1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Centenial Time Scale Sensitivities} |
\section{Centennial Time Scale Tracer Injection} |
5 |
|
\label{www:tutorials} |
6 |
|
\label{sect:eg-simple-tracer} |
7 |
|
\begin{rawhtml} |
8 |
|
<!-- CMIREDIR:eg-simple-tracer: --> |
9 |
|
\end{rawhtml} |
10 |
|
|
11 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
12 |
|
|
13 |
%\begin{center} |
%\begin{center} |
14 |
%{\Large \bf Using MITgcm to Look at Centenial Time Scale |
%{\Large \bf Using MITgcm to Look at Centennial Time Scale |
15 |
%Sensitivities} |
%Sensitivities} |
16 |
% |
% |
17 |
%\vspace*{4mm} |
%\vspace*{4mm} |
21 |
%\end{center} |
%\end{center} |
22 |
|
|
23 |
\subsection{Introduction} |
\subsection{Introduction} |
24 |
|
\label{www:tutorials} |
25 |
|
|
26 |
This document describes the fourth example MITgcm experiment. |
This example illustrates the use of |
27 |
This example iilustrates the use of |
the MITgcm to perform sensitivity analysis in a |
|
the MITgcm to perform sentivity analysis in a |
|
28 |
large scale ocean circulation simulation. |
large scale ocean circulation simulation. |
29 |
|
The files for this experiment can be found in the |
30 |
|
verification directory under tutorial\_tracer\_adjsens. |
31 |
|
|
32 |
\subsection{Overview} |
\subsection{Overview} |
33 |
|
\label{www:tutorials} |
34 |
|
|
35 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
36 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
44 |
processor desktop computer. |
processor desktop computer. |
45 |
\\ |
\\ |
46 |
|
|
47 |
The model is forced with climatalogical wind stress data and surface |
The model is forced with climatological wind stress data and surface |
48 |
flux data from Da Silva \cite{DaSilva94}. Climatalogical data |
flux data from Da Silva \cite{DaSilva94}. Climatological data |
49 |
from Levitus \cite{Levitus94} is used to initialise the model hydrography. |
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
50 |
Levitus data is also used throughout the calculation |
Levitus data is also used throughout the calculation |
51 |
to derive air-sea fluxes of heat at the ocean surface. |
to derive air-sea fluxes of heat at the ocean surface. |
52 |
These fluxes are combined with climatalogical estimates of |
These fluxes are combined with climatological estimates of |
53 |
surface heat flux and fresh water, resulting in a mixed boundary |
surface heat flux and fresh water, resulting in a mixed boundary |
54 |
condition of the style decribed in Haney \cite{Haney}. |
condition of the style described in Haney \cite{Haney}. |
55 |
Altogether, this yields the following forcing applied |
Altogether, this yields the following forcing applied |
56 |
in the model surface layer. |
in the model surface layer. |
57 |
|
|
58 |
\begin{eqnarray} |
\begin{eqnarray} |
59 |
\label{EQ:global_forcing} |
\label{EQ:eg-simple-tracer-global_forcing} |
60 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-simple-tracer-global_forcing_fu} |
61 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
62 |
\\ |
\\ |
63 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-simple-tracer-global_forcing_fv} |
64 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
65 |
\\ |
\\ |
66 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-simple-tracer-global_forcing_ft} |
67 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
68 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
69 |
\\ |
\\ |
70 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-simple-tracer-global_forcing_fs} |
71 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
72 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
73 |
\end{eqnarray} |
\end{eqnarray} |
89 |
|
|
90 |
|
|
91 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
92 |
|
\label{www:tutorials} |
93 |
|
|
94 |
|
|
95 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is discretised with |
127 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
128 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
129 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
130 |
\cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
131 |
dissipation. Thermal and haline diffusion is also represented by a laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
132 |
\\ |
\\ |
133 |
|
|
134 |
Wind-stress momentum inputs are added to the momentum equations for both |
Wind-stress momentum inputs are added to the momentum equations for both |
135 |
the zonal flow, $u$ and the merdional flow $v$, according to equations |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
136 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). |
137 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations for |
138 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
139 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). |
140 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
141 |
% {\fracktur} |
% {\fracktur} |
142 |
|
|
143 |
|
|
144 |
\begin{eqnarray} |
\begin{eqnarray} |
145 |
\label{EQ:model_equations} |
\label{EQ:eg-simple-tracer-model_equations} |
146 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
147 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
148 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
176 |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
177 |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
178 |
interior model levels respectively. As described in |
interior model levels respectively. As described in |
179 |
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
180 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
181 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
182 |
elevation $\eta$ and the hydrostatic pressure. |
elevation $\eta$ and the hydrostatic pressure. |
183 |
\\ |
\\ |
184 |
|
|
185 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
186 |
|
\label{www:tutorials} |
187 |
|
|
188 |
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
189 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
190 |
|
|
191 |
\begin{eqnarray} |
\begin{eqnarray} |
192 |
\label{EQ:munk_layer} |
\label{EQ:eg-simple-tracer-munk_layer} |
193 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
194 |
\end{eqnarray} |
\end{eqnarray} |
195 |
|
|
200 |
|
|
201 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
202 |
time step $\delta t=1200$secs. With this time step the stability |
time step $\delta t=1200$secs. With this time step the stability |
203 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
204 |
|
|
205 |
\begin{eqnarray} |
\begin{eqnarray} |
206 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-simple-tracer-laplacian_stability} |
207 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
208 |
\end{eqnarray} |
\end{eqnarray} |
209 |
|
|
215 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
216 |
|
|
217 |
\begin{eqnarray} |
\begin{eqnarray} |
218 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-simple-tracer-laplacian_stability_z} |
219 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
220 |
\end{eqnarray} |
\end{eqnarray} |
221 |
|
|
226 |
\\ |
\\ |
227 |
|
|
228 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
229 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
230 |
|
|
231 |
\begin{eqnarray} |
\begin{eqnarray} |
232 |
\label{EQ:inertial_stability} |
\label{EQ:eg-simple-tracer-inertial_stability} |
233 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
234 |
\end{eqnarray} |
\end{eqnarray} |
235 |
|
|
237 |
limit for stability. |
limit for stability. |
238 |
\\ |
\\ |
239 |
|
|
240 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
241 |
horizontal flow |
horizontal flow |
242 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
243 |
|
|
244 |
\begin{eqnarray} |
\begin{eqnarray} |
245 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-cfl_stability} |
246 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
247 |
\end{eqnarray} |
\end{eqnarray} |
248 |
|
|
250 |
limit of 0.5. |
limit of 0.5. |
251 |
\\ |
\\ |
252 |
|
|
253 |
\noindent The stbility parameter for internal gravity waves |
\noindent The stability parameter for internal gravity waves |
254 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
255 |
|
|
256 |
\begin{eqnarray} |
\begin{eqnarray} |
257 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-igw_stability} |
258 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
259 |
\end{eqnarray} |
\end{eqnarray} |
260 |
|
|
262 |
stability limit of 0.25. |
stability limit of 0.25. |
263 |
|
|
264 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
265 |
|
\label{www:tutorials} |
266 |
\label{SEC:code_config} |
\label{SEC:code_config} |
267 |
|
|
268 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
277 |
\item {\it code/CPP\_OPTIONS.h}, |
\item {\it code/CPP\_OPTIONS.h}, |
278 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
279 |
\end{itemize} |
\end{itemize} |
280 |
contain the code customisations and parameter settings for this |
contain the code customizations and parameter settings for this |
281 |
experiements. Below we describe the customisations |
experiments. Below we describe the customizations |
282 |
to these files associated with this experiment. |
to these files associated with this experiment. |
283 |
|
|
284 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
285 |
|
\label{www:tutorials} |
286 |
|
|
287 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
288 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
294 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
295 |
this line sets |
this line sets |
296 |
the initial and reference values of potential temperature at each model |
the initial and reference values of potential temperature at each model |
297 |
level in units of $^{\circ}$C. |
level in units of $^{\circ}\mathrm{C}$. |
298 |
The entries are ordered from surface to depth. For each |
The entries are ordered from surface to depth. For each |
299 |
depth level the inital and reference profiles will be uniform in |
depth level the initial and reference profiles will be uniform in |
300 |
$x$ and $y$. |
$x$ and $y$. |
301 |
|
|
302 |
\fbox{ |
\fbox{ |
308 |
|
|
309 |
\item Line 6, |
\item Line 6, |
310 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
311 |
this line sets the vertical laplacian dissipation coefficient to |
this line sets the vertical Laplacian dissipation coefficient to |
312 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
313 |
for this operator are specified later. This variable is copied into |
for this operator are specified later. This variable is copied into |
314 |
model general vertical coordinate variable {\bf viscAr}. |
model general vertical coordinate variable {\bf viscAr}. |
323 |
\begin{verbatim} |
\begin{verbatim} |
324 |
viscAh=4.E2, |
viscAh=4.E2, |
325 |
\end{verbatim} |
\end{verbatim} |
326 |
this line sets the horizontal laplacian frictional dissipation coefficient to |
this line sets the horizontal Laplacian frictional dissipation coefficient to |
327 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
328 |
for this operator are specified later. |
for this operator are specified later. |
329 |
|
|
332 |
no_slip_sides=.FALSE. |
no_slip_sides=.FALSE. |
333 |
\end{verbatim} |
\end{verbatim} |
334 |
this line selects a free-slip lateral boundary condition for |
this line selects a free-slip lateral boundary condition for |
335 |
the horizontal laplacian friction operator |
the horizontal Laplacian friction operator |
336 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
337 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
338 |
|
|
341 |
no_slip_bottom=.TRUE. |
no_slip_bottom=.TRUE. |
342 |
\end{verbatim} |
\end{verbatim} |
343 |
this line selects a no-slip boundary condition for bottom |
this line selects a no-slip boundary condition for bottom |
344 |
boundary condition in the vertical laplacian friction operator |
boundary condition in the vertical Laplacian friction operator |
345 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
346 |
|
|
347 |
\item Line 10, |
\item Line 10, |
394 |
\end{verbatim} |
\end{verbatim} |
395 |
This line requests that the simulation be performed in a |
This line requests that the simulation be performed in a |
396 |
spherical polar coordinate system. It affects the interpretation of |
spherical polar coordinate system. It affects the interpretation of |
397 |
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
grid input parameters, for example {\bf delX} and {\bf delY} and |
398 |
causes the grid generation routines to initialise an internal grid based |
causes the grid generation routines to initialize an internal grid based |
399 |
on spherical polar geometry. |
on spherical polar geometry. |
400 |
|
|
401 |
\fbox{ |
\fbox{ |
411 |
This line sets the southern boundary of the modeled |
This line sets the southern boundary of the modeled |
412 |
domain to $0^{\circ}$ latitude. This value affects both the |
domain to $0^{\circ}$ latitude. This value affects both the |
413 |
generation of the locally orthogonal grid that the model |
generation of the locally orthogonal grid that the model |
414 |
uses internally and affects the initialisation of the coriolis force. |
uses internally and affects the initialization of the coriolis force. |
415 |
Note - it is not required to set |
Note - it is not required to set |
416 |
a longitude boundary, since the absolute longitude does |
a longitude boundary, since the absolute longitude does |
417 |
not alter the kernel equation discretisation. |
not alter the kernel equation discretisation. |
485 |
\end{small} |
\end{small} |
486 |
|
|
487 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
488 |
|
\label{www:tutorials} |
489 |
|
|
490 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
491 |
customisations for this experiment. |
customizations for this experiment. |
492 |
|
|
493 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
494 |
|
\label{www:tutorials} |
495 |
|
|
496 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
497 |
customisations for this experiment. |
customizations for this experiment. |
498 |
|
|
499 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
500 |
|
\label{www:tutorials} |
501 |
|
|
502 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
503 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
508 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
509 |
|
|
510 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
511 |
|
\label{www:tutorials} |
512 |
|
|
513 |
|
|
514 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
520 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
521 |
|
|
522 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
523 |
|
\label{www:tutorials} |
524 |
|
|
525 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
526 |
|
|
547 |
\end{small} |
\end{small} |
548 |
|
|
549 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
550 |
|
\label{www:tutorials} |
551 |
|
|
552 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
553 |
customisations for this experiment. |
customizations for this experiment. |
554 |
|
|
555 |
|
|
556 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
557 |
|
\label{www:tutorials} |
558 |
|
|
559 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
560 |
customisations for this experiment. |
customizations for this experiment. |
561 |
|
|
562 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
563 |
|
\label{www:tutorials} |
564 |
|
|
565 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
566 |
\begin{itemize} |
\begin{itemize} |
570 |
\item {\it model/src/ini\_parms.F}, |
\item {\it model/src/ini\_parms.F}, |
571 |
\item {\it input/windx.sin\_y}, |
\item {\it input/windx.sin\_y}, |
572 |
\end{itemize} |
\end{itemize} |
573 |
contain the code customisations and parameter settings for this |
contain the code customizations and parameter settings for this |
574 |
experiements. Below we describe the customisations |
experiments. Below we describe the customizations |
575 |
to these files associated with this experiment. |
to these files associated with this experiment. |