/[MITgcm]/manual/s_examples/held_suarez_cs/inp_data.templ
ViewVC logotype

Contents of /manual/s_examples/held_suarez_cs/inp_data.templ

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Mon Aug 8 21:09:38 2005 UTC (19 years, 11 months ago) by jmc
Branch: MAIN
update tutorial documentation.

1
2 %\subsubsection{File {\it input/data}}
3 %\label{www:tutorials}
4
5 This file, reproduced completely below, specifies the main parameters
6 for the experiment.
7 The parameters that are significant for this configuration are:
8
9 \begin{itemize}
10
11 \item Lines PUT_LINE_NB:tRef=,
12 \begin{verbatim}
13 tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,
14 \end{verbatim}
15 $\cdots$ \\
16 set reference values for potential temperature at each model level
17 in Kelvin units.
18 The entries are ordered like model level, from surface up to the top.
19 Density is calculated from anomalies at each level evaluated
20 with respect to the reference values set here.
21 \\ \fbox{
22 \begin{minipage}{5.0in}
23 {\it S/R INI\_THETA}({\it ini\_theta.F})
24 \end{minipage}
25 }
26
27
28 \item Line PUT_LINE_NB:no_slip_sides=,
29 \begin{verbatim}
30 no_slip_sides=.FALSE.,
31 \end{verbatim}
32 this line selects a free-slip lateral boundary condition for
33 the horizontal Laplacian friction operator
34 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
35 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
36
37 \item Lines PUT_LINE_NB:no_slip_bottom=,
38 \begin{verbatim}
39 no_slip_bottom=.FALSE.,
40 \end{verbatim}
41 this line selects a free-slip boundary condition at the top,
42 in the vertical Laplacian friction operator
43 e.g. $\frac{\partial u}{\partial p} = \frac{\partial v}{\partial p} = 0$
44
45 \item Line PUT_LINE_NB:buoyancyRelation=,
46 \begin{verbatim}
47 buoyancyRelation='ATMOSPHERIC',
48 \end{verbatim}
49 this line sets the type of fluid and the type of vertical coordinate to use,
50 which, in this case, is air with a pressure like coordinate ($p$ or $p^*$).
51
52 \item Line PUT_LINE_NB:eosType=,
53 \begin{verbatim}
54 eosType='IDEALGAS',
55 \end{verbatim}
56 Selects the Ideal gas equation of state.
57 %\\ \fbox{
58 %\begin{minipage}{5.0in}
59 %{\it S/R FIND\_RHO}~({\it find\_rho.F})\\
60 %{\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
61 %\end{minipage}
62 %}
63
64 \item Line PUT_LINE_NB:implicitFreeSurface=,
65 \begin{verbatim}
66 implicitFreeSurface=.TRUE.,
67 \end{verbatim}
68 Selects the way the barotropic equation is solved, using here the implicit
69 free-surface formulation.
70 \\ \fbox{
71 \begin{minipage}{5.0in}
72 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
73 \end{minipage}
74 }
75
76 \item Line PUT_LINE_NB:exactConserv=,
77 \begin{verbatim}
78 exactConserv=.TRUE.,
79 \end{verbatim}
80 Explicitly calculate again the surface pressure changes from
81 the divergence of the vertically integrated horizontal flow,
82 after the implicit free surface solver and filters are applied.
83 \\ \fbox{
84 \begin{minipage}{5.0in}
85 {\it S/R INTEGR\_CONTINUITY}~({\it integr\_continuity.F})
86 \end{minipage}
87 }
88
89 \item Line PUT_LINE_NB:nonlinFreeSurf=
90 and Line PUT_LINE_NB:select_rStar=,
91 \begin{verbatim}
92 nonlinFreeSurf=4,
93 select_rStar=2,
94 \end{verbatim}
95 Select the Non-Linear free surface formulation, using $r^*$ vertical coordinate
96 (here $p^*$).
97 Note that, except for the default ($= 0$), other values of those 2 parameters
98 are only permitted for testing/debuging purpose.
99 \\ \fbox{
100 \begin{minipage}{5.0in}
101 {\it S/R CALC\_R\_STAR}~({\it calc\_r\_star.F})\\
102 {\it S/R UPDATE\_R\_STAR}~({\it update\_r\_star.F})
103 \end{minipage}
104 }
105
106 \item Line PUT_LINE_NB:uniformLin_PhiSurf=
107 \begin{verbatim}
108 uniformLin_PhiSurf=.FALSE.,
109 \end{verbatim}
110 Select the linear relation between surface geopotential anomaly
111 and surface pressure anomaly to be evaluated from
112 $\frac{\partial \Phi_s}{\partial p_s} = 1/\rho(\theta_{Ref})$.
113 Note that using the default (=TRUE), the constant $1/\rho_0$ is
114 used instead, and is not necessary consistent with other
115 parts of the geopotential that relies on $\theta_{Ref}$.
116 \\ \fbox{
117 \begin{minipage}{5.0in}
118 {\it S/R INI\_LINEAR\_PHISURF}~({\it ini\_linear\_phisurf.F})
119 \end{minipage}
120 }
121
122 \item Line PUT_LINE_NB:saltStepping= and Line PUT_LINE_NB:momViscosity=
123 \begin{verbatim}
124 saltStepping=.FALSE.,
125 momViscosity=.FALSE.,
126 \end{verbatim}
127 Do not step forward Water vapour and do not compute viscous terms.
128 This allow to save some computer time.
129
130 \item Line PUT_LINE_NB:vectorInvariantMomentum=
131 \begin{verbatim}
132 vectorInvariantMomentum=.TRUE.,
133 \end{verbatim}
134 Select the vector-invariant form to solve the momentum equation.
135 \\ \fbox{
136 \begin{minipage}{5.0in}
137 {\it S/R MOM\_VECINV}~({\it mom\_vecinv.F})
138 \end{minipage}
139 }
140
141 \item Line PUT_LINE_NB:staggerTimeStep=
142 \begin{verbatim}
143 staggerTimeStep=.TRUE.,
144 \end{verbatim}
145 Select the staggered time-stepping (rather than syncronous time stepping).
146
147 \item Line PUT_LINE_NB:readBinaryPrec= and PUT_LINE_NB:writeBinaryPrec=
148 \begin{verbatim}
149 readBinaryPrec=64,
150 writeBinaryPrec=64,
151 \end{verbatim}
152 Sets format for reading binary input datasets and writing output fields to
153 use 64-bit representation for floating-point numbers.
154 \\ \fbox{
155 \begin{minipage}{5.0in}
156 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
157 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
158 \end{minipage}
159 }
160
161 \item Line PUT_LINE_NB:cg2dMaxIters=,
162 \begin{verbatim}
163 cg2dMaxIters=200,
164 \end{verbatim}
165 Sets maximum number of iterations the two-dimensional, conjugate
166 gradient solver will use, {\bf irrespective of convergence
167 criteria being met}.
168 \\ \fbox{
169 \begin{minipage}{5.0in}
170 {\it S/R CG2D}~({\it cg2d.F})
171 \end{minipage}
172 }
173
174 \item Line PUT_LINE_NB:cg2dTargetResWunit=,
175 \begin{verbatim}
176 cg2dTargetResWunit=1.E-17,
177 \end{verbatim}
178 Sets the tolerance (in units of $\omega$) which the
179 two-dimensional, conjugate gradient solver will use to test for convergence
180 in equation \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-17} Pa/s$.
181 Solver will iterate until
182 tolerance falls below this value or until the maximum number of
183 solver iterations is reached.
184 \\ \fbox{
185 \begin{minipage}{5.0in}
186 {\it S/R CG2D}~({\it cg2d.F})
187 \end{minipage}
188 }
189
190 \item Line PUT_LINE_NB:deltaT=,
191 \begin{verbatim}
192 deltaT=450.,
193 \end{verbatim}
194 Sets the timestep $\Delta t$ used in the model to
195 $450~{\rm s}$ ($= 1/8 {\rm h}$).
196 \\ \fbox{
197 \begin{minipage}{5.0in}
198 {\it S/R TIMESTEP}({\it timestep.F})\\
199 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
200 \end{minipage}
201 }
202
203 \item Line PUT_LINE_NB:startTime=,
204 \begin{verbatim}
205 startTime=124416000.,
206 \end{verbatim}
207 Sets the starting time, in seconds, for the model time counter.
208 A non-zero starting time requires to read the initial state
209 from a pickup file. By default the pickup file is named according
210 to the integer number ({\it nIter0}) of time steps
211 in the {\bf startTime} value ($ nIter0 = startTime / deltaT $).
212
213 \item Line PUT_LINE_NB:#nTimeSteps=,
214 \begin{verbatim}
215 #nTimeSteps=69120,
216 \end{verbatim}
217 A commented out setting for the length of the simulation
218 (in number of time-step) that corresponds to 1 year simulation.
219
220 \item Line PUT_LINE_NB:nTimeSteps= and PUT_LINE_NB:monitorFreq=,
221 \begin{verbatim}
222 nTimeSteps=16,
223 monitorFreq=1.,
224 \end{verbatim}
225 Sets the length of the simulation (in number of time-step)
226 and the frequency (in seconds) for "monitor" output.
227 to 16 iterations and 1 seconds respectively. This choice
228 corresponds to a short simulation test.
229
230 \item Line PUT_LINE_NB:pChkptFreq=,
231 \begin{verbatim}
232 pChkptFreq=31104000.,
233 \end{verbatim}
234 Sets the time interval, in seconds, bewteen 2 consecutive
235 "permanent" pickups ("permanent checkpoint frequency")
236 that are used to restart the simuilation, to 1 year.
237
238 \item Line PUT_LINE_NB:chkptFreq=,
239 \begin{verbatim}
240 chkptFreq=2592000.,
241 \end{verbatim}
242 Sets the time interval, in seconds, bewteen 2 consecutive
243 "temporary" pickups ("checkpoint frequency") to 1 month.
244 The "temporary" pickup file name is alternatively "ckptA"
245 and "ckptB", and are designed to be over-written by the
246 most recent one.
247
248 \item Line PUT_LINE_NB:dumpFreq=,
249 \begin{verbatim}
250 dumpFreq=2592000.,
251 \end{verbatim}
252 Set the frequencies (in seconds) for the snap-shot output
253 to 1 month.
254
255 \item Line PUT_LINE_NB:#monitorFreq=,
256 \begin{verbatim}
257 #monitorFreq=43200.,
258 \end{verbatim}
259 A commented out line setting the frequency (in seconds) for the
260 "monitor" output to 12.h respectively. This frequency is fits
261 better the longer simulation of 1 year.
262
263 \item Line PUT_LINE_NB:usingCurvilinearGrid=,
264 \begin{verbatim}
265 usingCurvilinearGrid=.TRUE.,
266 \end{verbatim}
267 Set the horizontal type of grid to Curvilinear-Grid.
268
269 \item Line PUT_LINE_NB:horizGridFile=,
270 \begin{verbatim}
271 horizGridFile='grid_cs32',
272 \end{verbatim}
273 Set the root for the grid file name to "{\it grid\_cs32}".
274 The grid-file names are derived from the root, adding a
275 suffix with the face number (e.g.: {\it .face001.bin},
276 {\it .face002.bin} $\cdots$ )
277 \\ \fbox{
278 \begin{minipage}{5.0in}
279 {\it S/R INI\_CURVILINEAR\_GRID}~({\it ini\_curvilinear\_grid.F})
280 \end{minipage}
281 }
282
283 \item Lines PUT_LINE_NB:delR= and PUT_LINE_NB:Ro_SeaLevel=,
284 \begin{verbatim}
285 delR=20*50.E2,
286 Ro_SeaLevel=1.E5,
287 \end{verbatim}
288 Those 2 lines define the vertical discretization, in pressure units.
289 The $1^{rst}$ one sets the increments in pressure units (Pa),
290 to 20 equally thick levels of $50 \times 10^2 {\rm Pa}$ each.
291 The $2^{nd}$ one sets the reference pressure at the sea-level,
292 to $10^5 {\rm Pa}$. This define the origin (interface $k=1$)
293 of the vertical pressure axis, with decreasing pressure
294 as the level index $k$ increases.
295 \\ \fbox{
296 \begin{minipage}{5.0in}
297 {\it S/R INI\_VERTICAL\_GRID}~({\it ini\_vertical\_grid.F})
298 \end{minipage}
299 }
300
301 \item Line PUT_LINE_NB:#topoFile=,
302 \begin{verbatim}
303 #topoFile='topo.cs.bin'
304 \end{verbatim}
305 This commented out line would allow to set the file name
306 of a 2-D orography file, in meters units, to '{\it topo.cs.bin}'.
307 \\ \fbox{
308 \begin{minipage}{5.0in}
309 {\it S/R INI\_DEPTH}~({\it ini\_depth.F})
310 \end{minipage}
311 }
312
313 \end{itemize}
314
315 \noindent other lines in the file {\it input/data} are standard values
316 that are described in the MITgcm Getting Started and MITgcm Parameters
317 notes.

  ViewVC Help
Powered by ViewVC 1.1.22