/[MITgcm]/manual/s_examples/held_suarez_cs/hs_atmos.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/hs_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Tue Oct 12 17:14:02 2004 UTC (20 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.3: +22 -13 lines
File MIME type: application/x-tex
Changed the intro to describe what content will be added shortly.

1 cnh 1.4 % $Header: /u/gcmpack/manual/part3/case_studies/hs_atmosphere/hs_atmos.tex,v 1.3 2003/08/07 18:27:52 edhill Exp $
2 cnh 1.1 % $Name: $
3    
4 cnh 1.4 \section{Held-Suarez forcing atmospheric simulation on a latitude-longitude grid 2.8$^\circ$ resolution and on
5     a cube-sphere grid with 32 square cube faces.}
6 adcroft 1.2 \label{www:tutorials}
7 cnh 1.1 \label{sect:eg-hs}
8    
9     \bodytext{bgcolor="#FFFFFFFF"}
10    
11     %\begin{center}
12     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
13     %At Four Degree Resolution with Asynchronous Time Stepping}
14     %
15     %\vspace*{4mm}
16     %
17     %\vspace*{3mm}
18     %{\large May 2001}
19     %\end{center}
20    
21     \subsection{Introduction}
22 adcroft 1.2 \label{www:tutorials}
23 cnh 1.1
24 cnh 1.4 This example illustrates the use of the MITgcm for large scale atmospheric
25     circulation simulation. Two simulations are described
26     \begin{itemize}
27     \item global atmospheric circulation on a latitude-longitude grid and
28     \item global atmospheric circulation on a cube-sphere grid
29     \end{itemize}
30     The examples show how to use the isomorphic 'p-coordinate' scheme in
31     MITgcm to enable atmospheric simulation.
32    
33    
34 cnh 1.1
35     \subsection{Overview}
36 adcroft 1.2 \label{www:tutorials}
37 cnh 1.1
38     This example experiment demonstrates using the MITgcm to simulate
39 cnh 1.4 the planetary atmospheric circulation in two different ways.
40     In both cases the simulation is configured with flat orography.
41     In the first case shown a $2.8^{\circ} \times 2.8^{\circ}$ spherical polar
42     horizontal grid is employed. In the second case a cube-sphere horizontal
43     grid is used that projects a cube with face size of $32 \times 32$ onto a
44     sphere.
45     Five pressurce corrdinate levels are used in the vertical, ranging in thickness
46     from $100\,{\rm mb}$ at the bottom of the atmosphere to $300\,{\rm mb}$ in the middle atmosphere.
47 cnh 1.1 At this resolution, the configuration
48 cnh 1.4 can be integrated forward for many years on a single
49 cnh 1.1 processor desktop computer.
50     \\
51    
52     The model is forced with climatological wind stress data and surface
53     flux data from DaSilva \cite{DaSilva94}. Climatological data
54     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
55     Levitus seasonal climatology data is also used throughout the calculation
56     to provide additional air-sea fluxes.
57     These fluxes are combined with the DaSilva climatological estimates of
58     surface heat flux and fresh water, resulting in a mixed boundary
59     condition of the style described in Haney \cite{Haney}.
60     Altogether, this yields the following forcing applied
61     in the model surface layer.
62    
63     \begin{eqnarray}
64     \label{EQ:eg-hs-global_forcing}
65     \label{EQ:eg-hs-global_forcing_fu}
66     {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
67     \\
68     \label{EQ:eg-hs-global_forcing_fv}
69     {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
70     \\
71     \label{EQ:eg-hs-global_forcing_ft}
72     {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
73     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
74     \\
75     \label{EQ:eg-hs-global_forcing_fs}
76     {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
77     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
78     \end{eqnarray}
79    
80     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
81     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
82     momentum and in the potential temperature and salinity
83     equations respectively.
84     The term $\Delta z_{s}$ represents the top ocean layer thickness in
85     meters.
86     It is used in conjunction with a reference density, $\rho_{0}$
87     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
88     reference salinity, $S_{0}$ (here set to 35~ppt),
89     and a specific heat capacity, $C_{p}$ (here set to
90     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
91     input dataset values into time tendencies of
92     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
93     salinity (with units ${\rm ppt}~s^{-1}$) and
94     velocity (with units ${\rm m}~{\rm s}^{-2}$).
95     The externally supplied forcing fields used in this
96     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
97     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
98     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
99     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
100     respectively. The salinity forcing fields ($S^{\ast}$ and
101     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
102     respectively.
103     \\
104    
105    
106     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
107     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
108     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
109     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
110     in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures
111     also indicate the lateral extent and coastline used in the experiment.
112     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
113     domain.
114    
115    
116     \subsection{Discrete Numerical Configuration}
117 adcroft 1.2 \label{www:tutorials}
118 cnh 1.1
119    
120     The model is configured in hydrostatic form. The domain is discretised with
121     a uniform grid spacing in latitude and longitude on the sphere
122     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
123     that there are ninety grid cells in the zonal and forty in the
124     meridional direction. The internal model coordinate variables
125     $x$ and $y$ are initialized according to
126     \begin{eqnarray}
127     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
128     y=r\lambda,~\Delta x &= &r\Delta \lambda
129     \end{eqnarray}
130    
131     Arctic polar regions are not
132     included in this experiment. Meridionally the model extends from
133     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
134     Vertically the model is configured with twenty layers with the
135     following thicknesses
136     $\Delta z_{1} = 50\,{\rm m},\,
137     \Delta z_{2} = 50\,{\rm m},\,
138     \Delta z_{3} = 55\,{\rm m},\,
139     \Delta z_{4} = 60\,{\rm m},\,
140     \Delta z_{5} = 65\,{\rm m},\,
141     $
142     $
143     \Delta z_{6}~=~70\,{\rm m},\,
144     \Delta z_{7}~=~80\,{\rm m},\,
145     \Delta z_{8}~=95\,{\rm m},\,
146     \Delta z_{9}=120\,{\rm m},\,
147     \Delta z_{10}=155\,{\rm m},\,
148     $
149     $
150     \Delta z_{11}=200\,{\rm m},\,
151     \Delta z_{12}=260\,{\rm m},\,
152     \Delta z_{13}=320\,{\rm m},\,
153     \Delta z_{14}=400\,{\rm m},\,
154     \Delta z_{15}=480\,{\rm m},\,
155     $
156     $
157     \Delta z_{16}=570\,{\rm m},\,
158     \Delta z_{17}=655\,{\rm m},\,
159     \Delta z_{18}=725\,{\rm m},\,
160     \Delta z_{19}=775\,{\rm m},\,
161     \Delta z_{20}=815\,{\rm m}
162     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
163     The implicit free surface form of the pressure equation described in Marshall et. al
164     \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
165     dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
166    
167     Wind-stress forcing is added to the momentum equations for both
168     the zonal flow, $u$ and the meridional flow $v$, according to equations
169     (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).
170     Thermodynamic forcing inputs are added to the equations for
171     potential temperature, $\theta$, and salinity, $S$, according to equations
172     (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
173     This produces a set of equations solved in this configuration as follows:
174    
175     \begin{eqnarray}
176     \label{EQ:eg-hs-model_equations}
177     \frac{Du}{Dt} - fv +
178     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
179     \nabla_{h}\cdot A_{h}\nabla_{h}u -
180     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
181     & = &
182     \begin{cases}
183     {\cal F}_u & \text{(surface)} \\
184     0 & \text{(interior)}
185     \end{cases}
186     \\
187     \frac{Dv}{Dt} + fu +
188     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
189     \nabla_{h}\cdot A_{h}\nabla_{h}v -
190     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
191     & = &
192     \begin{cases}
193     {\cal F}_v & \text{(surface)} \\
194     0 & \text{(interior)}
195     \end{cases}
196     \\
197     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
198     &=&
199     0
200     \\
201     \frac{D\theta}{Dt} -
202     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
203     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
204     & = &
205     \begin{cases}
206     {\cal F}_\theta & \text{(surface)} \\
207     0 & \text{(interior)}
208     \end{cases}
209     \\
210     \frac{D s}{Dt} -
211     \nabla_{h}\cdot K_{h}\nabla_{h}s
212     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
213     & = &
214     \begin{cases}
215     {\cal F}_s & \text{(surface)} \\
216     0 & \text{(interior)}
217     \end{cases}
218     \\
219     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
220     \end{eqnarray}
221    
222     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
223     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
224     are the zonal and meridional components of the
225     flow vector, $\vec{u}$, on the sphere. As described in
226     MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
227     evolution of potential temperature, $\theta$, equation is solved prognostically.
228     The total pressure, $p$, is diagnosed by summing pressure due to surface
229     elevation $\eta$ and the hydrostatic pressure.
230     \\
231    
232     \subsubsection{Numerical Stability Criteria}
233 adcroft 1.2 \label{www:tutorials}
234 cnh 1.1
235     The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
236     This value is chosen to yield a Munk layer width \cite{adcroft:95},
237     \begin{eqnarray}
238     \label{EQ:eg-hs-munk_layer}
239     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
240     \end{eqnarray}
241    
242     \noindent of $\approx 600$km. This is greater than the model
243     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
244     boundary layer is adequately resolved.
245     \\
246    
247     \noindent The model is stepped forward with a
248     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
249     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
250     parameter to the horizontal Laplacian friction \cite{adcroft:95}
251     \begin{eqnarray}
252     \label{EQ:eg-hs-laplacian_stability}
253     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
254     \end{eqnarray}
255    
256     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
257     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
258     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
259     \\
260    
261     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
262     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
263     \begin{eqnarray}
264     \label{EQ:eg-hs-laplacian_stability_z}
265     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
266     \end{eqnarray}
267    
268     \noindent evaluates to $0.015$ for the smallest model
269     level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
270     the upper stability limit.
271     \\
272    
273     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
274     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
275     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
276     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
277     Here the stability parameter
278     \begin{eqnarray}
279     \label{EQ:eg-hs-laplacian_stability_xtheta}
280     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
281     \end{eqnarray}
282     evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
283     stability parameter related to $K_{z}$
284     \begin{eqnarray}
285     \label{EQ:eg-hs-laplacian_stability_ztheta}
286     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
287     \end{eqnarray}
288     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
289     of $S_{l} \approx 0.5$.
290     \\
291    
292     \noindent The numerical stability for inertial oscillations
293     \cite{adcroft:95}
294    
295     \begin{eqnarray}
296     \label{EQ:eg-hs-inertial_stability}
297     S_{i} = f^{2} {\delta t_v}^2
298     \end{eqnarray}
299    
300     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
301     the $S_{i} < 1$ upper limit for stability.
302     \\
303    
304     \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
305     horizontal flow
306     speed of $ | \vec{u} | = 2 ms^{-1}$
307    
308     \begin{eqnarray}
309     \label{EQ:eg-hs-cfl_stability}
310     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
311     \end{eqnarray}
312    
313     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
314     limit of 0.5.
315     \\
316    
317     \noindent The stability parameter for internal gravity waves propagating
318     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
319     \cite{adcroft:95}
320    
321     \begin{eqnarray}
322     \label{EQ:eg-hs-gfl_stability}
323     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
324     \end{eqnarray}
325    
326     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
327     stability limit of 0.5.
328    
329     \subsection{Experiment Configuration}
330 adcroft 1.2 \label{www:tutorials}
331 cnh 1.1 \label{SEC:eg-hs_examp_exp_config}
332    
333     The model configuration for this experiment resides under the
334 edhill 1.3 directory {\it verification/hs94.128x64x5}. The experiment files
335 cnh 1.1 \begin{itemize}
336     \item {\it input/data}
337     \item {\it input/data.pkg}
338     \item {\it input/eedata},
339     \item {\it input/windx.bin},
340     \item {\it input/windy.bin},
341     \item {\it input/salt.bin},
342     \item {\it input/theta.bin},
343     \item {\it input/SSS.bin},
344     \item {\it input/SST.bin},
345     \item {\it input/topog.bin},
346     \item {\it code/CPP\_EEOPTIONS.h}
347     \item {\it code/CPP\_OPTIONS.h},
348     \item {\it code/SIZE.h}.
349     \end{itemize}
350     contain the code customizations and parameter settings for these
351     experiments. Below we describe the customizations
352     to these files associated with this experiment.
353    
354     \subsubsection{File {\it input/data}}
355 adcroft 1.2 \label{www:tutorials}
356 cnh 1.1
357     This file, reproduced completely below, specifies the main parameters
358     for the experiment. The parameters that are significant for this configuration
359     are
360    
361     \begin{itemize}
362    
363     \item Lines 7-10 and 11-14
364     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
365     $\cdots$ \\
366     set reference values for potential
367     temperature and salinity at each model level in units of $^{\circ}$C and
368     ${\rm ppt}$. The entries are ordered from surface to depth.
369     Density is calculated from anomalies at each level evaluated
370     with respect to the reference values set here.\\
371     \fbox{
372     \begin{minipage}{5.0in}
373     {\it S/R INI\_THETA}({\it ini\_theta.F})
374     \end{minipage}
375     }
376    
377    
378     \item Line 15,
379     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
380     this line sets the vertical Laplacian dissipation coefficient to
381     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
382     for this operator are specified later. This variable is copied into
383     model general vertical coordinate variable {\bf viscAr}.
384    
385     \fbox{
386     \begin{minipage}{5.0in}
387     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
388     \end{minipage}
389     }
390    
391     \item Line 16,
392     \begin{verbatim}
393     viscAh=5.E5,
394     \end{verbatim}
395     this line sets the horizontal Laplacian frictional dissipation coefficient to
396     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
397     for this operator are specified later.
398    
399     \item Lines 17,
400     \begin{verbatim}
401     no_slip_sides=.FALSE.
402     \end{verbatim}
403     this line selects a free-slip lateral boundary condition for
404     the horizontal Laplacian friction operator
405     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
406     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
407    
408     \item Lines 9,
409     \begin{verbatim}
410     no_slip_bottom=.TRUE.
411     \end{verbatim}
412     this line selects a no-slip boundary condition for bottom
413     boundary condition in the vertical Laplacian friction operator
414     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
415    
416     \item Line 19,
417     \begin{verbatim}
418     diffKhT=1.E3,
419     \end{verbatim}
420     this line sets the horizontal diffusion coefficient for temperature
421     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
422     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
423     all boundaries.
424    
425     \item Line 20,
426     \begin{verbatim}
427     diffKzT=3.E-5,
428     \end{verbatim}
429     this line sets the vertical diffusion coefficient for temperature
430     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
431     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
432     the upper and lower boundaries.
433    
434     \item Line 21,
435     \begin{verbatim}
436     diffKhS=1.E3,
437     \end{verbatim}
438     this line sets the horizontal diffusion coefficient for salinity
439     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
440     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
441     all boundaries.
442    
443     \item Line 22,
444     \begin{verbatim}
445     diffKzS=3.E-5,
446     \end{verbatim}
447     this line sets the vertical diffusion coefficient for salinity
448     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
449     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
450     the upper and lower boundaries.
451    
452     \item Lines 23-26
453     \begin{verbatim}
454     beta=1.E-11,
455     \end{verbatim}
456     \vspace{-5mm}$\cdots$\\
457     These settings do not apply for this experiment.
458    
459     \item Line 27,
460     \begin{verbatim}
461     gravity=9.81,
462     \end{verbatim}
463     Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
464     \fbox{
465     \begin{minipage}{5.0in}
466     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
467     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
468     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
469     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
470     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
471     \end{minipage}
472     }
473    
474    
475     \item Line 28-29,
476     \begin{verbatim}
477     rigidLid=.FALSE.,
478     implicitFreeSurface=.TRUE.,
479     \end{verbatim}
480     Selects the barotropic pressure equation to be the implicit free surface
481     formulation.
482    
483     \item Line 30,
484     \begin{verbatim}
485     eosType='POLY3',
486     \end{verbatim}
487     Selects the third order polynomial form of the equation of state.\\
488     \fbox{
489     \begin{minipage}{5.0in}
490     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
491     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
492     \end{minipage}
493     }
494    
495     \item Line 31,
496     \begin{verbatim}
497     readBinaryPrec=32,
498     \end{verbatim}
499     Sets format for reading binary input datasets holding model fields to
500     use 32-bit representation for floating-point numbers.\\
501     \fbox{
502     \begin{minipage}{5.0in}
503     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
504     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
505     \end{minipage}
506     }
507    
508     \item Line 36,
509     \begin{verbatim}
510     cg2dMaxIters=1000,
511     \end{verbatim}
512     Sets maximum number of iterations the two-dimensional, conjugate
513     gradient solver will use, {\bf irrespective of convergence
514     criteria being met}.\\
515     \fbox{
516     \begin{minipage}{5.0in}
517     {\it S/R CG2D}~({\it cg2d.F})
518     \end{minipage}
519     }
520    
521     \item Line 37,
522     \begin{verbatim}
523     cg2dTargetResidual=1.E-13,
524     \end{verbatim}
525     Sets the tolerance which the two-dimensional, conjugate
526     gradient solver will use to test for convergence in equation
527     \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
528     Solver will iterate until
529     tolerance falls below this value or until the maximum number of
530     solver iterations is reached.\\
531     \fbox{
532     \begin{minipage}{5.0in}
533     {\it S/R CG2D}~({\it cg2d.F})
534     \end{minipage}
535     }
536    
537     \item Line 42,
538     \begin{verbatim}
539     startTime=0,
540     \end{verbatim}
541     Sets the starting time for the model internal time counter.
542     When set to non-zero this option implicitly requests a
543     checkpoint file be read for initial state.
544     By default the checkpoint file is named according to
545     the integer number of time steps in the {\bf startTime} value.
546     The internal time counter works in seconds.
547    
548     \item Line 43,
549     \begin{verbatim}
550     endTime=2808000.,
551     \end{verbatim}
552     Sets the time (in seconds) at which this simulation will terminate.
553     At the end of a simulation a checkpoint file is automatically
554     written so that a numerical experiment can consist of multiple
555     stages.
556    
557     \item Line 44,
558     \begin{verbatim}
559     #endTime=62208000000,
560     \end{verbatim}
561     A commented out setting for endTime for a 2000 year simulation.
562    
563     \item Line 45,
564     \begin{verbatim}
565     deltaTmom=2400.0,
566     \end{verbatim}
567     Sets the timestep $\delta t_{v}$ used in the momentum equations to
568     $20~{\rm mins}$.
569     See section \ref{SEC:mom_time_stepping}.
570    
571     \fbox{
572     \begin{minipage}{5.0in}
573     {\it S/R TIMESTEP}({\it timestep.F})
574     \end{minipage}
575     }
576    
577     \item Line 46,
578     \begin{verbatim}
579     tauCD=321428.,
580     \end{verbatim}
581     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
582     See section \ref{SEC:cd_scheme}.
583    
584     \fbox{
585     \begin{minipage}{5.0in}
586     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
587     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
588     \end{minipage}
589     }
590    
591     \item Line 47,
592     \begin{verbatim}
593     deltaTtracer=108000.,
594     \end{verbatim}
595     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
596     $30~{\rm hours}$.
597     See section \ref{SEC:tracer_time_stepping}.
598    
599     \fbox{
600     \begin{minipage}{5.0in}
601     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
602     \end{minipage}
603     }
604    
605     \item Line 47,
606     \begin{verbatim}
607     bathyFile='topog.box'
608     \end{verbatim}
609     This line specifies the name of the file from which the domain
610     bathymetry is read. This file is a two-dimensional ($x,y$) map of
611     depths. This file is assumed to contain 64-bit binary numbers
612     giving the depth of the model at each grid cell, ordered with the x
613     coordinate varying fastest. The points are ordered from low coordinate
614     to high coordinate for both axes. The units and orientation of the
615     depths in this file are the same as used in the MITgcm code. In this
616     experiment, a depth of $0m$ indicates a solid wall and a depth
617     of $-2000m$ indicates open ocean. The matlab program
618     {\it input/gendata.m} shows an example of how to generate a
619     bathymetry file.
620    
621    
622     \item Line 50,
623     \begin{verbatim}
624     zonalWindFile='windx.sin_y'
625     \end{verbatim}
626     This line specifies the name of the file from which the x-direction
627     surface wind stress is read. This file is also a two-dimensional
628     ($x,y$) map and is enumerated and formatted in the same manner as the
629     bathymetry file. The matlab program {\it input/gendata.m} includes example
630     code to generate a valid
631     {\bf zonalWindFile}
632     file.
633    
634     \end{itemize}
635    
636     \noindent other lines in the file {\it input/data} are standard values
637     that are described in the MITgcm Getting Started and MITgcm Parameters
638     notes.
639    
640     \begin{small}
641     \input{part3/case_studies/climatalogical_ogcm/input/data}
642     \end{small}
643    
644     \subsubsection{File {\it input/data.pkg}}
645 adcroft 1.2 \label{www:tutorials}
646 cnh 1.1
647     This file uses standard default values and does not contain
648     customisations for this experiment.
649    
650     \subsubsection{File {\it input/eedata}}
651 adcroft 1.2 \label{www:tutorials}
652 cnh 1.1
653     This file uses standard default values and does not contain
654     customisations for this experiment.
655    
656     \subsubsection{File {\it input/windx.sin\_y}}
657 adcroft 1.2 \label{www:tutorials}
658 cnh 1.1
659     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
660     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
661     Although $\tau_{x}$ is only a function of $y$n in this experiment
662     this file must still define a complete two-dimensional map in order
663     to be compatible with the standard code for loading forcing fields
664     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
665     code for creating the {\it input/windx.sin\_y} file.
666    
667     \subsubsection{File {\it input/topog.box}}
668 adcroft 1.2 \label{www:tutorials}
669 cnh 1.1
670    
671     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
672     map of depth values. For this experiment values are either
673     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
674     ocean. The file contains a raw binary stream of data that is enumerated
675     in the same way as standard MITgcm two-dimensional, horizontal arrays.
676     The included matlab program {\it input/gendata.m} gives a complete
677     code for creating the {\it input/topog.box} file.
678    
679     \subsubsection{File {\it code/SIZE.h}}
680 adcroft 1.2 \label{www:tutorials}
681 cnh 1.1
682     Two lines are customized in this file for the current experiment
683    
684     \begin{itemize}
685    
686     \item Line 39,
687     \begin{verbatim} sNx=60, \end{verbatim} this line sets
688     the lateral domain extent in grid points for the
689     axis aligned with the x-coordinate.
690    
691     \item Line 40,
692     \begin{verbatim} sNy=60, \end{verbatim} this line sets
693     the lateral domain extent in grid points for the
694     axis aligned with the y-coordinate.
695    
696     \item Line 49,
697     \begin{verbatim} Nr=4, \end{verbatim} this line sets
698     the vertical domain extent in grid points.
699    
700     \end{itemize}
701    
702     \begin{small}
703     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
704     \end{small}
705    
706     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
707 adcroft 1.2 \label{www:tutorials}
708 cnh 1.1
709     This file uses standard default values and does not contain
710     customisations for this experiment.
711    
712    
713     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
714 adcroft 1.2 \label{www:tutorials}
715 cnh 1.1
716     This file uses standard default values and does not contain
717     customisations for this experiment.
718    
719     \subsubsection{Other Files }
720 adcroft 1.2 \label{www:tutorials}
721 cnh 1.1
722     Other files relevant to this experiment are
723     \begin{itemize}
724     \item {\it model/src/ini\_cori.F}. This file initializes the model
725     coriolis variables {\bf fCorU}.
726     \item {\it model/src/ini\_spherical\_polar\_grid.F}
727     \item {\it model/src/ini\_parms.F},
728     \item {\it input/windx.sin\_y},
729     \end{itemize}
730     contain the code customisations and parameter settings for this
731     experiments. Below we describe the customisations
732     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22