/[MITgcm]/manual/s_outp_pkgs/text/pvdiag.tex
ViewVC logotype

Annotation of /manual/s_outp_pkgs/text/pvdiag.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:21 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.2: +2 -2 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 cnh 1.1 \section{Potential vorticity Matlab Toolbox}
2     \label{sec:diag:pv}
3     \begin{rawhtml}
4     %<!-- CMIREDIR:pvdiag_matlab: -->
5     \end{rawhtml}
6    
7 cnh 1.2 Author: Guillaume Maze
8    
9     \bigskip
10    
11    
12 cnh 1.1 %%%%%%%%%%%%%%%%%%%%%%%%%%
13     \subsection{Introduction}
14    
15     \noindent
16     This section of the documentation describes a Matlab package that aims to provide useful
17     routines to compute vorticity fields (relative, potential and planetary) and its related
18     components. This is an offline computation. It was developed to be used in mode water
19     studies, so that it comes with other related routines, in particular ones computing
20     surface vertical potential vorticity fluxes.
21    
22     %%%%%%%%%%%%%%%%%%%%%%%%%%
23     \subsection{Equations}
24    
25     \subsubsection{Potential Vorticity}
26     \noindent
27     The package computes the three components of the relative vorticity defined by:
28     \begin{eqnarray}
29     \omega &= \nabla \times {\bf U} = \left( \begin{array}{c}
30     \omega_x\\
31     \omega_y\\
32     \zeta
33     \end{array}\right)
34     \simeq &\left( \begin{array}{c}
35     -\frac{\partial v}{\partial z}\\
36     -\frac{\partial u}{\partial z}\\
37     \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}
38     \end{array}\right) \label{sec:diag:pv:eq1}
39     \end{eqnarray}
40     where we omitted (like all across the package) the vertical velocity component.
41    
42     The package then computes the potential vorticity as:
43     \begin{eqnarray}
44     Q &=& -\frac{1}{\rho} \omega\cdot\nabla\sigma_\theta\\
45     Q &=& -\frac{1}{\rho}\left(\omega_x \frac{\partial \sigma_\theta}{\partial x} +
46     \omega_y \frac{\partial \sigma_\theta}{\partial y} +
47     \left(f+\zeta\right) \frac{\partial \sigma_\theta}{\partial z}\right) \label{sec:diag:pv:eq2}
48     \end{eqnarray}
49     where $\rho$ is the density, $\sigma_\theta$ is the potential density (both eventually
50     computed by the package) and $f$ is the Coriolis parameter.
51    
52     The package is also able to compute the simpler planetary vorticity as:
53     \begin{eqnarray}
54     splQ &=& -\frac{f}{\rho}\frac{\sigma_\theta}{\partial z} \label{sec:diag:pv:eq3}
55     \end{eqnarray}
56    
57     \subsubsection{Surface vertical potential vorticity fluxes}
58     These quantities are useful in mode water studies because of the impermeability theorem
59     which states that for a given potential density layer (embedding a mode water), the
60     integrated PV only changes through surface input/output.
61    
62     Vertical PV fluxes due to frictional and diabatic processes are given by:
63     \begin{eqnarray}
64     J^B_z &=& -\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right) \label{sec:diag:pv:eq14a}\\
65     J^F_z &=& \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma_m \label{sec:diag:pv:eq15a}
66     \end{eqnarray}
67     These components can be computed with the package. Details on the variables definition and
68     the way these fluxes are derived can be found in section
69     \ref{sec:diag:pv:notes-flux-form}.
70    
71     \vspace{.5cm}
72     \noindent
73     We now give some simple explanations about these fluxes and how they can reduce the PV
74     level of an oceanic potential density layer.
75    
76     \paragraph{Diabatic process}
77     Let's take the PV flux due to surface buoyancy forcing from Eq.\ref{sec:diag:pv:eq14a} and
78     simplify it as:
79     \begin{eqnarray}
80     J^B_z &\simeq& -\frac{\alpha f}{hC_w} Q_{net}
81     \end{eqnarray}
82     When the net surface heat flux $Q_{net}$ is upward i.e. negative and cooling the ocean
83     (buoyancy loss), surface density will increase, triggering mixing which reduces the
84     stratification and then the PV.
85     \begin{eqnarray}
86     Q_{net} &<& 0 \,\,\,\hbox{(upward, cooling)} \nonumber \\
87     J^B_z &>& 0 \,\,\,\hbox{(upward)} \nonumber \\
88     -\rho^{-1}\nabla\cdot J^B_z &<& 0 \,\,\, \hbox{(PV flux divergence)} \nonumber \\
89     PV &\searrow& \hbox{where $Q_{net}<0$}\nonumber
90     \end{eqnarray}
91    
92    
93     \paragraph{Frictional process: "Down-front" wind-stress}
94     Now let's take the PV flux due to the "wind-driven buoyancy flux" from
95     Eq.\ref{sec:diag:pv:eq15a} and simplify it as:
96     \begin{eqnarray}
97     J^F_z &=& \frac{1}{\rho\delta_e} \left( \tau_x\frac{\partial \sigma}{\partial y} - \tau_y\frac{\partial \sigma}{\partial x} \right) \\
98     J^F_z &\simeq& \frac{1}{\rho\delta_e} \tau_x\frac{\partial \sigma}{\partial y} \nonumber
99     \end{eqnarray}
100     When the wind is blowing from the east above the Gulf Stream (a region of high meridional
101     density gradient), it induces an advection of dense water from the northern side of the GS
102     to the southern side through Ekman currents. Then, it induces a "wind-driven" buoyancy
103     lost and mixing which reduces the stratification and the PV.
104     \begin{eqnarray}
105     \vec{k}\times\tau\cdot\nabla\sigma &>& 0 \,\,\, \hbox{("Down-front" wind)} \nonumber \\
106     J^F_z &>& 0 \,\,\, \hbox{(upward)} \nonumber \\
107     -\rho^{-1}\nabla\cdot J^F_z &<& 0 \,\,\, \hbox{(PV flux divergence)} \nonumber \\
108     PV &\searrow& \hbox{where $\vec{k}\times\tau\cdot\nabla\sigma>0$}\nonumber
109     \end{eqnarray}
110    
111    
112     \paragraph{Diabatic versus frictional processes}
113     A recent debate in the community arose about the relative role of these processes. Taking
114     the ratio of Eq.\ref{sec:diag:pv:eq14a} and Eq.\ref{sec:diag:pv:eq15a} leads to:
115     \begin{eqnarray}
116     \frac{J^F_z}{J^B_Z} &=& \frac{ \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma }
117     {-\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right)} \\
118     &\simeq& \frac{Q_{Ek}/\delta_e}{Q_{net}/h} \nonumber
119     \end{eqnarray}
120     where appears the lateral heat flux induced by Ekman currents:
121     \begin{eqnarray}
122     Q_{Ek} &=& -\frac{C_w}{\alpha\rho f}\vec{k}\times\tau\cdot\nabla\sigma
123     \nonumber \\
124     &=& \frac{C_w}{\alpha}\delta_e\vec{u_{Ek}}\cdot\nabla\sigma
125     \end{eqnarray}
126     which can be computed with the package. In the aim of comparing both processes, it will be
127     useful to plot surface net and lateral Ekman-induced heat fluxes together with PV fluxes.
128    
129    
130    
131    
132     %%%%%%%%%%%%%%%%%%%%%%%%%%
133     \subsection{Key routines}
134    
135     \begin{itemize}
136     \item {\bf {\ttfamily A\_compute\_potential\_density.m}}: Compute the potential density
137     field. Requires the potential temperature and salinity (either total or anomalous) and
138     produces one output file with the potential density field (file prefix is {\ttfamily
139     SIGMATHETA}). The routine uses {\ttfamily densjmd95.m} a Matlab counterpart of the
140     MITgcm built-in function to compute the density.
141     \item {\bf {\ttfamily B\_compute\_relative\_vorticity.m}}: Compute the three components of
142     the relative vorticity defined in Eq.~(\ref{sec:diag:pv:eq1}). Requires the two
143     horizontal velocity components and produces three output files with the three components
144     (files prefix are {\ttfamily OMEGAX}, {\ttfamily OMEGAY} and {\ttfamily ZETA}).
145     \item {\bf {\ttfamily C\_compute\_potential\_vorticity.m}}: Compute the potential
146     vorticity without the negative ratio by the density. Two options are possible in order
147     to compute either the full component (term into parenthesis in
148     Eq.~\ref{sec:diag:pv:eq2}) or the planetary component ($f\partial_z\sigma_\theta$ in
149     Eq.~\ref{sec:diag:pv:eq3}). Requires the relative vorticity components and the potential
150     density, and produces one output file with the potential vorticity (file prefix is
151     {\ttfamily PV} for the full term and {\ttfamily splPV} for the planetary component).
152     \item {\bf {\ttfamily D\_compute\_potential\_vorticity.m}}: Load the field computed with
153     \mbox{{\ttfamily C\_comp...}} and divide it by $-\rho$ to obtain the
154     correct potential vorticity. Require the density field and after loading, overwrite the
155     file with prefix {\ttfamily PV} or {\ttfamily splPV}.
156     \item {\bf {\ttfamily compute\_density.m}}: Compute the density $\rho$ from the potential
157     temperature and the salinity fields.
158     \item {\bf {\ttfamily compute\_JFz.m}}: Compute the surface vertical PV flux due to
159     frictional processes. Requires the wind stress components, density, potential density
160     and Ekman layer depth (all of them, except the wind stress, may be computed with the
161     package), and produces one output file with the PV flux $J^F_z$ (see
162     Eq.~\ref{sec:diag:pv:eq15a}) and with {\ttfamily JFz} as a prefix.
163     \item {\bf {\ttfamily compute\_JBz.m}}: Compute the surface vertical PV flux due to
164     diabatic processes as:
165     \begin{eqnarray}
166     J^B_z &=& -\frac{f}{h}\frac{\alpha Q_{net}}{C_w} \nonumber
167     \end{eqnarray}
168     which is a simplified version of the full expression given in
169     Eq.~(\ref{sec:diag:pv:eq14a}). Requires the net surface heat flux and the mixed layer depth
170     (of which an estimation can be computed with the package), and produces one output file
171     with the PV flux $J^B_z$ and with {\ttfamily JBz} as a prefix.
172     \item {\bf {\ttfamily compute\_QEk.m}}: Compute the horizontal heat flux due to Ekman
173     currents from the PV flux induced by frictional forces as:
174     \begin{eqnarray}
175     Q_{Ek} &=& - \frac{C_w \delta_e}{\alpha f}J^F_z\nonumber
176     \end{eqnarray}
177     Requires the PV flux due to frictional forces and the Ekman layer depth, and produces one
178     output with the heat flux and with {\ttfamily QEk} as a prefix.
179     \item {\bf {\ttfamily eg\_main\_getPV}}: A complete example of how to set up a master
180     routine able to compute everything from the package.
181     \end{itemize}
182    
183     %%%%%%%%%%%%%%%%%%%%%%%%%%
184     \subsection{Technical details}
185    
186     \subsubsection{File name}
187     \noindent
188     A file name is formed by three parameters which need to be set up as global variables in Matlab
189     before running any routines. They are:
190     \begin{itemize}
191     \item the prefix, ie the variable name ({\ttfamily netcdf\_UVEL} for example). This
192     parameter is specified in the help section of all diagnostic routines.
193     \item {\ttfamily netcdf\_domain}: the geographical domain.
194     \item {\ttfamily netcdf\_suff}: the netcdf extension (nc or cdf for example).
195     \end{itemize}
196     Then, for example, if the calling Matlab routine had set up:
197     \begin{verbatim}
198     global netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff
199     netcdf_THETA = 'THETA';
200     netcdf_SALTanom = 'SALT';
201     netcdf_domain = 'north_atlantic';
202     netcdf_suff = 'nc';
203     \end{verbatim}
204     the routine {\ttfamily A\_compute\_potential\_density.m} to compute the potential density
205     field, will look for the files:
206     \begin{verbatim}
207     THETA.north_atlantic.nc
208     SALT.north_atlantic.nc
209     \end{verbatim}
210     and the output file will automatically be: {\ttfamily SIGMATHETA.north\_atlantic.nc}.
211    
212     Otherwise indicated, output file prefix cannot be changed.
213    
214     \subsubsection{Path to file}
215     \noindent
216     All diagnostic routines look for input files in a subdirectory (relative to the Matlab
217     routine directory) called {\ttfamily ./netcdf-files} which in turn, is supposed to contain
218     subdirectories for each set of fields. For example, computing the potential density for
219     the timestep 12H00 02/03/2005 will require a
220     subdirectory with the potential temperature and salinity files like:
221     \begin{verbatim}
222     ./netcdf-files/200501031200/THETA.north_atlantic.nc
223     ./netcdf-files/200501031200/SALT.north_atlantic.nc
224     \end{verbatim}
225     \noindent
226     The output file {\ttfamily SIGMATHETA.north\_atlantic.nc} will be created in {\ttfamily
227     ./netcdf-files/200501031200/}.
228     \noindent
229     All diagnostic routines take as argument the name of the timestep subdirectory into
230     {\ttfamily ./netcdf-files}.
231    
232     \subsubsection{Grids}
233     \noindent
234     With MITgcm numerical outputs, velocity and tracer fields may not be defined on the same
235     grid. Usually, UVEL and VVEL are defined on a C-grid but when interpolated from a
236     cube-sphere simulation they are defined on a A-grid. When it is needed, routines allow
237     to set up a global variable which define the grid to use.
238    
239    
240     %%%%%%%%%%%%%%%%%%%%%%%%%%
241     \subsection{Notes on the flux form of the PV equation and vertical PV fluxes}
242     \label{sec:diag:pv:notes-flux-form}
243    
244     \subsubsection{Flux form of the PV equation}
245     The conservative flux form of the potential vorticity equation is:
246     \begin{eqnarray}
247     \frac{\partial \rho Q}{\partial t} + \nabla \cdot \vec{J} &=& 0 \label{sec:diag:pv:eq4}
248     \end{eqnarray}
249     where the potential vorticity $Q$ is given by the Eq.\ref{sec:diag:pv:eq2}.
250    
251     The generalized flux vector of potential vorticity is:
252     \begin{eqnarray}
253     \vec{J} &=& \rho Q \vec{u} + \vec{N_Q}
254     \end{eqnarray}
255     which allows to rewrite Eq.\ref{sec:diag:pv:eq4} as:
256     \begin{eqnarray}
257     \frac{DQ}{dt} &=& -\frac{1}{\rho}\nabla\cdot\vec{N_Q} \label{sec:diag:pv:eq5}
258     \end{eqnarray}
259     where the nonadvective PV flux $\vec{N_Q}$ is given by:
260     \begin{eqnarray}
261     \vec{N_Q} &=& -\frac{\rho_0}{g}B\vec{\omega_a} + \vec{F}\times\nabla\sigma_\theta
262     \label{sec:diag:pv:eq6}
263     \end{eqnarray}
264    
265     Its first component is linked to the buoyancy forcing\footnote{
266     Note that introducing B into Eq.\ref{sec:diag:pv:eq6} yields to:
267     \begin{eqnarray}
268     \vec{N_Q} &=& \omega_a \frac{D \sigma_\theta}{dt} + \vec{F}\times\nabla\sigma_\theta
269     \end{eqnarray}}:
270     \begin{eqnarray}
271     B &=& -\frac{g}{\rho_o}\frac{D \sigma_\theta}{dt}
272     \end{eqnarray}
273     and the second one to the nonconservative body forces per unit mass:
274     \begin{eqnarray}
275     \vec{F} &=& \frac{D \vec{u}}{dt} + 2\Omega\times\vec{u} + \nabla p
276     \end{eqnarray}
277    
278     \subsubsection{Determining the PV flux at the ocean's surface}
279     In the context of mode water study, we're particularly interested in how the PV may be
280     reduced by surface PV fluxes because a mode water is characterised by a low PV level.
281     Considering the volume limited by two $iso-\sigma_\theta$, PV
282     flux is limited to surface processes and then vertical component of $\vec{N_Q}$. It is
283     supposed that $B$ and $\vec{F}$ will only be nonzero in the mixed layer (of depth $h$ and
284     variable density $\sigma_m$) exposed to mechanical forcing by the wind and buoyancy fluxes
285     through the ocean's surface.
286    
287     Given the assumption of a mechanical forcing confined to a thin surface Ekman layer (of
288     depth $\delta_e$, eventually computed by the package) and of hydrostatic and geostrophic
289     balances, we can write:
290     \begin{eqnarray}
291     \vec{u_g} &=& \frac{1}{\rho f} \vec{k}\times\nabla p \\
292     \frac{\partial p_m}{\partial z} &=& -\sigma_m g \\
293     \frac{\partial \sigma_m}{\partial t} + \vec{u}_m\cdot\nabla\sigma_m &=& -\frac{\rho_0}{g}B \label{sec:diag:pv:eq7}
294     \end{eqnarray}
295     where:
296     \begin{eqnarray}
297     \vec{u}_m &=& \vec{u}_g + \vec{u}_{Ek} + o(R_o) \label{sec:diag:pv:eq8}
298     \end{eqnarray}
299     is the full velocity field composed by the geostrophic current $\vec{u}_g$ and the Ekman
300     drift:
301     \begin{eqnarray}
302     \vec{u}_{Ek} &=& -\frac{1}{\rho f}\vec{k}\times\frac{\partial \tau}{\partial z} \label{sec:diag:pv:eq9}
303     \end{eqnarray}
304     (where $\tau$ is the wind stress) and last by other ageostrophic components of $o(R_o)$
305     which are neglected.
306    
307     Partitioning the buoyancy forcing as:
308     \begin{eqnarray}
309     B &=& B_g + B_{Ek} \label{sec:diag:pv:eq10}
310     \end{eqnarray}
311     and using Eq.\ref{sec:diag:pv:eq8} and Eq.\ref{sec:diag:pv:eq9}, the Eq.\ref{sec:diag:pv:eq7} becomes:
312     \begin{eqnarray}
313     \frac{\partial \sigma_m}{\partial t} + \vec{u}_g\cdot\nabla\sigma_m &=& -\frac{\rho_0}{g} B_g
314     \end{eqnarray}
315     revealing the "wind-driven buoyancy forcing":
316     \begin{eqnarray}
317     B_{Ek} &=& \frac{g}{\rho_0}\frac{1}{\rho f}\left(\vec{k}\times\frac{\partial \tau}{\partial z}\right)\cdot\nabla\sigma_m
318     \end{eqnarray}
319     Note that since:
320     \begin{eqnarray}
321     \frac{\partial B_g}{\partial z} &=& \frac{\partial}{\partial z}\left(-\frac{g}{\rho_0}\vec{u_g}\cdot\nabla\sigma_m\right)
322     = -\frac{g}{\rho_0}\frac{\partial \vec{u_g}}{\partial z}\cdot\nabla\sigma_m
323     = 0
324     \end{eqnarray}
325     $B_g$ must be uniform throughout the depth of the mixed layer and then being related to
326     the surface buoyancy flux by integrating Eq.\ref{sec:diag:pv:eq10} through the mixed layer:
327     \begin{eqnarray}
328     \int_{-h}^0B\,dz &=\, hB_g + \int_{-h}^0B_{Ek}\,dz \,=& \mathcal{B}_{in} \label{sec:diag:pv:eq11}
329     \end{eqnarray}
330     where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux:
331     \begin{eqnarray}
332     \mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right)
333 jmc 1.3 %\label{sec:diag:pv:eq12}
334 cnh 1.1 \end{eqnarray}
335     with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed
336     by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater,
337     $Q_{net}[W.m^{-2}]$ the net heat surface flux (positive downward, warming the ocean),
338     $\beta[PSU^{-1}]$ the saline contraction coefficient, and
339     $S_{net}=S*(E-P)[PSU.m.s^{-1}]$ the net freshwater surface flux with $S[PSU]$
340     the surface salinity and $(E-P)[m.s^{-1}]$ the fresh water flux.
341    
342     Introducing the body force in the Ekman layer:
343     \begin{eqnarray}
344     F_z &=& \frac{1}{\rho}\frac{\partial \tau}{\partial z}
345     \end{eqnarray}
346     the vertical component of Eq.\ref{sec:diag:pv:eq6} is:
347     \begin{eqnarray}
348     \vec{N_Q}_z &=& -\frac{\rho_0}{g}(B_g+B_{Ek})\omega_z
349     + \frac{1}{\rho}
350     \left( \frac{\partial \tau}{\partial z}\times\nabla\sigma_\theta \right)\cdot\vec{k}
351     \nonumber \\
352     &=& -\frac{\rho_0}{g}B_g\omega_z
353     -\frac{\rho_0}{g}
354     \left(\frac{g}{\rho_0}\frac{1}{\rho f}\vec{k}\times\frac{\partial \tau}{\partial z}
355     \cdot\nabla\sigma_m\right)\omega_z
356     + \frac{1}{\rho}
357     \left( \frac{\partial \tau}{\partial z}\times\nabla\sigma_\theta \right)\cdot\vec{k}
358     \nonumber \\
359     &=& -\frac{\rho_0}{g}B_g\omega_z
360     + \left(1-\frac{\omega_z}{f}\right)\left(\frac{1}{\rho}\frac{\partial \tau}{\partial z}
361     \times\nabla\sigma_\theta \right)\cdot\vec{k}
362     \end{eqnarray}
363     and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain:
364     \begin{eqnarray}
365 jmc 1.3 \vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g %\label{sec:diag:pv:eq12}
366 cnh 1.1 \end{eqnarray}
367     Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$
368     through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the
369     difference between the integrated surface buoyancy flux $\mathcal{B}_{in}$ and the
370     integrated "wind-driven buoyancy forcing":
371     \begin{eqnarray}
372     B_g &=& \frac{1}{h}\left( \mathcal{B}_{in} - \int_{-h}^0B_{Ek}dz \right) \nonumber \\
373     &=& \frac{1}{h}\frac{g}{\rho_0}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0 \beta S_{net}\right)
374     - \frac{1}{h}\int_{-h}^0
375     \frac{g}{\rho_0}\frac{1}{\rho f}\vec{k}\times \frac{\partial \tau}{\partial z} \cdot\nabla\sigma_m dz
376     \nonumber \\
377     &=& \frac{1}{h}\frac{g}{\rho_0}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0 \beta S_{net}\right)
378     - \frac{g}{\rho_0}\frac{1}{\rho f \delta_e}\vec{k}\times\tau\cdot\nabla\sigma_m
379     \end{eqnarray}
380     Finally, from Eq.\ref{sec:diag:pv:eq6}, the vertical surface flux of PV may be written as:
381     \begin{eqnarray}
382     \vec{N_Q}_z &=& J^B_z + J^F_z \label{sec:diag:pv:eq13} \\
383     J^B_z &=& -\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right) \label{sec:diag:pv:eq14}\\
384     J^F_z &=& \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma_m \label{sec:diag:pv:eq15}
385     \end{eqnarray}

  ViewVC Help
Powered by ViewVC 1.1.22