1 |
% $Header: /u/gcmpack/manual/s_examples/held_suarez_cs/held_suarez_cs.tex,v 1.9 2010/08/27 13:25:32 jmc Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez atmospheric simulation |
5 |
on cube-sphere grid with 32 square cube faces.} |
6 |
%\label{www:tutorials} |
7 |
\label{sec:eg-hs} |
8 |
\begin{rawhtml} |
9 |
<!-- CMIREDIR:eg-hs: --> |
10 |
\end{rawhtml} |
11 |
\begin{center} |
12 |
(in directory: {\it verification/tutorial\_held\_suarez\_cs/}) |
13 |
\end{center} |
14 |
|
15 |
\bodytext{bgcolor="#FFFFFFFF"} |
16 |
|
17 |
%\begin{center} |
18 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
19 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
20 |
% |
21 |
%\vspace*{4mm} |
22 |
% |
23 |
%\vspace*{3mm} |
24 |
%{\large May 2001} |
25 |
%\end{center} |
26 |
|
27 |
This example illustrates the use of the MITgcm as an Atmospheric GCM, |
28 |
using simple \cite{held-suar:94} forcing |
29 |
to simulate Atmospheric Dynamics on global scale. |
30 |
The set-up use the rescaled pressure coordinate ($p^*$)\cite[]{adcroft:04a} |
31 |
in the vertical direction, with 20 equaly-spaced levels, and |
32 |
the conformal cube-sphere grid (C32) \cite[]{adcroft:04b}. |
33 |
The files for this experiment can be found in the verification directory |
34 |
under tutorial\_held\_suarez\_cs. |
35 |
|
36 |
\subsection{Overview} |
37 |
%\label{www:tutorials} |
38 |
|
39 |
This example demonstrates using the MITgcm to simulate |
40 |
the planetary atmospheric circulation, with flat orography |
41 |
and simplified forcing. |
42 |
In particular, only dry air processes are considered and |
43 |
radiation effects are represented by a simple newtownien cooling, |
44 |
Thus this example does not rely on any particular atmospheric |
45 |
physics package. |
46 |
This kind of simplified atmospheric simulation has been widely |
47 |
used in GFD-type experiments and in intercomparison projects of |
48 |
AGCM dynamical cores \cite[]{held-suar:94}. |
49 |
|
50 |
The horizontal grid is obtain from the projection of a uniform gridded cube |
51 |
to the sphere. Each of the 6 faces has the same resolution, with |
52 |
$32 \times 32$ grid points. The equator line coincide with a grid line |
53 |
and crosses, right in the midle, 4 of the 6 faces, leaving 2 faces |
54 |
for the Northern and Southern polar regions. |
55 |
This curvilinear grid requires the use of the 2nd generation exchange |
56 |
topology ({\it pkg/exch2}) to connect tile and face edges, |
57 |
but without any limitation on the number of processors. |
58 |
|
59 |
The use of the $p^*$ coordinate with 20 equally spaced levels |
60 |
($20 \times 50\,{\rm mb}$, from $p^*=1000,{\rm mb}$ to $0$ at the |
61 |
top of the atmosphere) follows the choice of \cite{held-suar:94}. |
62 |
Note that without topography, the $p^*$ coordinate and the normalized |
63 |
pressure coordinate ($\sigma_p$) coincide exactly. |
64 |
No viscosity and zero diffusion are used here, but |
65 |
a $8^th$ order \cite{Shapiro_70} filter is applied to both momentum and |
66 |
potential temperature, to remove selectively grid scale noise. |
67 |
Apart from the horizontal grid, this experiment is made very similar to |
68 |
the grid-point model case used in \cite{held-suar:94} study. |
69 |
|
70 |
At this resolution, the configuration can be integrated forward |
71 |
for many years on a single processor desktop computer. |
72 |
\\ |
73 |
|
74 |
\subsection{Forcing} |
75 |
%\label{www:tutorials} |
76 |
|
77 |
The model is forced by relaxation to a radiative equilibrium temperature from |
78 |
\cite{held-suar:94}. |
79 |
A linear frictional drag (Rayleigh damping) is applied in the lower |
80 |
part of the atmosphere and account from surface friction and momentum |
81 |
dissipation in the boundary layer. |
82 |
Altogether, this yields the following forcing |
83 |
\cite[from][]{held-suar:94} that is applied to the fluid: |
84 |
|
85 |
\begin{eqnarray} |
86 |
\label{eq:eg-hs-global_forcing} |
87 |
\label{eq:eg-hs-global_forcing_fv} |
88 |
\vec{{\cal F}_\mathbf{v}} & = & -k_\mathbf{v}(p)\vec{\mathbf{v}}_h |
89 |
\\ |
90 |
\label{eq:eg-hs-global_forcing_ft} |
91 |
{\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)] |
92 |
\end{eqnarray} |
93 |
|
94 |
\noindent where $\vec{\cal F}_\mathbf{v}$, ${\cal F}_{\theta}$, |
95 |
are the forcing terms in the zonal and meridional |
96 |
momentum and in the potential temperature equations respectively. |
97 |
The term $k_\mathbf{v}$ in equation (\ref{eq:eg-hs-global_forcing_fv}) applies a |
98 |
Rayleigh damping that is active within the planetary boundary layer. |
99 |
It is defined so as to decay as pressure decreases according to |
100 |
\begin{eqnarray*} |
101 |
\label{eq:eg-hs-define_kv} |
102 |
k_\mathbf{v} & = & k_{f}~\max[0,~(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})] |
103 |
\\ |
104 |
\sigma_{b} & = & 0.7 ~~{\rm and}~~ |
105 |
k_{f} = 1/86400 ~{\rm s}^{-1} |
106 |
\end{eqnarray*} |
107 |
|
108 |
where $p^*$ is the pressure level of the cell center |
109 |
and $P^{0}_{s}$ is the pressure at the base of the atmospheric column, |
110 |
which is constant and uniform here ($= 10^5 {\rm Pa}$), in the absence |
111 |
of topography. |
112 |
|
113 |
The Equilibrium temperature $\theta_{eq}$ and relaxation time scale $k_{\theta}$ |
114 |
are set to: |
115 |
\begin{eqnarray} |
116 |
\label{eq:eg-hs-define_Teq} |
117 |
\theta_{eq}(\varphi,p^*) & = & \max \{ 200.K (P^{0}_{s}/p^*)^\kappa,\\ |
118 |
\nonumber |
119 |
& & \hspace{8mm} 315.K - \Delta T_y~\sin^2(\varphi) |
120 |
- \Delta \theta_z \cos^2(\varphi) \log(p^*/P^{0}_s) \} |
121 |
\\ |
122 |
\label{eq:eg-hs-define_kT} |
123 |
k_{\theta}(\varphi,p^*) & = & |
124 |
k_a + (k_s -k_a)~\cos^4(\varphi)~\max[0,(p^*/P^{0}_{s}-\sigma_{b})/(1-\sigma_{b})] |
125 |
\end{eqnarray} |
126 |
with: |
127 |
\begin{eqnarray*} |
128 |
\Delta T_y = 60.K & k_a = 1/(40 \cdot 86400) ~{\rm s}^{-1}\\ |
129 |
\Delta \theta_z = 10.K & k_s = 1/(4 \cdot 86400) ~{\rm s}^{-1} |
130 |
\end{eqnarray*} |
131 |
|
132 |
Initial conditions correspond to a resting state with horizontally uniform |
133 |
stratified fluid. The initial temperature profile is simply the |
134 |
horizontally average of the radiative equilibrium temperature. |
135 |
|
136 |
\subsection{Set-up description} |
137 |
%\subsection{Discrete Numerical Configuration} |
138 |
%\label{www:tutorials} |
139 |
|
140 |
The model is configured in hydrostatic form, using non-boussinesq |
141 |
$p^*$ coordinate. |
142 |
The vertical resolution is uniform, $\Delta p^* = 50.10^2 Pa$, |
143 |
with 20 levels, from $p^*=10^5 Pa$ to $0$ at the top. |
144 |
The domain is discretised using C32 cube-sphere grid \cite[]{adcroft:04b} |
145 |
that cover the whole sphere with a relatively uniform grid-spacing. |
146 |
The resolution at the equator or along the Greenwitch meridian |
147 |
is similar to the $128 \times 64$ equaly spaced longitude-latitude grid, |
148 |
but requires $25\%$ less grid points. |
149 |
Grid spacing and grid-point location are not computed by the model but |
150 |
read from files. |
151 |
|
152 |
The vector-invariant form of the momentum equation (see section |
153 |
\ref{sec:vect-inv_momentum_equations}) is used so that no explicit |
154 |
metrics are necessary. |
155 |
|
156 |
Applying the vector-invariant discretization to the |
157 |
atmospheric equations \ref{eq:atmos-prime}, and adding the |
158 |
forcing term |
159 |
(\ref{eq:eg-hs-global_forcing_fv}, \ref{eq:eg-hs-global_forcing_ft}) |
160 |
on the right-hand-side, |
161 |
leads to the set of equations that are solved in this configuration: |
162 |
|
163 |
%the The set of equations solved here is der |
164 |
%Wind-stress forcing is added to the momentum equations for both |
165 |
%the zonal flow, $u$ and the meridional flow $v$, according to equations |
166 |
%(\ref{eq:eg-hs-global_forcing_fv}) and (\ref{eq:eg-hs-global_forcing_fv}). |
167 |
%Thermodynamic forcing inputs are added to the equations for |
168 |
%potential temperature, $\theta$, and salinity, $S$, according to equations |
169 |
%(\ref{eq:eg-hs-global_forcing_ft}) and (\ref{eq:eg-hs-global_forcing_fs}). |
170 |
|
171 |
\begin{eqnarray} |
172 |
\label{eq:eg-hs-model_equations} |
173 |
\frac{\partial \vec{\mathbf{v}}_h}{\partial t} |
174 |
+(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h |
175 |
%+\mathbf{\nabla }_{p} ({\rm KE}) |
176 |
+\mathbf{\nabla }_{p} (\mbox{\sc ke}) |
177 |
+ \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p} |
178 |
+\mathbf{\nabla }_p \Phi ^{\prime } |
179 |
&=& |
180 |
% \vec{{\cal F}_v} = |
181 |
-k_\mathbf{v}\vec{\mathbf{v}}_h |
182 |
\\ |
183 |
\frac{\partial \Phi ^{\prime }}{\partial p} |
184 |
+\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&0 |
185 |
\\ |
186 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{ |
187 |
\partial p} &=&0 |
188 |
\\ |
189 |
\frac{\partial \theta }{\partial t} |
190 |
+ \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h) |
191 |
+ \frac{\partial (\theta \omega)}{\partial p} |
192 |
%= \frac{\mathcal{Q}}{\Pi } |
193 |
&=& -k_{\theta}[\theta-\theta_{eq}] |
194 |
\end{eqnarray} |
195 |
|
196 |
%\begin{equation} |
197 |
%\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v} |
198 |
%- b \hat{r} |
199 |
%+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau} |
200 |
%\end{equation} |
201 |
%{\cal F}_{\theta} & = & -k_{\theta}(\varphi,p)[\theta-\theta_{eq}(\varphi,p)] |
202 |
|
203 |
\noindent where $\vec{\mathbf{v}}_h$ and $\omega = \frac{Dp}{Dt}$ |
204 |
are the horizontal velocity vector and the vertical velocity in pressure coordinate, |
205 |
$\zeta$ is the relative vorticity and $f$ the Coriolis parameter, |
206 |
$\hat{\mathbf{k}}$ is the vertical unity vector, |
207 |
{\sc ke} is the kinetic energy, $\Phi$ is the geopotential |
208 |
and $\Pi$ the Exner function |
209 |
($\Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$). |
210 |
Variables marked with ' corresponds to anomaly from |
211 |
the resting, uniformly stratified state. |
212 |
|
213 |
As described in MITgcm Numerical Solution Procedure \ref{chap:discretization}, |
214 |
the continuity equation is integrated vertically, to give a prognostic |
215 |
equation for the surface pressure $p_s$: |
216 |
\begin{equation} |
217 |
\frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{\mathbf{v}}_h dp |
218 |
= 0 |
219 |
\end{equation} |
220 |
|
221 |
The implicit free surface form of the pressure equation described in |
222 |
\cite{marshall:97a} is employed to solve for $p_s$; |
223 |
Integrating vertically the hydrostatic balance |
224 |
gives the geopotential $\Phi'$ and allow to step forward the momentum equation |
225 |
\ref{eq:eg-hs-model_equations}. |
226 |
The potential temperature, $\theta$, is stepped forward using the |
227 |
new velocity field ({\it staggered time-step}, section |
228 |
\ref{sec:adams-bashforth-staggered}). |
229 |
\\ |
230 |
|
231 |
\subsubsection{Numerical Stability Criteria} |
232 |
%\label{www:tutorials} |
233 |
|
234 |
\noindent The numerical stability for inertial oscillations |
235 |
\cite{adcroft:95} |
236 |
|
237 |
\begin{eqnarray} |
238 |
\label{eq:eg-hs-inertial_stability} |
239 |
S_{i} = f^{2} {\Delta t}^2 |
240 |
\end{eqnarray} |
241 |
|
242 |
\noindent evaluates to $4.\times10^{-3}$ at the poles, |
243 |
for $f=2\Omega\sin(\pi / 2) =1.45\times10^{-4}~{\rm s}^{-1}$, |
244 |
which is well below the $S_{i} < 1$ upper limit for stability. |
245 |
\\ |
246 |
|
247 |
\noindent The advective CFL \cite{adcroft:95} |
248 |
for a extreme maximum horizontal flow speed of $ | \vec{u} | = 90. {\rm m/s}$~ |
249 |
and the smallest horizontal grid spacing $ \Delta x = 1.1\times10^5 {\rm m}$~: |
250 |
|
251 |
\begin{eqnarray} |
252 |
\label{eq:eg-hs-cfl_stability} |
253 |
S_{a} = \frac{| \vec{u} | \Delta t}{ \Delta x} |
254 |
\end{eqnarray} |
255 |
|
256 |
\noindent evaluates to $0.37$, which is close to the stability |
257 |
limit of 0.5. |
258 |
\\ |
259 |
|
260 |
\noindent The stability parameter for internal gravity waves propagating |
261 |
with a maximum speed of $c_{g}=100~{\rm m/s}$ |
262 |
\cite{adcroft:95} |
263 |
|
264 |
\begin{eqnarray} |
265 |
\label{eq:eg-hs-gfl_stability} |
266 |
S_{c} = \frac{c_{g} \Delta t}{ \Delta x} |
267 |
\end{eqnarray} |
268 |
|
269 |
\noindent evaluates to $4 \times 10^{-1}$. This is close to the linear |
270 |
stability limit of 0.5. |
271 |
|
272 |
\subsection{Experiment Configuration} |
273 |
%\label{www:tutorials} |
274 |
\label{sec:eg-hs_examp_exp_config} |
275 |
|
276 |
The model configuration for this experiment resides under the |
277 |
directory {\it verification/tutorial\_held\_suarez\_cs}. The experiment files |
278 |
\begin{itemize} |
279 |
\item {\it input/data} |
280 |
\item {\it input/data.pkg} |
281 |
\item {\it input/eedata}, |
282 |
\item {\it input/data.shap}, |
283 |
\item {\it code/packages.conf}, |
284 |
\item {\it code/CPP\_OPTIONS.h}, |
285 |
\item {\it code/SIZE.h}, |
286 |
\item {\it code/DIAGNOSTICS\_SIZE.h}, |
287 |
\item {\it code/external\_forcing.F}, |
288 |
\end{itemize} |
289 |
contain the code customizations and parameter settings for these |
290 |
experiments. Below we describe the customizations |
291 |
to these files associated with this experiment. |
292 |
|
293 |
\subsubsection{File {\it input/data}} |
294 |
%\label{www:tutorials} |
295 |
|
296 |
\input{s_examples/held_suarez_cs/inp_data} |
297 |
|
298 |
\subsubsection{File {\it input/data.pkg}} |
299 |
%\label{www:tutorials} |
300 |
|
301 |
\input{s_examples/held_suarez_cs/inp_data.pkg} |
302 |
|
303 |
\subsubsection{File {\it input/eedata}} |
304 |
%\label{www:tutorials} |
305 |
|
306 |
This file uses standard default values except line 6: |
307 |
\begin{verbatim} |
308 |
useCubedSphereExchange=.TRUE., |
309 |
\end{verbatim} |
310 |
This line selects the cubed-sphere specific exchanges to |
311 |
to connect tiles and faces edges. |
312 |
|
313 |
\subsubsection{File {\it input/data.shap}} |
314 |
%\label{www:tutorials} |
315 |
|
316 |
\input{s_examples/held_suarez_cs/inp_data.shap} |
317 |
|
318 |
\subsubsection{File {\it code/SIZE.h}} |
319 |
%\label{www:tutorials} |
320 |
|
321 |
Four lines are customized in this file for the current experiment |
322 |
|
323 |
\begin{itemize} |
324 |
|
325 |
\item Line 39, |
326 |
\begin{verbatim} sNx=32, \end{verbatim} |
327 |
sets the lateral domain extent in grid points along the x-direction, |
328 |
for 1 face. |
329 |
|
330 |
\item Line 40, |
331 |
\begin{verbatim} sNy=32, \end{verbatim} |
332 |
sets the lateral domain extent in grid points along the y-direction, |
333 |
for 1 face. |
334 |
|
335 |
\item Line 43, |
336 |
\begin{verbatim} nSx=6, \end{verbatim} |
337 |
sets the number of tiles in the x-direction, for the model domain |
338 |
decomposition. In this simple case (one processor and 1 tile per |
339 |
face), this number corresponds to the total number of faces. |
340 |
|
341 |
\item Line 49, |
342 |
\begin{verbatim} Nr=20, \end{verbatim} |
343 |
sets the vertical domain extent in grid points. |
344 |
|
345 |
\end{itemize} |
346 |
|
347 |
%\begin{small} |
348 |
%\input{s_examples/held_suarez_cs/code/SIZE.h} |
349 |
%\end{small} |
350 |
|
351 |
\subsubsection{File {\it code/packages.conf}} |
352 |
%\label{www:tutorials} |
353 |
|
354 |
\input{s_examples/held_suarez_cs/cod_packages.conf} |
355 |
|
356 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
357 |
%\label{www:tutorials} |
358 |
|
359 |
This file uses standard default except for Line 40\\ |
360 |
({\it diff CPP\_OPTIONS.h ../../../model/inc}): |
361 |
\begin{verbatim} |
362 |
#define NONLIN_FRSURF |
363 |
\end{verbatim} |
364 |
This line allow to use the non-linear free-surface part of the code, |
365 |
which is required for the $p^*$ coordinate formulation. |
366 |
|
367 |
\subsubsection{Other Files } |
368 |
%\label{www:tutorials} |
369 |
|
370 |
Other files relevant to this experiment are |
371 |
\begin{itemize} |
372 |
\item {\it code/external\_forcing.F} |
373 |
\item {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$ |
374 |
\end{itemize} |
375 |
contain the code customisations and binary input files for this |
376 |
experiments. Below we describe the customisations |
377 |
to these files associated with this experiment.\\ |
378 |
|
379 |
The file {\it code/external\_forcing.F} contains 4 subroutines |
380 |
that calculate the forcing terms (Right-Hand side term) in the |
381 |
momentum equation (\ref{eq:eg-hs-global_forcing_fv}, |
382 |
{\it S/R EXTERNAL\_FORCING\_U} and {\it EXTERNAL\_FORCING\_V}) |
383 |
and in the potential temperature equation |
384 |
(\ref{eq:eg-hs-global_forcing_ft}, {\it S/R EXTERNAL\_FORCING\_T}). |
385 |
The water-vapour forcing subroutine ({\it S/R EXTERNAL\_FORCING\_S}) |
386 |
is left empty for this experiment.\\ |
387 |
|
388 |
The grid-files {\it input/grid\_cs32.face00[n].bin}, with $n=1,2,3,4,5,6$, |
389 |
are binary files (direct-access, big-endian 64.bits real) that |
390 |
contains all the cubed-sphere grid lengths, areas and grid-point |
391 |
positions, with one file per face. |
392 |
Each file contains 18 2-D arrays (dimension $33 \times 33$) that correspond |
393 |
to the model variables: |
394 |
{\it |
395 |
XC YC DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN |
396 |
} |
397 |
(see {\it GRID.h} file) |
398 |
|