/[MITgcm]/manual/s_examples/held_suarez_cs/hs_atmos.tex
ViewVC logotype

Annotation of /manual/s_examples/held_suarez_cs/hs_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Wed Oct 13 05:06:26 2004 UTC (20 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.4: +18 -25 lines
File MIME type: application/x-tex
FOrmatting plus text on Held-Suarez

1 cnh 1.5 % $Header: /u/gcmpack/manual/part3/case_studies/hs_atmosphere/hs_atmos.tex,v 1.4 2004/10/12 17:14:02 cnh Exp $
2 cnh 1.1 % $Name: $
3    
4 cnh 1.5 \section[Held-Suarez Atmosphere MITgcm Example]{Held-Suarez forcing atmospheric simulation on a latitude-longitude grid 2.8$^\circ$ resolution and on
5 cnh 1.4 a cube-sphere grid with 32 square cube faces.}
6 adcroft 1.2 \label{www:tutorials}
7 cnh 1.1 \label{sect:eg-hs}
8    
9     \bodytext{bgcolor="#FFFFFFFF"}
10    
11     %\begin{center}
12     %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
13     %At Four Degree Resolution with Asynchronous Time Stepping}
14     %
15     %\vspace*{4mm}
16     %
17     %\vspace*{3mm}
18     %{\large May 2001}
19     %\end{center}
20    
21 cnh 1.4 This example illustrates the use of the MITgcm for large scale atmospheric
22     circulation simulation. Two simulations are described
23     \begin{itemize}
24     \item global atmospheric circulation on a latitude-longitude grid and
25     \item global atmospheric circulation on a cube-sphere grid
26     \end{itemize}
27     The examples show how to use the isomorphic 'p-coordinate' scheme in
28     MITgcm to enable atmospheric simulation.
29    
30    
31 cnh 1.1
32     \subsection{Overview}
33 adcroft 1.2 \label{www:tutorials}
34 cnh 1.1
35 cnh 1.5 This example demonstrates using the MITgcm to simulate
36     the planetary atmospheric circulation in two ways.
37 cnh 1.4 In both cases the simulation is configured with flat orography.
38     In the first case shown a $2.8^{\circ} \times 2.8^{\circ}$ spherical polar
39     horizontal grid is employed. In the second case a cube-sphere horizontal
40     grid is used that projects a cube with face size of $32 \times 32$ onto a
41     sphere.
42 cnh 1.5 Five pressure corrdinate levels are used in the vertical, ranging in thickness
43 cnh 1.4 from $100\,{\rm mb}$ at the bottom of the atmosphere to $300\,{\rm mb}$ in the middle atmosphere.
44 cnh 1.5 The total depth of the atmosphere is $1000{\rm mb}$.
45     At this resolution, the configuration can be integrated forward for many years on a
46     single processor desktop computer.
47 cnh 1.1 \\
48    
49 cnh 1.5 The model is forced by relaxation to a radiative equilibrium profile
50     from Held and Suarez \cite{held-suar:94}. Initial conditions are a
51     statically stable thermal gradient and no motion. The atmosphere
52     in these experiments is dry and the only active ``physics'' are the
53     terms in the Held and Suarez \cite{held-suar:94} formula. The
54     MITgcm intermediate atmospheric physics package (see \ref{sec:aim}) and
55     MITgcm high-end physics package ( see \ref{sec:pkg:fizhi}) are turned off.
56     Altogether, this yields the following forcing that is applied to
57     the fluid:
58 cnh 1.1
59     \begin{eqnarray}
60     \label{EQ:eg-hs-global_forcing}
61     \label{EQ:eg-hs-global_forcing_fu}
62 cnh 1.5 \vec{{\cal F}_{u}} & = & -k_{v}(\sigma)\vec{v}
63 cnh 1.1 \\
64     \label{EQ:eg-hs-global_forcing_ft}
65     {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
66     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
67     \\
68     \label{EQ:eg-hs-global_forcing_fs}
69     {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
70     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
71     \end{eqnarray}
72    
73     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
74     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
75     momentum and in the potential temperature and salinity
76     equations respectively.
77     The term $\Delta z_{s}$ represents the top ocean layer thickness in
78     meters.
79     It is used in conjunction with a reference density, $\rho_{0}$
80     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
81     reference salinity, $S_{0}$ (here set to 35~ppt),
82     and a specific heat capacity, $C_{p}$ (here set to
83     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
84     input dataset values into time tendencies of
85     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
86     salinity (with units ${\rm ppt}~s^{-1}$) and
87     velocity (with units ${\rm m}~{\rm s}^{-2}$).
88     The externally supplied forcing fields used in this
89     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
90     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
91     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
92     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
93     respectively. The salinity forcing fields ($S^{\ast}$ and
94     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
95     respectively.
96     \\
97    
98    
99     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
100     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
101     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
102     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
103     in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures
104     also indicate the lateral extent and coastline used in the experiment.
105     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
106     domain.
107    
108    
109     \subsection{Discrete Numerical Configuration}
110 adcroft 1.2 \label{www:tutorials}
111 cnh 1.1
112    
113     The model is configured in hydrostatic form. The domain is discretised with
114     a uniform grid spacing in latitude and longitude on the sphere
115     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
116     that there are ninety grid cells in the zonal and forty in the
117     meridional direction. The internal model coordinate variables
118     $x$ and $y$ are initialized according to
119     \begin{eqnarray}
120     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
121     y=r\lambda,~\Delta x &= &r\Delta \lambda
122     \end{eqnarray}
123    
124     Arctic polar regions are not
125     included in this experiment. Meridionally the model extends from
126     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
127     Vertically the model is configured with twenty layers with the
128     following thicknesses
129     $\Delta z_{1} = 50\,{\rm m},\,
130     \Delta z_{2} = 50\,{\rm m},\,
131     \Delta z_{3} = 55\,{\rm m},\,
132     \Delta z_{4} = 60\,{\rm m},\,
133     \Delta z_{5} = 65\,{\rm m},\,
134     $
135     $
136     \Delta z_{6}~=~70\,{\rm m},\,
137     \Delta z_{7}~=~80\,{\rm m},\,
138     \Delta z_{8}~=95\,{\rm m},\,
139     \Delta z_{9}=120\,{\rm m},\,
140     \Delta z_{10}=155\,{\rm m},\,
141     $
142     $
143     \Delta z_{11}=200\,{\rm m},\,
144     \Delta z_{12}=260\,{\rm m},\,
145     \Delta z_{13}=320\,{\rm m},\,
146     \Delta z_{14}=400\,{\rm m},\,
147     \Delta z_{15}=480\,{\rm m},\,
148     $
149     $
150     \Delta z_{16}=570\,{\rm m},\,
151     \Delta z_{17}=655\,{\rm m},\,
152     \Delta z_{18}=725\,{\rm m},\,
153     \Delta z_{19}=775\,{\rm m},\,
154     \Delta z_{20}=815\,{\rm m}
155     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
156     The implicit free surface form of the pressure equation described in Marshall et. al
157     \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
158     dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
159    
160     Wind-stress forcing is added to the momentum equations for both
161     the zonal flow, $u$ and the meridional flow $v$, according to equations
162     (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).
163     Thermodynamic forcing inputs are added to the equations for
164     potential temperature, $\theta$, and salinity, $S$, according to equations
165     (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
166     This produces a set of equations solved in this configuration as follows:
167    
168     \begin{eqnarray}
169     \label{EQ:eg-hs-model_equations}
170     \frac{Du}{Dt} - fv +
171     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
172     \nabla_{h}\cdot A_{h}\nabla_{h}u -
173     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
174     & = &
175     \begin{cases}
176     {\cal F}_u & \text{(surface)} \\
177     0 & \text{(interior)}
178     \end{cases}
179     \\
180     \frac{Dv}{Dt} + fu +
181     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
182     \nabla_{h}\cdot A_{h}\nabla_{h}v -
183     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
184     & = &
185     \begin{cases}
186     {\cal F}_v & \text{(surface)} \\
187     0 & \text{(interior)}
188     \end{cases}
189     \\
190     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
191     &=&
192     0
193     \\
194     \frac{D\theta}{Dt} -
195     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
196     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
197     & = &
198     \begin{cases}
199     {\cal F}_\theta & \text{(surface)} \\
200     0 & \text{(interior)}
201     \end{cases}
202     \\
203     \frac{D s}{Dt} -
204     \nabla_{h}\cdot K_{h}\nabla_{h}s
205     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
206     & = &
207     \begin{cases}
208     {\cal F}_s & \text{(surface)} \\
209     0 & \text{(interior)}
210     \end{cases}
211     \\
212     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
213     \end{eqnarray}
214    
215     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
216     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
217     are the zonal and meridional components of the
218     flow vector, $\vec{u}$, on the sphere. As described in
219     MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
220     evolution of potential temperature, $\theta$, equation is solved prognostically.
221     The total pressure, $p$, is diagnosed by summing pressure due to surface
222     elevation $\eta$ and the hydrostatic pressure.
223     \\
224    
225     \subsubsection{Numerical Stability Criteria}
226 adcroft 1.2 \label{www:tutorials}
227 cnh 1.1
228     The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
229     This value is chosen to yield a Munk layer width \cite{adcroft:95},
230     \begin{eqnarray}
231     \label{EQ:eg-hs-munk_layer}
232     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
233     \end{eqnarray}
234    
235     \noindent of $\approx 600$km. This is greater than the model
236     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
237     boundary layer is adequately resolved.
238     \\
239    
240     \noindent The model is stepped forward with a
241     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
242     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
243     parameter to the horizontal Laplacian friction \cite{adcroft:95}
244     \begin{eqnarray}
245     \label{EQ:eg-hs-laplacian_stability}
246     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
247     \end{eqnarray}
248    
249     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
250     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
251     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
252     \\
253    
254     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
255     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
256     \begin{eqnarray}
257     \label{EQ:eg-hs-laplacian_stability_z}
258     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
259     \end{eqnarray}
260    
261     \noindent evaluates to $0.015$ for the smallest model
262     level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
263     the upper stability limit.
264     \\
265    
266     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
267     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
268     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
269     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
270     Here the stability parameter
271     \begin{eqnarray}
272     \label{EQ:eg-hs-laplacian_stability_xtheta}
273     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
274     \end{eqnarray}
275     evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
276     stability parameter related to $K_{z}$
277     \begin{eqnarray}
278     \label{EQ:eg-hs-laplacian_stability_ztheta}
279     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
280     \end{eqnarray}
281     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
282     of $S_{l} \approx 0.5$.
283     \\
284    
285     \noindent The numerical stability for inertial oscillations
286     \cite{adcroft:95}
287    
288     \begin{eqnarray}
289     \label{EQ:eg-hs-inertial_stability}
290     S_{i} = f^{2} {\delta t_v}^2
291     \end{eqnarray}
292    
293     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
294     the $S_{i} < 1$ upper limit for stability.
295     \\
296    
297     \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
298     horizontal flow
299     speed of $ | \vec{u} | = 2 ms^{-1}$
300    
301     \begin{eqnarray}
302     \label{EQ:eg-hs-cfl_stability}
303     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
304     \end{eqnarray}
305    
306     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
307     limit of 0.5.
308     \\
309    
310     \noindent The stability parameter for internal gravity waves propagating
311     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
312     \cite{adcroft:95}
313    
314     \begin{eqnarray}
315     \label{EQ:eg-hs-gfl_stability}
316     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
317     \end{eqnarray}
318    
319     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
320     stability limit of 0.5.
321    
322     \subsection{Experiment Configuration}
323 adcroft 1.2 \label{www:tutorials}
324 cnh 1.1 \label{SEC:eg-hs_examp_exp_config}
325    
326     The model configuration for this experiment resides under the
327 edhill 1.3 directory {\it verification/hs94.128x64x5}. The experiment files
328 cnh 1.1 \begin{itemize}
329     \item {\it input/data}
330     \item {\it input/data.pkg}
331     \item {\it input/eedata},
332     \item {\it input/windx.bin},
333     \item {\it input/windy.bin},
334     \item {\it input/salt.bin},
335     \item {\it input/theta.bin},
336     \item {\it input/SSS.bin},
337     \item {\it input/SST.bin},
338     \item {\it input/topog.bin},
339     \item {\it code/CPP\_EEOPTIONS.h}
340     \item {\it code/CPP\_OPTIONS.h},
341     \item {\it code/SIZE.h}.
342     \end{itemize}
343     contain the code customizations and parameter settings for these
344     experiments. Below we describe the customizations
345     to these files associated with this experiment.
346    
347     \subsubsection{File {\it input/data}}
348 adcroft 1.2 \label{www:tutorials}
349 cnh 1.1
350     This file, reproduced completely below, specifies the main parameters
351     for the experiment. The parameters that are significant for this configuration
352     are
353    
354     \begin{itemize}
355    
356     \item Lines 7-10 and 11-14
357     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
358     $\cdots$ \\
359     set reference values for potential
360     temperature and salinity at each model level in units of $^{\circ}$C and
361     ${\rm ppt}$. The entries are ordered from surface to depth.
362     Density is calculated from anomalies at each level evaluated
363     with respect to the reference values set here.\\
364     \fbox{
365     \begin{minipage}{5.0in}
366     {\it S/R INI\_THETA}({\it ini\_theta.F})
367     \end{minipage}
368     }
369    
370    
371     \item Line 15,
372     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
373     this line sets the vertical Laplacian dissipation coefficient to
374     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
375     for this operator are specified later. This variable is copied into
376     model general vertical coordinate variable {\bf viscAr}.
377    
378     \fbox{
379     \begin{minipage}{5.0in}
380     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
381     \end{minipage}
382     }
383    
384     \item Line 16,
385     \begin{verbatim}
386     viscAh=5.E5,
387     \end{verbatim}
388     this line sets the horizontal Laplacian frictional dissipation coefficient to
389     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
390     for this operator are specified later.
391    
392     \item Lines 17,
393     \begin{verbatim}
394     no_slip_sides=.FALSE.
395     \end{verbatim}
396     this line selects a free-slip lateral boundary condition for
397     the horizontal Laplacian friction operator
398     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
399     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
400    
401     \item Lines 9,
402     \begin{verbatim}
403     no_slip_bottom=.TRUE.
404     \end{verbatim}
405     this line selects a no-slip boundary condition for bottom
406     boundary condition in the vertical Laplacian friction operator
407     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
408    
409     \item Line 19,
410     \begin{verbatim}
411     diffKhT=1.E3,
412     \end{verbatim}
413     this line sets the horizontal diffusion coefficient for temperature
414     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
415     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
416     all boundaries.
417    
418     \item Line 20,
419     \begin{verbatim}
420     diffKzT=3.E-5,
421     \end{verbatim}
422     this line sets the vertical diffusion coefficient for temperature
423     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
424     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
425     the upper and lower boundaries.
426    
427     \item Line 21,
428     \begin{verbatim}
429     diffKhS=1.E3,
430     \end{verbatim}
431     this line sets the horizontal diffusion coefficient for salinity
432     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
433     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
434     all boundaries.
435    
436     \item Line 22,
437     \begin{verbatim}
438     diffKzS=3.E-5,
439     \end{verbatim}
440     this line sets the vertical diffusion coefficient for salinity
441     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
442     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
443     the upper and lower boundaries.
444    
445     \item Lines 23-26
446     \begin{verbatim}
447     beta=1.E-11,
448     \end{verbatim}
449     \vspace{-5mm}$\cdots$\\
450     These settings do not apply for this experiment.
451    
452     \item Line 27,
453     \begin{verbatim}
454     gravity=9.81,
455     \end{verbatim}
456     Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
457     \fbox{
458     \begin{minipage}{5.0in}
459     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
460     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
461     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
462     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
463     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
464     \end{minipage}
465     }
466    
467    
468     \item Line 28-29,
469     \begin{verbatim}
470     rigidLid=.FALSE.,
471     implicitFreeSurface=.TRUE.,
472     \end{verbatim}
473     Selects the barotropic pressure equation to be the implicit free surface
474     formulation.
475    
476     \item Line 30,
477     \begin{verbatim}
478     eosType='POLY3',
479     \end{verbatim}
480     Selects the third order polynomial form of the equation of state.\\
481     \fbox{
482     \begin{minipage}{5.0in}
483     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
484     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
485     \end{minipage}
486     }
487    
488     \item Line 31,
489     \begin{verbatim}
490     readBinaryPrec=32,
491     \end{verbatim}
492     Sets format for reading binary input datasets holding model fields to
493     use 32-bit representation for floating-point numbers.\\
494     \fbox{
495     \begin{minipage}{5.0in}
496     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
497     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
498     \end{minipage}
499     }
500    
501     \item Line 36,
502     \begin{verbatim}
503     cg2dMaxIters=1000,
504     \end{verbatim}
505     Sets maximum number of iterations the two-dimensional, conjugate
506     gradient solver will use, {\bf irrespective of convergence
507     criteria being met}.\\
508     \fbox{
509     \begin{minipage}{5.0in}
510     {\it S/R CG2D}~({\it cg2d.F})
511     \end{minipage}
512     }
513    
514     \item Line 37,
515     \begin{verbatim}
516     cg2dTargetResidual=1.E-13,
517     \end{verbatim}
518     Sets the tolerance which the two-dimensional, conjugate
519     gradient solver will use to test for convergence in equation
520     \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
521     Solver will iterate until
522     tolerance falls below this value or until the maximum number of
523     solver iterations is reached.\\
524     \fbox{
525     \begin{minipage}{5.0in}
526     {\it S/R CG2D}~({\it cg2d.F})
527     \end{minipage}
528     }
529    
530     \item Line 42,
531     \begin{verbatim}
532     startTime=0,
533     \end{verbatim}
534     Sets the starting time for the model internal time counter.
535     When set to non-zero this option implicitly requests a
536     checkpoint file be read for initial state.
537     By default the checkpoint file is named according to
538     the integer number of time steps in the {\bf startTime} value.
539     The internal time counter works in seconds.
540    
541     \item Line 43,
542     \begin{verbatim}
543     endTime=2808000.,
544     \end{verbatim}
545     Sets the time (in seconds) at which this simulation will terminate.
546     At the end of a simulation a checkpoint file is automatically
547     written so that a numerical experiment can consist of multiple
548     stages.
549    
550     \item Line 44,
551     \begin{verbatim}
552     #endTime=62208000000,
553     \end{verbatim}
554     A commented out setting for endTime for a 2000 year simulation.
555    
556     \item Line 45,
557     \begin{verbatim}
558     deltaTmom=2400.0,
559     \end{verbatim}
560     Sets the timestep $\delta t_{v}$ used in the momentum equations to
561     $20~{\rm mins}$.
562     See section \ref{SEC:mom_time_stepping}.
563    
564     \fbox{
565     \begin{minipage}{5.0in}
566     {\it S/R TIMESTEP}({\it timestep.F})
567     \end{minipage}
568     }
569    
570     \item Line 46,
571     \begin{verbatim}
572     tauCD=321428.,
573     \end{verbatim}
574     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
575     See section \ref{SEC:cd_scheme}.
576    
577     \fbox{
578     \begin{minipage}{5.0in}
579     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
580     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
581     \end{minipage}
582     }
583    
584     \item Line 47,
585     \begin{verbatim}
586     deltaTtracer=108000.,
587     \end{verbatim}
588     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
589     $30~{\rm hours}$.
590     See section \ref{SEC:tracer_time_stepping}.
591    
592     \fbox{
593     \begin{minipage}{5.0in}
594     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
595     \end{minipage}
596     }
597    
598     \item Line 47,
599     \begin{verbatim}
600     bathyFile='topog.box'
601     \end{verbatim}
602     This line specifies the name of the file from which the domain
603     bathymetry is read. This file is a two-dimensional ($x,y$) map of
604     depths. This file is assumed to contain 64-bit binary numbers
605     giving the depth of the model at each grid cell, ordered with the x
606     coordinate varying fastest. The points are ordered from low coordinate
607     to high coordinate for both axes. The units and orientation of the
608     depths in this file are the same as used in the MITgcm code. In this
609     experiment, a depth of $0m$ indicates a solid wall and a depth
610     of $-2000m$ indicates open ocean. The matlab program
611     {\it input/gendata.m} shows an example of how to generate a
612     bathymetry file.
613    
614    
615     \item Line 50,
616     \begin{verbatim}
617     zonalWindFile='windx.sin_y'
618     \end{verbatim}
619     This line specifies the name of the file from which the x-direction
620     surface wind stress is read. This file is also a two-dimensional
621     ($x,y$) map and is enumerated and formatted in the same manner as the
622     bathymetry file. The matlab program {\it input/gendata.m} includes example
623     code to generate a valid
624     {\bf zonalWindFile}
625     file.
626    
627     \end{itemize}
628    
629     \noindent other lines in the file {\it input/data} are standard values
630     that are described in the MITgcm Getting Started and MITgcm Parameters
631     notes.
632    
633     \begin{small}
634     \input{part3/case_studies/climatalogical_ogcm/input/data}
635     \end{small}
636    
637     \subsubsection{File {\it input/data.pkg}}
638 adcroft 1.2 \label{www:tutorials}
639 cnh 1.1
640     This file uses standard default values and does not contain
641     customisations for this experiment.
642    
643     \subsubsection{File {\it input/eedata}}
644 adcroft 1.2 \label{www:tutorials}
645 cnh 1.1
646     This file uses standard default values and does not contain
647     customisations for this experiment.
648    
649     \subsubsection{File {\it input/windx.sin\_y}}
650 adcroft 1.2 \label{www:tutorials}
651 cnh 1.1
652     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
653     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
654     Although $\tau_{x}$ is only a function of $y$n in this experiment
655     this file must still define a complete two-dimensional map in order
656     to be compatible with the standard code for loading forcing fields
657     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
658     code for creating the {\it input/windx.sin\_y} file.
659    
660     \subsubsection{File {\it input/topog.box}}
661 adcroft 1.2 \label{www:tutorials}
662 cnh 1.1
663    
664     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
665     map of depth values. For this experiment values are either
666     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
667     ocean. The file contains a raw binary stream of data that is enumerated
668     in the same way as standard MITgcm two-dimensional, horizontal arrays.
669     The included matlab program {\it input/gendata.m} gives a complete
670     code for creating the {\it input/topog.box} file.
671    
672     \subsubsection{File {\it code/SIZE.h}}
673 adcroft 1.2 \label{www:tutorials}
674 cnh 1.1
675     Two lines are customized in this file for the current experiment
676    
677     \begin{itemize}
678    
679     \item Line 39,
680     \begin{verbatim} sNx=60, \end{verbatim} this line sets
681     the lateral domain extent in grid points for the
682     axis aligned with the x-coordinate.
683    
684     \item Line 40,
685     \begin{verbatim} sNy=60, \end{verbatim} this line sets
686     the lateral domain extent in grid points for the
687     axis aligned with the y-coordinate.
688    
689     \item Line 49,
690     \begin{verbatim} Nr=4, \end{verbatim} this line sets
691     the vertical domain extent in grid points.
692    
693     \end{itemize}
694    
695     \begin{small}
696     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
697     \end{small}
698    
699     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
700 adcroft 1.2 \label{www:tutorials}
701 cnh 1.1
702     This file uses standard default values and does not contain
703     customisations for this experiment.
704    
705    
706     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
707 adcroft 1.2 \label{www:tutorials}
708 cnh 1.1
709     This file uses standard default values and does not contain
710     customisations for this experiment.
711    
712     \subsubsection{Other Files }
713 adcroft 1.2 \label{www:tutorials}
714 cnh 1.1
715     Other files relevant to this experiment are
716     \begin{itemize}
717     \item {\it model/src/ini\_cori.F}. This file initializes the model
718     coriolis variables {\bf fCorU}.
719     \item {\it model/src/ini\_spherical\_polar\_grid.F}
720     \item {\it model/src/ini\_parms.F},
721     \item {\it input/windx.sin\_y},
722     \end{itemize}
723     contain the code customisations and parameter settings for this
724     experiments. Below we describe the customisations
725     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22