/[MITgcm]/manual/s_examples/held_suarez_cs/held_suarez_cs.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/held_suarez_cs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Tue Jun 27 20:47:05 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.6: +2 -2 lines
File MIME type: application/x-tex
Add cross referencing for packages, verification experiments and tutorials

1 molod 1.7 % $Header: /u/gcmpack/manual/part3/case_studies/held_suarez_cs/held_suarez_cs.tex,v 1.6 2006/06/27 19:08:22 molod Exp $
2 jmc 1.1 % $Name: $
3    
4     \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation
5     on cube-sphere grid with 32 square cube faces.}
6     \label{www:tutorials}
7     \label{sect:eg-hs}
8     \begin{rawhtml}
9     <!-- CMIREDIR:eg-hs: -->
10     \end{rawhtml}
11    
12     \bodytext{bgcolor="#FFFFFFFF"}
13    
14     %\begin{center}
15     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
16     %At Four Degree Resolution with Asynchronous Time Stepping}
17     %
18     %\vspace*{4mm}
19     %
20     %\vspace*{3mm}
21     %{\large May 2001}
22     %\end{center}
23    
24     This example illustrates the use of the MITgcm as an Atmospheric GCM,
25 jmc 1.2 using simple \cite{held-suar:94} forcing
26 jmc 1.1 to simulate Atmospheric Dynamics on global scale.
27     The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a}
28     in the vertical direction, with 20 equaly-spaced levels, and
29     the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}.
30 molod 1.6 The files for this experiment can be found in the verification directory
31 molod 1.7 under tutorial\_held\_suarez\_cs.
32 jmc 1.1
33     \subsection{Overview}
34     \label{www:tutorials}
35    
36     This example demonstrates using the MITgcm to simulate
37     the planetary atmospheric circulation, with flat orography
38     and simplified forcing.
39     In particular, only dry air processes are considered and
40     radiation effects are represented by a simple newtownien cooling,
41 jmc 1.4 Thus this example does not rely on any particular atmospheric
42 jmc 1.1 physics package.
43     This kind of simplified atmospheric simulation has been widely
44     used in GFD-type experiments and in intercomparison projects of
45     AGCM dynamical cores \cite[]{held-suar:94}.
46    
47     The horizontal grid is obtain from the projection of a uniform gridded cube
48     to the sphere. Each of the 6 faces has the same resolution, with
49     $32 \times 32$ grid points. The equator line coincide with a grid line
50     and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces
51     for the Northern and Southern polar regions.
52     This curvilinear grid requires the use of the 2nd generation exchange
53     topology ({\it pkg/exch2}) to connect tile and face edges,
54     but without any limitation on the number of processors.
55    
56     The use of the $p^*$ coordinate with 20 equally spaced levels
57     ($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the
58 jmc 1.2 top of the atmosphere) follows the choice of \cite{held-suar:94}.
59     Note that without topography, the $p^*$ coordinate and the normalized
60     pressure coordinate ($\sigma_p$) coincide exactly.
61     No viscosity and zero diffusion are used here, but
62     a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and
63     potential temperature, to remove selectively grid scale noise.
64     Apart from the horizontal grid, this experiment is made very similar to
65     the grid-point model case used in \cite{held-suar:94} study.
66 jmc 1.1
67     At this resolution, the configuration can be integrated forward
68     for many years on a single processor desktop computer.
69     \\
70    
71 jmc 1.2 \subsection{Forcing}
72     \label{www:tutorials}
73    
74 jmc 1.1 The model is forced by relaxation to a radiative equilibrium temperature from
75     \cite{held-suar:94}.
76     A linear frictional drag (Rayleigh damping) is applied in the lower
77     part of the atmosphere and account from surface friction and momentum
78     dissipation in the boundary layer.
79     Altogether, this yields the following forcing
80     \cite[from][]{held-suar:94} that is applied to the fluid:
81    
82     \begin{eqnarray}
83     \label{EQ:eg-hs-global_forcing}
84 jmc 1.2 \label{EQ:eg-hs-global_forcing_fv}
85 jmc 1.4 \vec{{\cal F}_\mathbf{v}} & = & -k_\mathbf{v}(p)\vec{\mathbf{v}}_h
86 jmc 1.1 \\
87     \label{EQ:eg-hs-global_forcing_ft}
88 jmc 1.4 {\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)]
89 jmc 1.1 \end{eqnarray}
90    
91 jmc 1.4 \noindent where $\vec{\cal F}_\mathbf{v}$, ${\cal F}_{\theta}$,
92 jmc 1.1 are the forcing terms in the zonal and meridional
93     momentum and in the potential temperature equations respectively.
94 jmc 1.4 The term $k_\mathbf{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fv}) applies a
95 jmc 1.2 Rayleigh damping that is active within the planetary boundary layer.
96     It is defined so as to decay as pressure decreases according to
97     \begin{eqnarray*}
98 jmc 1.1 \label{EQ:eg-hs-define_kv}
99 jmc 1.4 k_\mathbf{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
100 jmc 1.1 \\
101 jmc 1.2 \sigma_{b} & = & 0.7 ~~{\rm and}~~
102     k_{f} = 1/86400 ~{\rm s}^{-1}
103     \end{eqnarray*}
104 jmc 1.1
105     where $p^*$ is the pressure level of the cell center
106 jmc 1.2 and $P^{0}_{s}$ is the pressure at the base of the atmospheric column,
107 jmc 1.4 which is constant and uniform here ($= 10^5 {\rm Pa}$), in the absence
108 jmc 1.2 of topography.
109 jmc 1.1
110     The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$
111     are set to:
112     \begin{eqnarray}
113 jmc 1.2 \label{EQ:eg-hs-define_Teq}
114 jmc 1.4 \theta_{eq}(\varphi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\
115 jmc 1.2 \nonumber
116 jmc 1.4 & & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\varphi)
117     - \Delta \theta_z \cos^2(\varphi) \log(p^*/P^{0}_s) \}
118 jmc 1.2 \\
119 jmc 1.1 \label{EQ:eg-hs-define_kT}
120 jmc 1.4 k_{\theta}(\varphi,p^*) & = &
121     k_a + (k_s -k_a)~\cos^4(\varphi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
122 jmc 1.1 \end{eqnarray}
123 jmc 1.2 with:
124     \begin{eqnarray*}
125     \Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\
126     \Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1}
127     \end{eqnarray*}
128 jmc 1.1
129     Initial conditions correspond to a resting state with horizontally uniform
130     stratified fluid. The initial temperature profile is simply the
131     horizontally average of the radiative equilibrium temperature.
132    
133 jmc 1.3 \subsection{Set-up description}
134     %\subsection{Discrete Numerical Configuration}
135 jmc 1.1 \label{www:tutorials}
136    
137 jmc 1.2 The model is configured in hydrostatic form, using non-boussinesq
138     $p^*$ coordinate.
139     The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$,
140     with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top.
141     The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b}
142     that cover the whole sphere with a relatively uniform grid-spacing.
143     The resolution at the equator or along the Greenwitch meridian
144     is similar to the $128 \times 64$ equaly spaced longitude-latitude grid,
145     but requires $25\%$ less grid points.
146     Grid spacing and grid-point location are not computed by the model but
147     read from files.
148    
149     The vector-invariant form of the momentum equation (see section
150     \ref{sect:vect-inv_momentum_equations}) is used so that no explicit
151     metrics are necessary.
152    
153     Applying the vector-invariant discretization to the
154     atmospheric equations \ref{eq:atmos-prime}, and adding the
155     forcing term
156     (\ref{EQ:eg-hs-global_forcing_fv}, \ref{EQ:eg-hs-global_forcing_ft})
157     on the right-hand-side,
158     leads to the set of equations that are solved in this configuration:
159    
160     %the The set of equations solved here is der
161     %Wind-stress forcing is added to the momentum equations for both
162     %the zonal flow, $u$ and the meridional flow $v$, according to equations
163     %(\ref{EQ:eg-hs-global_forcing_fv}) and (\ref{EQ:eg-hs-global_forcing_fv}).
164     %Thermodynamic forcing inputs are added to the equations for
165     %potential temperature, $\theta$, and salinity, $S$, according to equations
166     %(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
167 jmc 1.1
168     \begin{eqnarray}
169     \label{EQ:eg-hs-model_equations}
170 jmc 1.2 \frac{\partial \vec{\mathbf{v}}_h}{\partial t}
171     +(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h
172     %+\mathbf{\nabla }_{p} ({\rm KE})
173     +\mathbf{\nabla }_{p} (\mbox{\sc ke})
174     + \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p}
175 jmc 1.5 +\mathbf{\nabla }_p \Phi ^{\prime }
176 jmc 1.2 &=&
177     % \vec{{\cal F}_v} =
178 jmc 1.4 -k_\mathbf{v}\vec{\mathbf{v}}_h
179 jmc 1.2 \\
180 jmc 1.5 \frac{\partial \Phi ^{\prime }}{\partial p}
181 jmc 1.2 +\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0
182     \\
183     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{
184     \partial p} &=&0
185     \\
186     \frac{\partial \theta }{\partial t}
187     + \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h)
188     + \frac{\partial (\theta \omega)}{\partial p}
189     %= \frac{\mathcal{Q}}{\Pi }
190     &=& -k_{\theta}[\theta-\theta_{eq}]
191     \end{eqnarray}
192    
193     %\begin{equation}
194     %\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
195     %- b \hat{r}
196     %+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
197     %\end{equation}
198 jmc 1.4 %{\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)]
199 jmc 1.2
200 jmc 1.4 \noindent where $\vec{\mathbf{v}}_h$ and $\omega = \frac{Dp}{Dt}$
201     are the horizontal velocity vector and the vertical velocity in pressure coordinate,
202 jmc 1.2 $\zeta$ is the relative vorticity and $f$ the Coriolis parameter,
203     $\hat{\mathbf{k}}$ is the vertical unity vector,
204     {\sc ke} is the kinetic energy, $\Phi$ is the geopotential
205     and $\Pi$ the Exner function
206     ($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$).
207 jmc 1.4 Variables marked with ' corresponds to anomaly from
208 jmc 1.2 the resting, uniformly stratified state.
209    
210     As described in MITgcm Numerical Solution Procedure \ref{chap:discretization},
211     the continuity equation is integrated vertically, to give a prognostic
212     equation for the surface pressure $p_s$:
213     \begin{equation}
214 jmc 1.4 \frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{\mathbf{v}}_h dp
215 jmc 1.2 = 0
216     \end{equation}
217    
218     The implicit free surface form of the pressure equation described in
219     \cite{marshall:97a} is employed to solve for $p_s$;
220     Integrating vertically the hydrostatic balance
221 jmc 1.4 gives the geopotential $\Phi'$ and allow to step forward the momentum equation
222 jmc 1.2 \ref{EQ:eg-hs-model_equations}.
223     The potential temperature, $\theta$, is stepped forward using the
224     new velocity field ({\it staggered time-step}, section
225     \ref{sect:adams-bashforth-staggered}).
226 jmc 1.1 \\
227    
228     \subsubsection{Numerical Stability Criteria}
229     \label{www:tutorials}
230    
231     \noindent The numerical stability for inertial oscillations
232     \cite{adcroft:95}
233    
234     \begin{eqnarray}
235     \label{EQ:eg-hs-inertial_stability}
236 jmc 1.3 S_{i} = f^{2} {\Delta t}^2
237 jmc 1.1 \end{eqnarray}
238    
239 jmc 1.3 \noindent evaluates to $4.\times10^{-3}$ at the poles,
240     for $f=2\Omega\sin(\pi / 2) =1.45\times10^{-4}~{\rm s}^{-1}$,
241     which is well below the $S_{i} < 1$ upper limit for stability.
242 jmc 1.1 \\
243    
244 jmc 1.3 \noindent The advective CFL \cite{adcroft:95}
245     for a extreme maximum horizontal flow speed of $ | \vec{u} | = 90. {\rm m/s}$~
246     and the smallest horizontal grid spacing $ \Delta x = 1.1\times10^5 {\rm m}$~:
247 jmc 1.1
248     \begin{eqnarray}
249     \label{EQ:eg-hs-cfl_stability}
250 jmc 1.3 S_{a} = \frac{| \vec{u} | \Delta t}{ \Delta x}
251 jmc 1.1 \end{eqnarray}
252    
253 jmc 1.3 \noindent evaluates to $0.37$, which is close to the stability
254 jmc 1.1 limit of 0.5.
255     \\
256    
257     \noindent The stability parameter for internal gravity waves propagating
258 jmc 1.3 with a maximum speed of $c_{g}=100~{\rm m/s}$
259 jmc 1.1 \cite{adcroft:95}
260    
261     \begin{eqnarray}
262     \label{EQ:eg-hs-gfl_stability}
263 jmc 1.3 S_{c} = \frac{c_{g} \Delta t}{ \Delta x}
264 jmc 1.1 \end{eqnarray}
265    
266 jmc 1.3 \noindent evaluates to $4 \times 10^{-1}$. This is close to the linear
267 jmc 1.1 stability limit of 0.5.
268    
269     \subsection{Experiment Configuration}
270     \label{www:tutorials}
271     \label{SEC:eg-hs_examp_exp_config}
272    
273     The model configuration for this experiment resides under the
274 jmc 1.4 directory {\it verification/tutorial\_held\_suarez\_cs}. The experiment files
275 jmc 1.1 \begin{itemize}
276     \item {\it input/data}
277     \item {\it input/data.pkg}
278     \item {\it input/eedata},
279 jmc 1.3 \item {\it input/data.shap},
280     \item {\it code/packages.conf},
281 jmc 1.1 \item {\it code/CPP\_OPTIONS.h},
282 jmc 1.3 \item {\it code/SIZE.h},
283     \item {\it code/DIAGNOSTICS\_SIZE.h},
284     \item {\it code/external\_forcing.F},
285 jmc 1.1 \end{itemize}
286     contain the code customizations and parameter settings for these
287     experiments. Below we describe the customizations
288     to these files associated with this experiment.
289    
290     \subsubsection{File {\it input/data}}
291     \label{www:tutorials}
292    
293 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data}
294 jmc 1.1
295     \subsubsection{File {\it input/data.pkg}}
296     \label{www:tutorials}
297    
298 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.pkg}
299    
300 jmc 1.1 \subsubsection{File {\it input/eedata}}
301     \label{www:tutorials}
302    
303 jmc 1.3 This file uses standard default values except line 6:
304     \begin{verbatim}
305     useCubedSphereExchange=.TRUE.,
306     \end{verbatim}
307     This line selects the cubed-sphere specific exchanges to
308     to connect tiles and faces edges.
309 jmc 1.1
310 jmc 1.3 \subsubsection{File {\it input/data.shap}}
311 jmc 1.1 \label{www:tutorials}
312    
313 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.shap}
314 jmc 1.1
315     \subsubsection{File {\it code/SIZE.h}}
316     \label{www:tutorials}
317    
318 jmc 1.3 Four lines are customized in this file for the current experiment
319 jmc 1.1
320     \begin{itemize}
321    
322     \item Line 39,
323 jmc 1.3 \begin{verbatim} sNx=32, \end{verbatim}
324 jmc 1.4 sets the lateral domain extent in grid points along the x-direction,
325 jmc 1.3 for 1 face.
326    
327     \item Line 40,
328     \begin{verbatim} sNy=32, \end{verbatim}
329 jmc 1.4 sets the lateral domain extent in grid points along the y-direction,
330 jmc 1.3 for 1 face.
331    
332     \item Line 43,
333     \begin{verbatim} nSx=6, \end{verbatim}
334 jmc 1.4 sets the number of tiles in the x-direction, for the model domain
335 jmc 1.3 decomposition. In this simple case (one processor and 1 tile per
336 jmc 1.4 face), this number corresponds to the total number of faces.
337 jmc 1.1
338     \item Line 49,
339 jmc 1.3 \begin{verbatim} Nr=20, \end{verbatim}
340     sets the vertical domain extent in grid points.
341 jmc 1.1
342     \end{itemize}
343    
344 jmc 1.3 %\begin{small}
345     %\input{part3/case_studies/held_suarez_cs/code/SIZE.h}
346     %\end{small}
347 jmc 1.1
348 jmc 1.3 \subsubsection{File {\it code/packages.conf}}
349 jmc 1.1 \label{www:tutorials}
350    
351 jmc 1.3 \input{part3/case_studies/held_suarez_cs/cod_packages.conf}
352 jmc 1.1
353 jmc 1.3 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
354 jmc 1.1 \label{www:tutorials}
355    
356 jmc 1.3 This file uses standard default except for Line 40\\
357     ({\it diff CPP\_OPTIONS.h ../../../model/inc}):
358     \begin{verbatim}
359     #define NONLIN_FRSURF
360     \end{verbatim}
361     This line allow to use the non-linear free-surface part of the code,
362     which is required for the $p^*$ coordinate formulation.
363 jmc 1.1
364     \subsubsection{Other Files }
365     \label{www:tutorials}
366    
367     Other files relevant to this experiment are
368     \begin{itemize}
369 jmc 1.3 \item {\it code/external\_forcing.F}
370     \item {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$
371 jmc 1.1 \end{itemize}
372 jmc 1.3 contain the code customisations and binary input files for this
373 jmc 1.1 experiments. Below we describe the customisations
374 jmc 1.3 to these files associated with this experiment.\\
375    
376     The file {\it code/external\_forcing.F} contains 4 subroutines
377     that calculate the forcing terms (Right-Hand side term) in the
378     momentum equation (\ref{EQ:eg-hs-global_forcing_fv},
379     {\it S/R EXTERNAL\_FORCING\_U} and {\it EXTERNAL\_FORCING\_V})
380     and in the potential temperature equation
381     (\ref{EQ:eg-hs-global_forcing_ft}, {\it S/R EXTERNAL\_FORCING\_T}).
382     The water-vapour forcing subroutine ({\it S/R EXTERNAL\_FORCING\_S})
383     is left empty for this experiment.\\
384    
385     The grid-files {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$,
386     are binary files (direct-access, big-endian 64.bits real) that
387     contains all the cubed-sphere grid lengths, areas and grid-point
388     positions, with one file per face.
389 jmc 1.4 Each file contains 18 2-D arrays (dimension $33 \times 33$) that correspond
390 jmc 1.3 to the model variables:
391     {\it
392     XC YC DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN
393     }
394     (see {\it GRID.h} file)
395    

  ViewVC Help
Powered by ViewVC 1.1.22