations for
173     %potential temperature, $\theta$, and salinity, $S$, according to equations
174     %(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
175 jmc 1.1
176     \begin{eqnarray}
177     \label{EQ:eg-hs-model_equations}
178 jmc 1.2 \frac{\partial \vec{\mathbf{v}}_h}{\partial t}
179     +(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h
180     %+\mathbf{\nabla }_{p} ({\rm KE})
181     +\mathbf{\nabla }_{p} (\mbox{\sc ke})
182     + \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p}
183     +\mathbf{\nabla }_p \phi ^{\prime }
184     &=&
185     % \vec{{\cal F}_v} =
186     -k_v\vec{v}_h
187     \\
188     \frac{\partial \phi ^{\prime }}{\partial p}
189     +\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0
190     \\
191     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{
192     \partial p} &=&0
193     \\
194     \frac{\partial \theta }{\partial t}
195     + \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h)
196     + \frac{\partial (\theta \omega)}{\partial p}
197     %= \frac{\mathcal{Q}}{\Pi }
198     &=& -k_{\theta}[\theta-\theta_{eq}]
199     \end{eqnarray}
200    
201     %\begin{equation}
202     %\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
203     %- b \hat{r}
204     %+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
205     %\end{equation}
206     %{\cal F}_{\theta} & = & -k_{\theta}(\phi,p)[\theta-\theta_{eq}(\phi,p)]
207    
208     \noindent where $\vec{v}_h$ and $\omega = \frac{Dp}{Dt}$ are the horizontal
209     velocity vector and the vertical velocity in pressure coordinate,
210     $\zeta$ is the relative vorticity and $f$ the Coriolis parameter,
211     $\hat{\mathbf{k}}$ is the vertical unity vector,
212     {\sc ke} is the kinetic energy, $\Phi$ is the geopotential
213     and $\Pi$ the Exner function
214     ($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$).
215     Variables marqued with $^{prime}$ corresponds to annomaly from
216     the resting, uniformly stratified state.
217    
218     As described in MITgcm Numerical Solution Procedure \ref{chap:discretization},
219     the continuity equation is integrated vertically, to give a prognostic
220     equation for the surface pressure $p_s$:
221     \begin{equation}
222     \frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{v}_h dp
223     = 0
224     \end{equation}
225    
226     The implicit free surface form of the pressure equation described in
227     \cite{marshall:97a} is employed to solve for $p_s$;
228     Integrating vertically the hydrostatic balance
229     gives the geopotential $\phi'$ and allow to step forward the momentum equation
230     \ref{EQ:eg-hs-model_equations}.
231     The potential temperature, $\theta$, is stepped forward using the
232     new velocity field ({\it staggered time-step}, section
233     \ref{sect:adams-bashforth-staggered}).
234 jmc 1.1 \\
235    
236     \subsubsection{Numerical Stability Criteria}
237     \label{www:tutorials}
238    
239     \noindent The numerical stability for inertial oscillations
240     \cite{adcroft:95}
241    
242     \begin{eqnarray}
243     \label{EQ:eg-hs-inertial_stability}
244 jmc 1.3 S_{i} = f^{2} {\Delta t}^2
245 jmc 1.1 \end{eqnarray}
246    
247 jmc 1.3 \noindent evaluates to $4.\times10^{-3}$ at the poles,
248     for $f=2\Omega\sin(\pi / 2) =1.45\times10^{-4}~{\rm s}^{-1}$,
249     which is well below the $S_{i} < 1$ upper limit for stability.
250 jmc 1.1 \\
251    
252 jmc 1.3 \noindent The advective CFL \cite{adcroft:95}
253     for a extreme maximum horizontal flow speed of $ | \vec{u} | = 90. {\rm m/s}$~
254     and the smallest horizontal grid spacing $ \Delta x = 1.1\times10^5 {\rm m}$~:
255 jmc 1.1
256     \begin{eqnarray}
257     \label{EQ:eg-hs-cfl_stability}
258 jmc 1.3 S_{a} = \frac{| \vec{u} | \Delta t}{ \Delta x}
259 jmc 1.1 \end{eqnarray}
260    
261 jmc 1.3 \noindent evaluates to $0.37$, which is close to the stability
262 jmc 1.1 limit of 0.5.
263     \\
264    
265     \noindent The stability parameter for internal gravity waves propagating
266 jmc 1.3 with a maximum speed of $c_{g}=100~{\rm m/s}$
267 jmc 1.1 \cite{adcroft:95}
268    
269     \begin{eqnarray}
270     \label{EQ:eg-hs-gfl_stability}
271 jmc 1.3 S_{c} = \frac{c_{g} \Delta t}{ \Delta x}
272 jmc 1.1 \end{eqnarray}
273    
274 jmc 1.3 \noindent evaluates to $4 \times 10^{-1}$. This is close to the linear
275 jmc 1.1 stability limit of 0.5.
276    
277     \subsection{Experiment Configuration}
278     \label{www:tutorials}
279     \label{SEC:eg-hs_examp_exp_config}
280    
281     The model configuration for this experiment resides under the
282     directory {\it verification/hs94.128x64x5}. The experiment files
283     \begin{itemize}
284     \item {\it input/data}
285     \item {\it input/data.pkg}
286     \item {\it input/eedata},
287 jmc 1.3 \item {\it input/data.shap},
288     \item {\it code/packages.conf},
289 jmc 1.1 \item {\it code/CPP\_OPTIONS.h},
290 jmc 1.3 \item {\it code/SIZE.h},
291     \item {\it code/DIAGNOSTICS\_SIZE.h},
292     \item {\it code/external\_forcing.F},
293 jmc 1.1 \end{itemize}
294     contain the code customizations and parameter settings for these
295     experiments. Below we describe the customizations
296     to these files associated with this experiment.
297    
298     \subsubsection{File {\it input/data}}
299     \label{www:tutorials}
300    
301 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data}
302 jmc 1.1
303     \begin{small}
304 jmc 1.3 \input{part3/case_studies/held_suarez_cs/input/data}
305 jmc 1.1 \end{small}
306    
307     \subsubsection{File {\it input/data.pkg}}
308     \label{www:tutorials}
309    
310 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.pkg}
311    
312     \begin{small}
313     \input{part3/case_studies/held_suarez_cs/input/data.pkg}
314     \end{small}
315 jmc 1.1
316     \subsubsection{File {\it input/eedata}}
317     \label{www:tutorials}
318    
319 jmc 1.3 This file uses standard default values except line 6:
320     \begin{verbatim}
321     useCubedSphereExchange=.TRUE.,
322     \end{verbatim}
323     This line selects the cubed-sphere specific exchanges to
324     to connect tiles and faces edges.
325 jmc 1.1
326 jmc 1.3 \subsubsection{File {\it input/data.shap}}
327 jmc 1.1 \label{www:tutorials}
328    
329 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.shap}
330 jmc 1.1
331 jmc 1.3 \begin{small}
332     \input{part3/case_studies/held_suarez_cs/input/data.shap}
333     \end{small}
334 jmc 1.1
335     \subsubsection{File {\it code/SIZE.h}}
336     \label{www:tutorials}
337    
338 jmc 1.3 Four lines are customized in this file for the current experiment
339 jmc 1.1
340     \begin{itemize}
341    
342     \item Line 39,
343 jmc 1.3 \begin{verbatim} sNx=32, \end{verbatim}
344     sets the lateral domain extent in grid points allong the x-direction,
345     for 1 face.
346    
347     \item Line 40,
348     \begin{verbatim} sNy=32, \end{verbatim}
349     sets the lateral domain extent in grid points allong the y-direction,
350     for 1 face.
351    
352     \item Line 43,
353     \begin{verbatim} nSx=6, \end{verbatim}
354     sets the number of tiles in the x-directions, for the model domain
355     decomposition. In this simple case (one processor and 1 tile per
356     face), this number correspond to the total number of faces.
357 jmc 1.1 axis aligned with the y-coordinate.
358    
359     \item Line 49,
360 jmc 1.3 \begin{verbatim} Nr=20, \end{verbatim}
361     sets the vertical domain extent in grid points.
362 jmc 1.1
363     \end{itemize}
364    
365 jmc 1.3 %\begin{small}
366     %\input{part3/case_studies/held_suarez_cs/code/SIZE.h}
367     %\end{small}
368 jmc 1.1
369 jmc 1.3 \subsubsection{File {\it code/packages.conf}}
370 jmc 1.1 \label{www:tutorials}
371    
372 jmc 1.3 \input{part3/case_studies/held_suarez_cs/cod_packages.conf}
373 jmc 1.1
374 jmc 1.3 \begin{small}
375     \input{part3/case_studies/held_suarez_cs/code/packages.conf}
376     \end{small}
377 jmc 1.1
378 jmc 1.3 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
379 jmc 1.1 \label{www:tutorials}
380    
381 jmc 1.3 This file uses standard default except for Line 40\\
382     ({\it diff CPP\_OPTIONS.h ../../../model/inc}):
383     \begin{verbatim}
384     #define NONLIN_FRSURF
385     \end{verbatim}
386     This line allow to use the non-linear free-surface part of the code,
387     which is required for the $p^*$ coordinate formulation.
388 jmc 1.1
389     \subsubsection{Other Files }
390     \label{www:tutorials}
391    
392     Other files relevant to this experiment are
393     \begin{itemize}
394 jmc 1.3 \item {\it code/external\_forcing.F}
395     \item {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$
396 jmc 1.1 \end{itemize}
397 jmc 1.3 contain the code customisations and binary input files for this
398 jmc 1.1 experiments. Below we describe the customisations
399 jmc 1.3 to these files associated with this experiment.\\
400    
401     The file {\it code/external\_forcing.F} contains 4 subroutines
402     that calculate the forcing terms (Right-Hand side term) in the
403     momentum equation (\ref{EQ:eg-hs-global_forcing_fv},
404     {\it S/R EXTERNAL\_FORCING\_U} and {\it EXTERNAL\_FORCING\_V})
405     and in the potential temperature equation
406     (\ref{EQ:eg-hs-global_forcing_ft}, {\it S/R EXTERNAL\_FORCING\_T}).
407     The water-vapour forcing subroutine ({\it S/R EXTERNAL\_FORCING\_S})
408     is left empty for this experiment.\\
409    
410     The grid-files {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$,
411     are binary files (direct-access, big-endian 64.bits real) that
412     contains all the cubed-sphere grid lengths, areas and grid-point
413     positions, with one file per face.
414     Each file contains 18 2-D arrays (dimension $33 \times 33$) that corresponds
415     to the model variables:
416     {\it
417     XC YC DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN
418     }
419     (see {\it GRID.h} file)
420    

  ViewVC Help
Powered by ViewVC 1.1.22