/[MITgcm]/manual/s_examples/held_suarez_cs/inp_data.templ
ViewVC logotype

Contents of /manual/s_examples/held_suarez_cs/inp_data.templ

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Tue Aug 9 18:46:39 2005 UTC (19 years, 11 months ago) by jmc
Branch: MAIN
Changes since 1.1: +9 -7 lines
little clean-up.

1
2 %\subsubsection{File {\it input/data}}
3 %\label{www:tutorials}
4
5 This file, reproduced completely below, specifies the main parameters
6 for the experiment.
7 The parameters that are significant for this configuration are:
8
9 \begin{itemize}
10
11 \item Lines PUT_LINE_NB:tRef=,
12 \begin{verbatim}
13 tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,
14 \end{verbatim}
15 $\cdots$ \\
16 set reference values for potential temperature (in Kelvin units)
17 at each model level.
18 The entries are ordered like model level, from surface up to the top.
19 Density is calculated from anomalies at each level evaluated
20 with respect to the reference values set here.
21 \\ \fbox{
22 \begin{minipage}{5.0in}
23 {\it S/R INI\_THETA}({\it ini\_theta.F})
24 \end{minipage}
25 }
26
27
28 \item Line PUT_LINE_NB:no_slip_sides=,
29 \begin{verbatim}
30 no_slip_sides=.FALSE.,
31 \end{verbatim}
32 this line selects a free-slip lateral boundary condition for
33 the horizontal Laplacian friction operator
34 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
35 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
36
37 \item Lines PUT_LINE_NB:no_slip_bottom=,
38 \begin{verbatim}
39 no_slip_bottom=.FALSE.,
40 \end{verbatim}
41 this line selects a free-slip boundary condition at the top,
42 in the vertical Laplacian friction operator
43 e.g. $\frac{\partial u}{\partial p} = \frac{\partial v}{\partial p} = 0$
44
45 \item Line PUT_LINE_NB:buoyancyRelation=,
46 \begin{verbatim}
47 buoyancyRelation='ATMOSPHERIC',
48 \end{verbatim}
49 this line sets the type of fluid and the type of vertical coordinate to use,
50 which, in this case, is air with a pressure like coordinate ($p$ or $p^*$).
51
52 \item Line PUT_LINE_NB:eosType=,
53 \begin{verbatim}
54 eosType='IDEALGAS',
55 \end{verbatim}
56 Selects the Ideal gas equation of state.
57 %\\ \fbox{
58 %\begin{minipage}{5.0in}
59 %{\it S/R FIND\_RHO}~({\it find\_rho.F})\\
60 %{\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
61 %\end{minipage}
62 %}
63
64 \item Line PUT_LINE_NB:implicitFreeSurface=,
65 \begin{verbatim}
66 implicitFreeSurface=.TRUE.,
67 \end{verbatim}
68 Selects the way the barotropic equation is solved, using here the implicit
69 free-surface formulation.
70 \\ \fbox{
71 \begin{minipage}{5.0in}
72 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
73 \end{minipage}
74 }
75
76 \item Line PUT_LINE_NB:exactConserv=,
77 \begin{verbatim}
78 exactConserv=.TRUE.,
79 \end{verbatim}
80 Explicitly calculate again the surface pressure changes from
81 the divergence of the vertically integrated horizontal flow,
82 after the implicit free surface solver and filters are applied.
83 \\ \fbox{
84 \begin{minipage}{5.0in}
85 {\it S/R INTEGR\_CONTINUITY}~({\it integr\_continuity.F})
86 \end{minipage}
87 }
88
89 \item Line PUT_LINE_NB:nonlinFreeSurf=
90 and Line PUT_LINE_NB:select_rStar=,
91 \begin{verbatim}
92 nonlinFreeSurf=4,
93 select_rStar=2,
94 \end{verbatim}
95 Select the Non-Linear free surface formulation, using $r^*$ vertical coordinate
96 (here $p^*$).
97 Note that, except for the default ($= 0$), other values of those 2 parameters
98 are only permitted for testing/debuging purpose.
99 \\ \fbox{
100 \begin{minipage}{5.0in}
101 {\it S/R CALC\_R\_STAR}~({\it calc\_r\_star.F})\\
102 {\it S/R UPDATE\_R\_STAR}~({\it update\_r\_star.F})
103 \end{minipage}
104 }
105
106 \item Line PUT_LINE_NB:uniformLin_PhiSurf=
107 \begin{verbatim}
108 uniformLin_PhiSurf=.FALSE.,
109 \end{verbatim}
110 Select the linear relation between surface geopotential anomaly
111 and surface pressure anomaly to be evaluated from
112 $\frac{\partial \Phi_s}{\partial p_s} = 1/\rho(\theta_{Ref})$
113 (see section \ref{sect:phi-freesurface}).
114 Note that using the default (=TRUE), the constant $1/\rho_0$ is
115 used instead, and is not necessary consistent with other
116 parts of the geopotential that relies on $\theta_{Ref}$.
117 \\ \fbox{
118 \begin{minipage}{5.0in}
119 {\it S/R INI\_LINEAR\_PHISURF}~({\it ini\_linear\_phisurf.F})
120 \end{minipage}
121 }
122
123 \item Line PUT_LINE_NB:saltStepping= and Line PUT_LINE_NB:momViscosity=
124 \begin{verbatim}
125 saltStepping=.FALSE.,
126 momViscosity=.FALSE.,
127 \end{verbatim}
128 Do not step forward Water vapour and do not compute viscous terms.
129 This allow to save some computer time.
130
131 \item Line PUT_LINE_NB:vectorInvariantMomentum=
132 \begin{verbatim}
133 vectorInvariantMomentum=.TRUE.,
134 \end{verbatim}
135 Select the vector-invariant form to solve the momentum equation.
136 \\ \fbox{
137 \begin{minipage}{5.0in}
138 {\it S/R MOM\_VECINV}~({\it mom\_vecinv.F})
139 \end{minipage}
140 }
141
142 \item Line PUT_LINE_NB:staggerTimeStep=
143 \begin{verbatim}
144 staggerTimeStep=.TRUE.,
145 \end{verbatim}
146 Select the staggered time-stepping (rather than syncronous time stepping).
147
148 \item Line PUT_LINE_NB:readBinaryPrec= and PUT_LINE_NB:writeBinaryPrec=
149 \begin{verbatim}
150 readBinaryPrec=64,
151 writeBinaryPrec=64,
152 \end{verbatim}
153 Sets format for reading binary input datasets and writing output fields to
154 use 64-bit representation for floating-point numbers.
155 \\ \fbox{
156 \begin{minipage}{5.0in}
157 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
158 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
159 \end{minipage}
160 }
161
162 \item Line PUT_LINE_NB:cg2dMaxIters=,
163 \begin{verbatim}
164 cg2dMaxIters=200,
165 \end{verbatim}
166 Sets maximum number of iterations the two-dimensional, conjugate
167 gradient solver will use, {\bf irrespective of convergence
168 criteria being met}.
169 \\ \fbox{
170 \begin{minipage}{5.0in}
171 {\it S/R CG2D}~({\it cg2d.F})
172 \end{minipage}
173 }
174
175 \item Line PUT_LINE_NB:cg2dTargetResWunit=,
176 \begin{verbatim}
177 cg2dTargetResWunit=1.E-17,
178 \end{verbatim}
179 Sets the tolerance (in units of $\omega$) which the
180 two-dimensional, conjugate gradient solver will use to test for convergence
181 in equation \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-17} Pa/s$.
182 Solver will iterate until
183 tolerance falls below this value or until the maximum number of
184 solver iterations is reached.
185 \\ \fbox{
186 \begin{minipage}{5.0in}
187 {\it S/R CG2D}~({\it cg2d.F})
188 \end{minipage}
189 }
190
191 \item Line PUT_LINE_NB:deltaT=,
192 \begin{verbatim}
193 deltaT=450.,
194 \end{verbatim}
195 Sets the timestep $\Delta t$ used in the model to
196 $450~{\rm s}$ ($= 1/8 {\rm h}$).
197 \\ \fbox{
198 \begin{minipage}{5.0in}
199 {\it S/R TIMESTEP}({\it timestep.F})\\
200 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
201 \end{minipage}
202 }
203
204 \item Line PUT_LINE_NB:startTime=,
205 \begin{verbatim}
206 startTime=124416000.,
207 \end{verbatim}
208 Sets the starting time, in seconds, for the model time counter.
209 A non-zero starting time requires to read the initial state
210 from a pickup file. By default the pickup file is named according
211 to the integer number ({\it nIter0}) of time steps
212 in the {\it startTime} value ($ nIter0 = startTime / deltaT $).
213
214 \item Line PUT_LINE_NB:#nTimeSteps=,
215 \begin{verbatim}
216 #nTimeSteps=69120,
217 \end{verbatim}
218 A commented out setting for the length of the simulation
219 (in number of time-step) that corresponds to 1 year simulation.
220
221 \item Line PUT_LINE_NB:nTimeSteps= and PUT_LINE_NB:monitorFreq=,
222 \begin{verbatim}
223 nTimeSteps=16,
224 monitorFreq=1.,
225 \end{verbatim}
226 Sets the length of the simulation (in number of time-step)
227 and the frequency (in seconds) for "monitor" output.
228 to 16 iterations and 1 seconds respectively. This choice
229 corresponds to a short simulation test.
230
231 \item Line PUT_LINE_NB:pChkptFreq=,
232 \begin{verbatim}
233 pChkptFreq=31104000.,
234 \end{verbatim}
235 Sets the time interval, in seconds, bewteen 2 consecutive
236 "permanent" pickups ("permanent checkpoint frequency")
237 that are used to restart the simuilation, to 1 year.
238
239 \item Line PUT_LINE_NB:chkptFreq=,
240 \begin{verbatim}
241 chkptFreq=2592000.,
242 \end{verbatim}
243 Sets the time interval, in seconds, bewteen 2 consecutive
244 "temporary" pickups ("checkpoint frequency") to 1 month.
245 The "temporary" pickup file name is alternatively "ckptA"
246 and "ckptB" ; thoses pickup (as opposed to the permanent ones)
247 are designed to be over-written by the model as the simulation
248 progresses.
249
250 \item Line PUT_LINE_NB:dumpFreq=,
251 \begin{verbatim}
252 dumpFreq=2592000.,
253 \end{verbatim}
254 Set the frequencies (in seconds) for the snap-shot output
255 to 1 month.
256
257 \item Line PUT_LINE_NB:#monitorFreq=,
258 \begin{verbatim}
259 #monitorFreq=43200.,
260 \end{verbatim}
261 A commented out line setting the frequency (in seconds) for the
262 "monitor" output to 12.h. This frequency fits
263 better the longer simulation of 1 year.
264
265 \item Line PUT_LINE_NB:usingCurvilinearGrid=,
266 \begin{verbatim}
267 usingCurvilinearGrid=.TRUE.,
268 \end{verbatim}
269 Set the horizontal type of grid to Curvilinear-Grid.
270
271 \item Line PUT_LINE_NB:horizGridFile=,
272 \begin{verbatim}
273 horizGridFile='grid_cs32',
274 \end{verbatim}
275 Set the root for the grid file name to "{\it grid\_cs32}".
276 The grid-file names are derived from the root, adding a
277 suffix with the face number (e.g.: {\it .face001.bin},
278 {\it .face002.bin} $\cdots$ )
279 \\ \fbox{
280 \begin{minipage}{5.0in}
281 {\it S/R INI\_CURVILINEAR\_GRID}~({\it ini\_curvilinear\_grid.F})
282 \end{minipage}
283 }
284
285 \item Lines PUT_LINE_NB:delR= and PUT_LINE_NB:Ro_SeaLevel=,
286 \begin{verbatim}
287 delR=20*50.E2,
288 Ro_SeaLevel=1.E5,
289 \end{verbatim}
290 Those 2 lines define the vertical discretization, in pressure units.
291 The $1^{rst}$ one sets the increments in pressure units (Pa),
292 to 20 equally thick levels of $50 \times 10^2 {\rm Pa}$ each.
293 The $2^{nd}$ one sets the reference pressure at the sea-level,
294 to $10^5 {\rm Pa}$. This define the origin (interface $k=1$)
295 of the vertical pressure axis, with decreasing pressure
296 as the level index $k$ increases.
297 \\ \fbox{
298 \begin{minipage}{5.0in}
299 {\it S/R INI\_VERTICAL\_GRID}~({\it ini\_vertical\_grid.F})
300 \end{minipage}
301 }
302
303 \item Line PUT_LINE_NB:#topoFile=,
304 \begin{verbatim}
305 #topoFile='topo.cs.bin'
306 \end{verbatim}
307 This commented out line would allow to set the file name
308 of a 2-D orography file, in meters units, to '{\it topo.cs.bin}'.
309 \\ \fbox{
310 \begin{minipage}{5.0in}
311 {\it S/R INI\_DEPTH}~({\it ini\_depth.F})
312 \end{minipage}
313 }
314
315 \end{itemize}
316
317 \noindent other lines in the file {\it input/data} are standard values
318 that are described in the MITgcm Getting Started and MITgcm Parameters
319 notes.

  ViewVC Help
Powered by ViewVC 1.1.22