1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Centenial Time Scale Sensitivities} |
\section{Centennial Time Scale Tracer Injection} |
5 |
|
\label{www:tutorials} |
6 |
|
\label{sect:eg-simple-tracer} |
7 |
|
\begin{rawhtml} |
8 |
|
<!-- CMIREDIR:eg-simple-tracer: --> |
9 |
|
\end{rawhtml} |
10 |
|
\begin{center} |
11 |
|
(in directory: {\it verification/tutorial\_tracer\_adjsens/}) |
12 |
|
\end{center} |
13 |
|
|
14 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
15 |
|
|
16 |
%\begin{center} |
%\begin{center} |
17 |
%{\Large \bf Using MITgcm to Look at Centenial Time Scale |
%{\Large \bf Using MITgcm to Look at Centennial Time Scale |
18 |
%Sensitivities} |
%Sensitivities} |
19 |
% |
% |
20 |
%\vspace*{4mm} |
%\vspace*{4mm} |
24 |
%\end{center} |
%\end{center} |
25 |
|
|
26 |
\subsection{Introduction} |
\subsection{Introduction} |
27 |
|
\label{www:tutorials} |
28 |
|
|
29 |
This document describes the fourth example MITgcm experiment. |
This example illustrates the use of |
30 |
This example iilustrates the use of |
the MITgcm to perform sensitivity analysis in a |
|
the MITgcm to perform sentivity analysis in a |
|
31 |
large scale ocean circulation simulation. |
large scale ocean circulation simulation. |
32 |
|
The files for this experiment can be found in the |
33 |
|
verification directory under tutorial\_tracer\_adjsens. |
34 |
|
|
35 |
\subsection{Overview} |
\subsection{Overview} |
36 |
|
\label{www:tutorials} |
37 |
|
|
38 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
39 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
47 |
processor desktop computer. |
processor desktop computer. |
48 |
\\ |
\\ |
49 |
|
|
50 |
The model is forced with climatalogical wind stress data and surface |
The model is forced with climatological wind stress data and surface |
51 |
flux data from Da Silva \cite{DaSilva94}. Climatalogical data |
flux data from Da Silva \cite{DaSilva94}. Climatological data |
52 |
from Levitus \cite{Levitus94} is used to initialise the model hydrography. |
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
53 |
Levitus data is also used throughout the calculation |
Levitus data is also used throughout the calculation |
54 |
to derive air-sea fluxes of heat at the ocean surface. |
to derive air-sea fluxes of heat at the ocean surface. |
55 |
These fluxes are combined with climatalogical estimates of |
These fluxes are combined with climatological estimates of |
56 |
surface heat flux and fresh water, resulting in a mixed boundary |
surface heat flux and fresh water, resulting in a mixed boundary |
57 |
condition of the style decribed in Haney \cite{Haney}. |
condition of the style described in Haney \cite{Haney}. |
58 |
Altogether, this yields the following forcing applied |
Altogether, this yields the following forcing applied |
59 |
in the model surface layer. |
in the model surface layer. |
60 |
|
|
61 |
\begin{eqnarray} |
\begin{eqnarray} |
62 |
\label{EQ:global_forcing} |
\label{EQ:eg-simple-tracer-global_forcing} |
63 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-simple-tracer-global_forcing_fu} |
64 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
65 |
\\ |
\\ |
66 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-simple-tracer-global_forcing_fv} |
67 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
68 |
\\ |
\\ |
69 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-simple-tracer-global_forcing_ft} |
70 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
71 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
72 |
\\ |
\\ |
73 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-simple-tracer-global_forcing_fs} |
74 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
75 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
76 |
\end{eqnarray} |
\end{eqnarray} |
92 |
|
|
93 |
|
|
94 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
95 |
|
\label{www:tutorials} |
96 |
|
|
97 |
|
|
98 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is discretised with |
130 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
131 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
132 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
133 |
\cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
134 |
dissipation. Thermal and haline diffusion is also represented by a laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
135 |
\\ |
\\ |
136 |
|
|
137 |
Wind-stress momentum inputs are added to the momentum equations for both |
Wind-stress momentum inputs are added to the momentum equations for both |
138 |
the zonal flow, $u$ and the merdional flow $v$, according to equations |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
139 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). |
140 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations for |
141 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
142 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). |
143 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
144 |
% {\fracktur} |
% {\fracktur} |
145 |
|
|
146 |
|
|
147 |
\begin{eqnarray} |
\begin{eqnarray} |
148 |
\label{EQ:model_equations} |
\label{EQ:eg-simple-tracer-model_equations} |
149 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
150 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
151 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
179 |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
180 |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
181 |
interior model levels respectively. As described in |
interior model levels respectively. As described in |
182 |
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
183 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
184 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
185 |
elevation $\eta$ and the hydrostatic pressure. |
elevation $\eta$ and the hydrostatic pressure. |
186 |
\\ |
\\ |
187 |
|
|
188 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
189 |
|
\label{www:tutorials} |
190 |
|
|
191 |
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
192 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
193 |
|
|
194 |
\begin{eqnarray} |
\begin{eqnarray} |
195 |
\label{EQ:munk_layer} |
\label{EQ:eg-simple-tracer-munk_layer} |
196 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
197 |
\end{eqnarray} |
\end{eqnarray} |
198 |
|
|
203 |
|
|
204 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
205 |
time step $\delta t=1200$secs. With this time step the stability |
time step $\delta t=1200$secs. With this time step the stability |
206 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
207 |
|
|
208 |
\begin{eqnarray} |
\begin{eqnarray} |
209 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-simple-tracer-laplacian_stability} |
210 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
211 |
\end{eqnarray} |
\end{eqnarray} |
212 |
|
|
218 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
219 |
|
|
220 |
\begin{eqnarray} |
\begin{eqnarray} |
221 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-simple-tracer-laplacian_stability_z} |
222 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
223 |
\end{eqnarray} |
\end{eqnarray} |
224 |
|
|
229 |
\\ |
\\ |
230 |
|
|
231 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
232 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
233 |
|
|
234 |
\begin{eqnarray} |
\begin{eqnarray} |
235 |
\label{EQ:inertial_stability} |
\label{EQ:eg-simple-tracer-inertial_stability} |
236 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
237 |
\end{eqnarray} |
\end{eqnarray} |
238 |
|
|
240 |
limit for stability. |
limit for stability. |
241 |
\\ |
\\ |
242 |
|
|
243 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
244 |
horizontal flow |
horizontal flow |
245 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
246 |
|
|
247 |
\begin{eqnarray} |
\begin{eqnarray} |
248 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-cfl_stability} |
249 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
250 |
\end{eqnarray} |
\end{eqnarray} |
251 |
|
|
253 |
limit of 0.5. |
limit of 0.5. |
254 |
\\ |
\\ |
255 |
|
|
256 |
\noindent The stbility parameter for internal gravity waves |
\noindent The stability parameter for internal gravity waves |
257 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
258 |
|
|
259 |
\begin{eqnarray} |
\begin{eqnarray} |
260 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-igw_stability} |
261 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
262 |
\end{eqnarray} |
\end{eqnarray} |
263 |
|
|
265 |
stability limit of 0.25. |
stability limit of 0.25. |
266 |
|
|
267 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
268 |
|
\label{www:tutorials} |
269 |
\label{SEC:code_config} |
\label{SEC:code_config} |
270 |
|
|
271 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
280 |
\item {\it code/CPP\_OPTIONS.h}, |
\item {\it code/CPP\_OPTIONS.h}, |
281 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
282 |
\end{itemize} |
\end{itemize} |
283 |
contain the code customisations and parameter settings for this |
contain the code customizations and parameter settings for this |
284 |
experiements. Below we describe the customisations |
experiments. Below we describe the customizations |
285 |
to these files associated with this experiment. |
to these files associated with this experiment. |
286 |
|
|
287 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
288 |
|
\label{www:tutorials} |
289 |
|
|
290 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
291 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
297 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
298 |
this line sets |
this line sets |
299 |
the initial and reference values of potential temperature at each model |
the initial and reference values of potential temperature at each model |
300 |
level in units of $^{\circ}$C. |
level in units of $^{\circ}\mathrm{C}$. |
301 |
The entries are ordered from surface to depth. For each |
The entries are ordered from surface to depth. For each |
302 |
depth level the inital and reference profiles will be uniform in |
depth level the initial and reference profiles will be uniform in |
303 |
$x$ and $y$. |
$x$ and $y$. |
304 |
|
|
305 |
\fbox{ |
\fbox{ |
311 |
|
|
312 |
\item Line 6, |
\item Line 6, |
313 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
314 |
this line sets the vertical laplacian dissipation coefficient to |
this line sets the vertical Laplacian dissipation coefficient to |
315 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
316 |
for this operator are specified later. This variable is copied into |
for this operator are specified later. This variable is copied into |
317 |
model general vertical coordinate variable {\bf viscAr}. |
model general vertical coordinate variable {\bf viscAr}. |
326 |
\begin{verbatim} |
\begin{verbatim} |
327 |
viscAh=4.E2, |
viscAh=4.E2, |
328 |
\end{verbatim} |
\end{verbatim} |
329 |
this line sets the horizontal laplacian frictional dissipation coefficient to |
this line sets the horizontal Laplacian frictional dissipation coefficient to |
330 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
331 |
for this operator are specified later. |
for this operator are specified later. |
332 |
|
|
335 |
no_slip_sides=.FALSE. |
no_slip_sides=.FALSE. |
336 |
\end{verbatim} |
\end{verbatim} |
337 |
this line selects a free-slip lateral boundary condition for |
this line selects a free-slip lateral boundary condition for |
338 |
the horizontal laplacian friction operator |
the horizontal Laplacian friction operator |
339 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
340 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
341 |
|
|
344 |
no_slip_bottom=.TRUE. |
no_slip_bottom=.TRUE. |
345 |
\end{verbatim} |
\end{verbatim} |
346 |
this line selects a no-slip boundary condition for bottom |
this line selects a no-slip boundary condition for bottom |
347 |
boundary condition in the vertical laplacian friction operator |
boundary condition in the vertical Laplacian friction operator |
348 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
349 |
|
|
350 |
\item Line 10, |
\item Line 10, |
397 |
\end{verbatim} |
\end{verbatim} |
398 |
This line requests that the simulation be performed in a |
This line requests that the simulation be performed in a |
399 |
spherical polar coordinate system. It affects the interpretation of |
spherical polar coordinate system. It affects the interpretation of |
400 |
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
grid input parameters, for example {\bf delX} and {\bf delY} and |
401 |
causes the grid generation routines to initialise an internal grid based |
causes the grid generation routines to initialize an internal grid based |
402 |
on spherical polar geometry. |
on spherical polar geometry. |
403 |
|
|
404 |
\fbox{ |
\fbox{ |
414 |
This line sets the southern boundary of the modeled |
This line sets the southern boundary of the modeled |
415 |
domain to $0^{\circ}$ latitude. This value affects both the |
domain to $0^{\circ}$ latitude. This value affects both the |
416 |
generation of the locally orthogonal grid that the model |
generation of the locally orthogonal grid that the model |
417 |
uses internally and affects the initialisation of the coriolis force. |
uses internally and affects the initialization of the coriolis force. |
418 |
Note - it is not required to set |
Note - it is not required to set |
419 |
a longitude boundary, since the absolute longitude does |
a longitude boundary, since the absolute longitude does |
420 |
not alter the kernel equation discretisation. |
not alter the kernel equation discretisation. |
488 |
\end{small} |
\end{small} |
489 |
|
|
490 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
491 |
|
\label{www:tutorials} |
492 |
|
|
493 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
494 |
customisations for this experiment. |
customizations for this experiment. |
495 |
|
|
496 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
497 |
|
\label{www:tutorials} |
498 |
|
|
499 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
500 |
customisations for this experiment. |
customizations for this experiment. |
501 |
|
|
502 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
503 |
|
\label{www:tutorials} |
504 |
|
|
505 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
506 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
511 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
512 |
|
|
513 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
514 |
|
\label{www:tutorials} |
515 |
|
|
516 |
|
|
517 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
523 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
524 |
|
|
525 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
526 |
|
\label{www:tutorials} |
527 |
|
|
528 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
529 |
|
|
550 |
\end{small} |
\end{small} |
551 |
|
|
552 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
553 |
|
\label{www:tutorials} |
554 |
|
|
555 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
556 |
customisations for this experiment. |
customizations for this experiment. |
557 |
|
|
558 |
|
|
559 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
560 |
|
\label{www:tutorials} |
561 |
|
|
562 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
563 |
customisations for this experiment. |
customizations for this experiment. |
564 |
|
|
565 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
566 |
|
\label{www:tutorials} |
567 |
|
|
568 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
569 |
\begin{itemize} |
\begin{itemize} |
573 |
\item {\it model/src/ini\_parms.F}, |
\item {\it model/src/ini\_parms.F}, |
574 |
\item {\it input/windx.sin\_y}, |
\item {\it input/windx.sin\_y}, |
575 |
\end{itemize} |
\end{itemize} |
576 |
contain the code customisations and parameter settings for this |
contain the code customizations and parameter settings for this |
577 |
experiements. Below we describe the customisations |
experiments. Below we describe the customizations |
578 |
to these files associated with this experiment. |
to these files associated with this experiment. |