/[MITgcm]/manual/s_examples/held_suarez_cs/held_suarez_cs.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/held_suarez_cs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Tue Jan 15 18:08:59 2008 UTC (17 years, 6 months ago) by jmc
Branch: MAIN
Changes since 1.7: +4 -1 lines
File MIME type: application/x-tex
add directory name

1 jmc 1.8 % $Header: /u/gcmpack/manual/part3/case_studies/held_suarez_cs/held_suarez_cs.tex,v 1.7 2006/06/27 20:47:05 molod Exp $
2 jmc 1.1 % $Name: $
3    
4     \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation
5     on cube-sphere grid with 32 square cube faces.}
6     \label{www:tutorials}
7     \label{sect:eg-hs}
8     \begin{rawhtml}
9     <!-- CMIREDIR:eg-hs: -->
10     \end{rawhtml}
11 jmc 1.8 \begin{center}
12     (in directory: {\it verification/tutorial\_held\_suarez\_cs/})
13     \end{center}
14 jmc 1.1
15     \bodytext{bgcolor="#FFFFFFFF"}
16    
17     %\begin{center}
18     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
19     %At Four Degree Resolution with Asynchronous Time Stepping}
20     %
21     %\vspace*{4mm}
22     %
23     %\vspace*{3mm}
24     %{\large May 2001}
25     %\end{center}
26    
27     This example illustrates the use of the MITgcm as an Atmospheric GCM,
28 jmc 1.2 using simple \cite{held-suar:94} forcing
29 jmc 1.1 to simulate Atmospheric Dynamics on global scale.
30     The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a}
31     in the vertical direction, with 20 equaly-spaced levels, and
32     the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}.
33 molod 1.6 The files for this experiment can be found in the verification directory
34 molod 1.7 under tutorial\_held\_suarez\_cs.
35 jmc 1.1
36     \subsection{Overview}
37     \label{www:tutorials}
38    
39     This example demonstrates using the MITgcm to simulate
40     the planetary atmospheric circulation, with flat orography
41     and simplified forcing.
42     In particular, only dry air processes are considered and
43     radiation effects are represented by a simple newtownien cooling,
44 jmc 1.4 Thus this example does not rely on any particular atmospheric
45 jmc 1.1 physics package.
46     This kind of simplified atmospheric simulation has been widely
47     used in GFD-type experiments and in intercomparison projects of
48     AGCM dynamical cores \cite[]{held-suar:94}.
49    
50     The horizontal grid is obtain from the projection of a uniform gridded cube
51     to the sphere. Each of the 6 faces has the same resolution, with
52     $32 \times 32$ grid points. The equator line coincide with a grid line
53     and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces
54     for the Northern and Southern polar regions.
55     This curvilinear grid requires the use of the 2nd generation exchange
56     topology ({\it pkg/exch2}) to connect tile and face edges,
57     but without any limitation on the number of processors.
58    
59     The use of the $p^*$ coordinate with 20 equally spaced levels
60     ($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the
61 jmc 1.2 top of the atmosphere) follows the choice of \cite{held-suar:94}.
62     Note that without topography, the $p^*$ coordinate and the normalized
63     pressure coordinate ($\sigma_p$) coincide exactly.
64     No viscosity and zero diffusion are used here, but
65     a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and
66     potential temperature, to remove selectively grid scale noise.
67     Apart from the horizontal grid, this experiment is made very similar to
68     the grid-point model case used in \cite{held-suar:94} study.
69 jmc 1.1
70     At this resolution, the configuration can be integrated forward
71     for many years on a single processor desktop computer.
72     \\
73    
74 jmc 1.2 \subsection{Forcing}
75     \label{www:tutorials}
76    
77 jmc 1.1 The model is forced by relaxation to a radiative equilibrium temperature from
78     \cite{held-suar:94}.
79     A linear frictional drag (Rayleigh damping) is applied in the lower
80     part of the atmosphere and account from surface friction and momentum
81     dissipation in the boundary layer.
82     Altogether, this yields the following forcing
83     \cite[from][]{held-suar:94} that is applied to the fluid:
84    
85     \begin{eqnarray}
86     \label{EQ:eg-hs-global_forcing}
87 jmc 1.2 \label{EQ:eg-hs-global_forcing_fv}
88 jmc 1.4 \vec{{\cal F}_\mathbf{v}} & = & -k_\mathbf{v}(p)\vec{\mathbf{v}}_h
89 jmc 1.1 \\
90     \label{EQ:eg-hs-global_forcing_ft}
91 jmc 1.4 {\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)]
92 jmc 1.1 \end{eqnarray}
93    
94 jmc 1.4 \noindent where $\vec{\cal F}_\mathbf{v}$, ${\cal F}_{\theta}$,
95 jmc 1.1 are the forcing terms in the zonal and meridional
96     momentum and in the potential temperature equations respectively.
97 jmc 1.4 The term $k_\mathbf{v}$ in equation (\ref{EQ:eg-hs-global_forcing_fv}) applies a
98 jmc 1.2 Rayleigh damping that is active within the planetary boundary layer.
99     It is defined so as to decay as pressure decreases according to
100     \begin{eqnarray*}
101 jmc 1.1 \label{EQ:eg-hs-define_kv}
102 jmc 1.4 k_\mathbf{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
103 jmc 1.1 \\
104 jmc 1.2 \sigma_{b} & = & 0.7 ~~{\rm and}~~
105     k_{f} = 1/86400 ~{\rm s}^{-1}
106     \end{eqnarray*}
107 jmc 1.1
108     where $p^*$ is the pressure level of the cell center
109 jmc 1.2 and $P^{0}_{s}$ is the pressure at the base of the atmospheric column,
110 jmc 1.4 which is constant and uniform here ($= 10^5 {\rm Pa}$), in the absence
111 jmc 1.2 of topography.
112 jmc 1.1
113     The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$
114     are set to:
115     \begin{eqnarray}
116 jmc 1.2 \label{EQ:eg-hs-define_Teq}
117 jmc 1.4 \theta_{eq}(\varphi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\
118 jmc 1.2 \nonumber
119 jmc 1.4 & & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\varphi)
120     - \Delta \theta_z \cos^2(\varphi) \log(p^*/P^{0}_s) \}
121 jmc 1.2 \\
122 jmc 1.1 \label{EQ:eg-hs-define_kT}
123 jmc 1.4 k_{\theta}(\varphi,p^*) & = &
124     k_a + (k_s -k_a)~\cos^4(\varphi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})]
125 jmc 1.1 \end{eqnarray}
126 jmc 1.2 with:
127     \begin{eqnarray*}
128     \Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\
129     \Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1}
130     \end{eqnarray*}
131 jmc 1.1
132     Initial conditions correspond to a resting state with horizontally uniform
133     stratified fluid. The initial temperature profile is simply the
134     horizontally average of the radiative equilibrium temperature.
135    
136 jmc 1.3 \subsection{Set-up description}
137     %\subsection{Discrete Numerical Configuration}
138 jmc 1.1 \label{www:tutorials}
139    
140 jmc 1.2 The model is configured in hydrostatic form, using non-boussinesq
141     $p^*$ coordinate.
142     The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$,
143     with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top.
144     The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b}
145     that cover the whole sphere with a relatively uniform grid-spacing.
146     The resolution at the equator or along the Greenwitch meridian
147     is similar to the $128 \times 64$ equaly spaced longitude-latitude grid,
148     but requires $25\%$ less grid points.
149     Grid spacing and grid-point location are not computed by the model but
150     read from files.
151    
152     The vector-invariant form of the momentum equation (see section
153     \ref{sect:vect-inv_momentum_equations}) is used so that no explicit
154     metrics are necessary.
155    
156     Applying the vector-invariant discretization to the
157     atmospheric equations \ref{eq:atmos-prime}, and adding the
158     forcing term
159     (\ref{EQ:eg-hs-global_forcing_fv}, \ref{EQ:eg-hs-global_forcing_ft})
160     on the right-hand-side,
161     leads to the set of equations that are solved in this configuration:
162    
163     %the The set of equations solved here is der
164     %Wind-stress forcing is added to the momentum equations for both
165     %the zonal flow, $u$ and the meridional flow $v$, according to equations
166     %(\ref{EQ:eg-hs-global_forcing_fv}) and (\ref{EQ:eg-hs-global_forcing_fv}).
167     %Thermodynamic forcing inputs are added to the equations for
168     %potential temperature, $\theta$, and salinity, $S$, according to equations
169     %(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
170 jmc 1.1
171     \begin{eqnarray}
172     \label{EQ:eg-hs-model_equations}
173 jmc 1.2 \frac{\partial \vec{\mathbf{v}}_h}{\partial t}
174     +(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h
175     %+\mathbf{\nabla }_{p} ({\rm KE})
176     +\mathbf{\nabla }_{p} (\mbox{\sc ke})
177     + \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p}
178 jmc 1.5 +\mathbf{\nabla }_p \Phi ^{\prime }
179 jmc 1.2 &=&
180     % \vec{{\cal F}_v} =
181 jmc 1.4 -k_\mathbf{v}\vec{\mathbf{v}}_h
182 jmc 1.2 \\
183 jmc 1.5 \frac{\partial \Phi ^{\prime }}{\partial p}
184 jmc 1.2 +\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0
185     \\
186     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{
187     \partial p} &=&0
188     \\
189     \frac{\partial \theta }{\partial t}
190     + \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h)
191     + \frac{\partial (\theta \omega)}{\partial p}
192     %= \frac{\mathcal{Q}}{\Pi }
193     &=& -k_{\theta}[\theta-\theta_{eq}]
194     \end{eqnarray}
195    
196     %\begin{equation}
197     %\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
198     %- b \hat{r}
199     %+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}
200     %\end{equation}
201 jmc 1.4 %{\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)]
202 jmc 1.2
203 jmc 1.4 \noindent where $\vec{\mathbf{v}}_h$ and $\omega = \frac{Dp}{Dt}$
204     are the horizontal velocity vector and the vertical velocity in pressure coordinate,
205 jmc 1.2 $\zeta$ is the relative vorticity and $f$ the Coriolis parameter,
206     $\hat{\mathbf{k}}$ is the vertical unity vector,
207     {\sc ke} is the kinetic energy, $\Phi$ is the geopotential
208     and $\Pi$ the Exner function
209     ($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$).
210 jmc 1.4 Variables marked with ' corresponds to anomaly from
211 jmc 1.2 the resting, uniformly stratified state.
212    
213     As described in MITgcm Numerical Solution Procedure \ref{chap:discretization},
214     the continuity equation is integrated vertically, to give a prognostic
215     equation for the surface pressure $p_s$:
216     \begin{equation}
217 jmc 1.4 \frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{\mathbf{v}}_h dp
218 jmc 1.2 = 0
219     \end{equation}
220    
221     The implicit free surface form of the pressure equation described in
222     \cite{marshall:97a} is employed to solve for $p_s$;
223     Integrating vertically the hydrostatic balance
224 jmc 1.4 gives the geopotential $\Phi'$ and allow to step forward the momentum equation
225 jmc 1.2 \ref{EQ:eg-hs-model_equations}.
226     The potential temperature, $\theta$, is stepped forward using the
227     new velocity field ({\it staggered time-step}, section
228     \ref{sect:adams-bashforth-staggered}).
229 jmc 1.1 \\
230    
231     \subsubsection{Numerical Stability Criteria}
232     \label{www:tutorials}
233    
234     \noindent The numerical stability for inertial oscillations
235     \cite{adcroft:95}
236    
237     \begin{eqnarray}
238     \label{EQ:eg-hs-inertial_stability}
239 jmc 1.3 S_{i} = f^{2} {\Delta t}^2
240 jmc 1.1 \end{eqnarray}
241    
242 jmc 1.3 \noindent evaluates to $4.\times10^{-3}$ at the poles,
243     for $f=2\Omega\sin(\pi / 2) =1.45\times10^{-4}~{\rm s}^{-1}$,
244     which is well below the $S_{i} < 1$ upper limit for stability.
245 jmc 1.1 \\
246    
247 jmc 1.3 \noindent The advective CFL \cite{adcroft:95}
248     for a extreme maximum horizontal flow speed of $ | \vec{u} | = 90. {\rm m/s}$~
249     and the smallest horizontal grid spacing $ \Delta x = 1.1\times10^5 {\rm m}$~:
250 jmc 1.1
251     \begin{eqnarray}
252     \label{EQ:eg-hs-cfl_stability}
253 jmc 1.3 S_{a} = \frac{| \vec{u} | \Delta t}{ \Delta x}
254 jmc 1.1 \end{eqnarray}
255    
256 jmc 1.3 \noindent evaluates to $0.37$, which is close to the stability
257 jmc 1.1 limit of 0.5.
258     \\
259    
260     \noindent The stability parameter for internal gravity waves propagating
261 jmc 1.3 with a maximum speed of $c_{g}=100~{\rm m/s}$
262 jmc 1.1 \cite{adcroft:95}
263    
264     \begin{eqnarray}
265     \label{EQ:eg-hs-gfl_stability}
266 jmc 1.3 S_{c} = \frac{c_{g} \Delta t}{ \Delta x}
267 jmc 1.1 \end{eqnarray}
268    
269 jmc 1.3 \noindent evaluates to $4 \times 10^{-1}$. This is close to the linear
270 jmc 1.1 stability limit of 0.5.
271    
272     \subsection{Experiment Configuration}
273     \label{www:tutorials}
274     \label{SEC:eg-hs_examp_exp_config}
275    
276     The model configuration for this experiment resides under the
277 jmc 1.4 directory {\it verification/tutorial\_held\_suarez\_cs}. The experiment files
278 jmc 1.1 \begin{itemize}
279     \item {\it input/data}
280     \item {\it input/data.pkg}
281     \item {\it input/eedata},
282 jmc 1.3 \item {\it input/data.shap},
283     \item {\it code/packages.conf},
284 jmc 1.1 \item {\it code/CPP\_OPTIONS.h},
285 jmc 1.3 \item {\it code/SIZE.h},
286     \item {\it code/DIAGNOSTICS\_SIZE.h},
287     \item {\it code/external\_forcing.F},
288 jmc 1.1 \end{itemize}
289     contain the code customizations and parameter settings for these
290     experiments. Below we describe the customizations
291     to these files associated with this experiment.
292    
293     \subsubsection{File {\it input/data}}
294     \label{www:tutorials}
295    
296 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data}
297 jmc 1.1
298     \subsubsection{File {\it input/data.pkg}}
299     \label{www:tutorials}
300    
301 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.pkg}
302    
303 jmc 1.1 \subsubsection{File {\it input/eedata}}
304     \label{www:tutorials}
305    
306 jmc 1.3 This file uses standard default values except line 6:
307     \begin{verbatim}
308     useCubedSphereExchange=.TRUE.,
309     \end{verbatim}
310     This line selects the cubed-sphere specific exchanges to
311     to connect tiles and faces edges.
312 jmc 1.1
313 jmc 1.3 \subsubsection{File {\it input/data.shap}}
314 jmc 1.1 \label{www:tutorials}
315    
316 jmc 1.3 \input{part3/case_studies/held_suarez_cs/inp_data.shap}
317 jmc 1.1
318     \subsubsection{File {\it code/SIZE.h}}
319     \label{www:tutorials}
320    
321 jmc 1.3 Four lines are customized in this file for the current experiment
322 jmc 1.1
323     \begin{itemize}
324    
325     \item Line 39,
326 jmc 1.3 \begin{verbatim} sNx=32, \end{verbatim}
327 jmc 1.4 sets the lateral domain extent in grid points along the x-direction,
328 jmc 1.3 for 1 face.
329    
330     \item Line 40,
331     \begin{verbatim} sNy=32, \end{verbatim}
332 jmc 1.4 sets the lateral domain extent in grid points along the y-direction,
333 jmc 1.3 for 1 face.
334    
335     \item Line 43,
336     \begin{verbatim} nSx=6, \end{verbatim}
337 jmc 1.4 sets the number of tiles in the x-direction, for the model domain
338 jmc 1.3 decomposition. In this simple case (one processor and 1 tile per
339 jmc 1.4 face), this number corresponds to the total number of faces.
340 jmc 1.1
341     \item Line 49,
342 jmc 1.3 \begin{verbatim} Nr=20, \end{verbatim}
343     sets the vertical domain extent in grid points.
344 jmc 1.1
345     \end{itemize}
346    
347 jmc 1.3 %\begin{small}
348     %\input{part3/case_studies/held_suarez_cs/code/SIZE.h}
349     %\end{small}
350 jmc 1.1
351 jmc 1.3 \subsubsection{File {\it code/packages.conf}}
352 jmc 1.1 \label{www:tutorials}
353    
354 jmc 1.3 \input{part3/case_studies/held_suarez_cs/cod_packages.conf}
355 jmc 1.1
356 jmc 1.3 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
357 jmc 1.1 \label{www:tutorials}
358    
359 jmc 1.3 This file uses standard default except for Line 40\\
360     ({\it diff CPP\_OPTIONS.h ../../../model/inc}):
361     \begin{verbatim}
362     #define NONLIN_FRSURF
363     \end{verbatim}
364     This line allow to use the non-linear free-surface part of the code,
365     which is required for the $p^*$ coordinate formulation.
366 jmc 1.1
367     \subsubsection{Other Files }
368     \label{www:tutorials}
369    
370     Other files relevant to this experiment are
371     \begin{itemize}
372 jmc 1.3 \item {\it code/external\_forcing.F}
373     \item {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$
374 jmc 1.1 \end{itemize}
375 jmc 1.3 contain the code customisations and binary input files for this
376 jmc 1.1 experiments. Below we describe the customisations
377 jmc 1.3 to these files associated with this experiment.\\
378    
379     The file {\it code/external\_forcing.F} contains 4 subroutines
380     that calculate the forcing terms (Right-Hand side term) in the
381     momentum equation (\ref{EQ:eg-hs-global_forcing_fv},
382     {\it S/R EXTERNAL\_FORCING\_U} and {\it EXTERNAL\_FORCING\_V})
383     and in the potential temperature equation
384     (\ref{EQ:eg-hs-global_forcing_ft}, {\it S/R EXTERNAL\_FORCING\_T}).
385     The water-vapour forcing subroutine ({\it S/R EXTERNAL\_FORCING\_S})
386     is left empty for this experiment.\\
387    
388     The grid-files {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$,
389     are binary files (direct-access, big-endian 64.bits real) that
390     contains all the cubed-sphere grid lengths, areas and grid-point
391     positions, with one file per face.
392 jmc 1.4 Each file contains 18 2-D arrays (dimension $33 \times 33$) that correspond
393 jmc 1.3 to the model variables:
394     {\it
395     XC YC DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN
396     }
397     (see {\it GRID.h} file)
398    

  ViewVC Help
Powered by ViewVC 1.1.22