1 |
molod |
1.1 |
\section{Diagnostics-Flexible model infrastructure for diagnostic (instananeous or time averaged) output} |
2 |
|
|
|
3 |
|
|
\subsection{Introduction} |
4 |
|
|
|
5 |
|
|
This section of the documentation describes the Diagnostics Utilities available within the GCM. |
6 |
|
|
In addition to |
7 |
|
|
a description on how to set and extract diagnostic quantities, this document also provides a |
8 |
|
|
comprehensive list of all available diagnostic quantities and a short description of how they are |
9 |
|
|
computed. It should be noted that this document is not intended to be a complete documentation |
10 |
|
|
of the various packages used in the GCM, and the reader should |
11 |
|
|
refer to original publications for further insight. |
12 |
|
|
|
13 |
|
|
|
14 |
|
|
\subsection{Equations} |
15 |
|
|
Not relevant. |
16 |
|
|
|
17 |
|
|
\subsection{Key Subroutines and Parameters} |
18 |
|
|
\label{sec:diagnostics:diagover} |
19 |
|
|
|
20 |
|
|
A large selection of model diagnostics is available in the GCM. At the time of |
21 |
|
|
this writing there are 92 different diagnostic quantities which can be enabled for an |
22 |
|
|
experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must |
23 |
|
|
specify the exact diagnostic information required for an experiment. This is accomplished by |
24 |
|
|
enabling the specific diagnostic of interest cataloged in the |
25 |
|
|
Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). |
26 |
|
|
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the |
27 |
|
|
GCM. Diagnostics are internally referred to by their associated number in the Diagnostic |
28 |
|
|
Menu. Once a diagnostic is enabled, the GCM will continually increment an array |
29 |
|
|
specifically allocated for that diagnostic whenever the associated process for the diagnostic is |
30 |
|
|
computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter |
31 |
|
|
which records how many times each diagnostic quantity has been computed. In addition |
32 |
|
|
special diagnostics, called |
33 |
|
|
``Counter Diagnostics'', records the frequency of diagnostic updates separately for each |
34 |
|
|
model grid location. |
35 |
|
|
|
36 |
|
|
The diagnostics are computed at various times and places within the GCM. |
37 |
|
|
Some diagnostics are computed on the geophysical A-grid (such as |
38 |
|
|
those within the Physics routines), while others are computed on the C-grid |
39 |
|
|
(those computed during the dynamics time-stepping). Some diagnostics are |
40 |
|
|
scalars, while others are vectors. Each of these possibilities requires |
41 |
|
|
separate tasks for A-grid to C-grid transformations and coordinate transformations. Due |
42 |
|
|
to this complexity, and since the specific diagnostics enabled are User determined at the |
43 |
|
|
time of the run, |
44 |
|
|
a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG, |
45 |
|
|
which contains information concerning various grid attributes of each diagnostic. The GDIAG |
46 |
|
|
array is internally defined as a character*8 variable, and is equivalenced to |
47 |
|
|
a character*1 "parse" array in output in order to extract the grid-attribute information. |
48 |
|
|
The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}. |
49 |
|
|
|
50 |
|
|
\begin{table} |
51 |
|
|
\caption{Diagnostic Parsing Array} |
52 |
|
|
\label{tab:diagnostics:gdiag.tabl} |
53 |
|
|
\begin{center} |
54 |
|
|
\begin{tabular}{ |c|c|l| } |
55 |
|
|
\hline |
56 |
|
|
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
57 |
|
|
\hline |
58 |
|
|
\hline |
59 |
|
|
Array & Value & Description \\ |
60 |
|
|
\hline |
61 |
|
|
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
62 |
|
|
& $\rightarrow$ U & U-vector component Diagnostic \\ |
63 |
|
|
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
64 |
|
|
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
65 |
|
|
& $\rightarrow$ V & C-Grid V-Point \\ |
66 |
|
|
& $\rightarrow$ M & C-Grid Mass Point \\ |
67 |
|
|
& $\rightarrow$ Z & C-Grid Vorticity Point \\ \hline |
68 |
|
|
parse(3) & $\rightarrow$ R & Computed on the Rotated Grid \\ |
69 |
|
|
& $\rightarrow$ G & Computed on the Geophysical Grid \\ \hline |
70 |
|
|
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
71 |
|
|
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
72 |
|
|
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
73 |
|
|
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
74 |
|
|
& & vector or counter component mate \\ \hline |
75 |
|
|
\end{tabular} |
76 |
|
|
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
77 |
|
|
\end{center} |
78 |
|
|
\end{table} |
79 |
|
|
|
80 |
|
|
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
81 |
|
|
to ``UUR 002''. From GDIAG we can determine that this diagnostic is a |
82 |
|
|
U-vector component located at the C-grid U-point within the Rotated framework. |
83 |
|
|
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
84 |
|
|
|
85 |
|
|
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
86 |
|
|
rotated or geophysical, A-Grid or C-grid, etc.) defined internally. The Output routines |
87 |
|
|
use this information in order to determine |
88 |
|
|
what type of rotations and/or transformations need to be performed. Thus, all Diagnostic |
89 |
|
|
interpolations are done at the time of output rather than during each model dynamic step. |
90 |
|
|
In this way the User now has more flexibility |
91 |
|
|
in determining the type of gridded data which is output. |
92 |
|
|
|
93 |
|
|
There are several utilities within the GCM available to users to enable, disable, |
94 |
|
|
clear, and retrieve model diagnostics, and may be called from any user-supplied application |
95 |
|
|
and/or output routine. The available utilities and the CALL sequences are listed below. |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
{\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that |
99 |
|
|
space is allocated for the diagnostic and the |
100 |
|
|
model routines will increment the diagnostic value during execution. This routine is useful when |
101 |
|
|
called from either user application routines or user output routines, and is the underlying interface |
102 |
|
|
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
103 |
|
|
number from the menu, and its calling sequence is given by: |
104 |
|
|
|
105 |
|
|
\begin{tabbing} |
106 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
107 |
|
|
\> CALL SETDIAG (NUM) \\ |
108 |
|
|
\\ |
109 |
|
|
where \> NUM \>= Diagnostic number from menu \\ |
110 |
|
|
\end{tabbing} |
111 |
|
|
|
112 |
|
|
|
113 |
|
|
{\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is |
114 |
|
|
particulary useful when called from a user output routine, although it can be called from an |
115 |
|
|
application routine as well. This routine returns the time-averaged value of the diagnostic by |
116 |
|
|
dividing the current accumulated diagnostic value by its corresponding counter. This routine does |
117 |
|
|
not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its |
118 |
|
|
time-average. The calling sequence for this routine is givin by: |
119 |
|
|
|
120 |
|
|
\begin{tabbing} |
121 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
122 |
|
|
\> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\ |
123 |
|
|
\\ |
124 |
|
|
where \> LEV \>= Model Level at which the diagnostic is desired \\ |
125 |
|
|
\> NUM \>= Diagnostic number from menu \\ |
126 |
|
|
\> QTMP \>= Time-Averaged Diagnostic Output \\ |
127 |
|
|
\> UNDEF \>= Fill value to be used when diagnostic is undefined \\ |
128 |
|
|
\end{tabbing} |
129 |
|
|
|
130 |
|
|
{\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is |
131 |
|
|
particularly useful when called from user output routines to re-initialize diagnostics during the |
132 |
|
|
run. The calling sequence is: |
133 |
|
|
|
134 |
|
|
|
135 |
|
|
\begin{tabbing} |
136 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
137 |
|
|
\> CALL CLRDIAG (NUM) \\ |
138 |
|
|
\\ |
139 |
|
|
where \> NUM \>= Diagnostic number from menu \\ |
140 |
|
|
\end{tabbing} |
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
{\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the |
145 |
|
|
diagnostic is no longer available to the user. The memory previously allocated to the diagnostic |
146 |
|
|
is released when ZAPDIAG is invoked. The calling sequence is given by: |
147 |
|
|
|
148 |
|
|
|
149 |
|
|
\begin{tabbing} |
150 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
151 |
|
|
\> CALL ZAPDIAG (NUM) \\ |
152 |
|
|
\\ |
153 |
|
|
where \> NUM \>= Diagnostic number from menu \\ |
154 |
|
|
\end{tabbing} |
155 |
|
|
|
156 |
|
|
{\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory |
157 |
|
|
is allocated for diagnostics. |
158 |
|
|
All GCM diagnostic quantities are stored in the single |
159 |
|
|
diagnostic array QDIAG which is located in the DIAG COMMON, having the form: |
160 |
|
|
|
161 |
|
|
\begin{tabbing} |
162 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
163 |
|
|
\> COMMON /DIAG/ NDIAG\_MAX,QDIAG(IM,JM,1) \\ |
164 |
|
|
\\ |
165 |
|
|
\end{tabbing} |
166 |
|
|
|
167 |
|
|
where NDIAG\_MAX is an Integer variable which should be |
168 |
|
|
set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional |
169 |
|
|
array. The first two-dimensions of QDIAG correspond to the horizontal dimension |
170 |
|
|
of a given diagnostic, while the third dimension of QDIAG is used to identify |
171 |
|
|
specific diagnostic types. |
172 |
|
|
In order to minimize the maximum memory requirement used by the model, |
173 |
|
|
the default GCM executable is compiled with room for only one horizontal |
174 |
|
|
diagnostic array, as shown in the above example. |
175 |
|
|
In order for the User to enable more than 1 two-dimensional diagnostic, |
176 |
|
|
the size of the DIAG COMMON must be expanded to accomodate the desired diagnostics. |
177 |
|
|
This can be accomplished by manually changing the parameter numdiags in the |
178 |
|
|
file \filelink{FORWARD\_STEP}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the |
179 |
|
|
shell script (???????) to make this |
180 |
|
|
change based on the choice of diagnostic output made in the namelist. |
181 |
|
|
|
182 |
|
|
\newpage |
183 |
|
|
|
184 |
|
|
\subsubsection{GCM Diagnostic Menu} |
185 |
|
|
\label{sec:diagnostics:menu} |
186 |
|
|
|
187 |
|
|
\begin{tabular}{lllll} |
188 |
|
|
\hline\hline |
189 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
190 |
|
|
\hline |
191 |
|
|
|
192 |
|
|
&\\ |
193 |
|
|
1 & UFLUX & $Newton/m^2$ & 1 |
194 |
|
|
&\begin{minipage}[t]{3in} |
195 |
|
|
{Surface U-Wind Stress on the atmosphere} |
196 |
|
|
\end{minipage}\\ |
197 |
|
|
2 & VFLUX & $Newton/m^2$ & 1 |
198 |
|
|
&\begin{minipage}[t]{3in} |
199 |
|
|
{Surface V-Wind Stress on the atmosphere} |
200 |
|
|
\end{minipage}\\ |
201 |
|
|
3 & HFLUX & $Watts/m^2$ & 1 |
202 |
|
|
&\begin{minipage}[t]{3in} |
203 |
|
|
{Surface Flux of Sensible Heat} |
204 |
|
|
\end{minipage}\\ |
205 |
|
|
4 & EFLUX & $Watts/m^2$ & 1 |
206 |
|
|
&\begin{minipage}[t]{3in} |
207 |
|
|
{Surface Flux of Latent Heat} |
208 |
|
|
\end{minipage}\\ |
209 |
|
|
5 & QICE & $Watts/m^2$ & 1 |
210 |
|
|
&\begin{minipage}[t]{3in} |
211 |
|
|
{Heat Conduction through Sea-Ice} |
212 |
|
|
\end{minipage}\\ |
213 |
|
|
6 & RADLWG & $Watts/m^2$ & 1 |
214 |
|
|
&\begin{minipage}[t]{3in} |
215 |
|
|
{Net upward LW flux at the ground} |
216 |
|
|
\end{minipage}\\ |
217 |
|
|
7 & RADSWG & $Watts/m^2$ & 1 |
218 |
|
|
&\begin{minipage}[t]{3in} |
219 |
|
|
{Net downward SW flux at the ground} |
220 |
|
|
\end{minipage}\\ |
221 |
|
|
8 & RI & $dimensionless$ & Nrphys |
222 |
|
|
&\begin{minipage}[t]{3in} |
223 |
|
|
{Richardson Number} |
224 |
|
|
\end{minipage}\\ |
225 |
|
|
9 & CT & $dimensionless$ & 1 |
226 |
|
|
&\begin{minipage}[t]{3in} |
227 |
|
|
{Surface Drag coefficient for T and Q} |
228 |
|
|
\end{minipage}\\ |
229 |
|
|
10 & CU & $dimensionless$ & 1 |
230 |
|
|
&\begin{minipage}[t]{3in} |
231 |
|
|
{Surface Drag coefficient for U and V} |
232 |
|
|
\end{minipage}\\ |
233 |
|
|
11 & ET & $m^2/sec$ & Nrphys |
234 |
|
|
&\begin{minipage}[t]{3in} |
235 |
|
|
{Diffusivity coefficient for T and Q} |
236 |
|
|
\end{minipage}\\ |
237 |
|
|
12 & EU & $m^2/sec$ & Nrphys |
238 |
|
|
&\begin{minipage}[t]{3in} |
239 |
|
|
{Diffusivity coefficient for U and V} |
240 |
|
|
\end{minipage}\\ |
241 |
|
|
13 & TURBU & $m/sec/day$ & Nrphys |
242 |
|
|
&\begin{minipage}[t]{3in} |
243 |
|
|
{U-Momentum Changes due to Turbulence} |
244 |
|
|
\end{minipage}\\ |
245 |
|
|
14 & TURBV & $m/sec/day$ & Nrphys |
246 |
|
|
&\begin{minipage}[t]{3in} |
247 |
|
|
{V-Momentum Changes due to Turbulence} |
248 |
|
|
\end{minipage}\\ |
249 |
|
|
15 & TURBT & $deg/day$ & Nrphys |
250 |
|
|
&\begin{minipage}[t]{3in} |
251 |
|
|
{Temperature Changes due to Turbulence} |
252 |
|
|
\end{minipage}\\ |
253 |
|
|
16 & TURBQ & $g/kg/day$ & Nrphys |
254 |
|
|
&\begin{minipage}[t]{3in} |
255 |
|
|
{Specific Humidity Changes due to Turbulence} |
256 |
|
|
\end{minipage}\\ |
257 |
|
|
17 & MOISTT & $deg/day$ & Nrphys |
258 |
|
|
&\begin{minipage}[t]{3in} |
259 |
|
|
{Temperature Changes due to Moist Processes} |
260 |
|
|
\end{minipage}\\ |
261 |
|
|
18 & MOISTQ & $g/kg/day$ & Nrphys |
262 |
|
|
&\begin{minipage}[t]{3in} |
263 |
|
|
{Specific Humidity Changes due to Moist Processes} |
264 |
|
|
\end{minipage}\\ |
265 |
|
|
19 & RADLW & $deg/day$ & Nrphys |
266 |
|
|
&\begin{minipage}[t]{3in} |
267 |
|
|
{Net Longwave heating rate for each level} |
268 |
|
|
\end{minipage}\\ |
269 |
|
|
20 & RADSW & $deg/day$ & Nrphys |
270 |
|
|
&\begin{minipage}[t]{3in} |
271 |
|
|
{Net Shortwave heating rate for each level} |
272 |
|
|
\end{minipage}\\ |
273 |
|
|
21 & PREACC & $mm/day$ & 1 |
274 |
|
|
&\begin{minipage}[t]{3in} |
275 |
|
|
{Total Precipitation} |
276 |
|
|
\end{minipage}\\ |
277 |
|
|
22 & PRECON & $mm/day$ & 1 |
278 |
|
|
&\begin{minipage}[t]{3in} |
279 |
|
|
{Convective Precipitation} |
280 |
|
|
\end{minipage}\\ |
281 |
|
|
23 & TUFLUX & $Newton/m^2$ & Nrphys |
282 |
|
|
&\begin{minipage}[t]{3in} |
283 |
|
|
{Turbulent Flux of U-Momentum} |
284 |
|
|
\end{minipage}\\ |
285 |
|
|
24 & TVFLUX & $Newton/m^2$ & Nrphys |
286 |
|
|
&\begin{minipage}[t]{3in} |
287 |
|
|
{Turbulent Flux of V-Momentum} |
288 |
|
|
\end{minipage}\\ |
289 |
|
|
25 & TTFLUX & $Watts/m^2$ & Nrphys |
290 |
|
|
&\begin{minipage}[t]{3in} |
291 |
|
|
{Turbulent Flux of Sensible Heat} |
292 |
|
|
\end{minipage}\\ |
293 |
|
|
26 & TQFLUX & $Watts/m^2$ & Nrphys |
294 |
|
|
&\begin{minipage}[t]{3in} |
295 |
|
|
{Turbulent Flux of Latent Heat} |
296 |
|
|
\end{minipage}\\ |
297 |
|
|
27 & CN & $dimensionless$ & 1 |
298 |
|
|
&\begin{minipage}[t]{3in} |
299 |
|
|
{Neutral Drag Coefficient} |
300 |
|
|
\end{minipage}\\ |
301 |
|
|
28 & WINDS & $m/sec$ & 1 |
302 |
|
|
&\begin{minipage}[t]{3in} |
303 |
|
|
{Surface Wind Speed} |
304 |
|
|
\end{minipage}\\ |
305 |
|
|
29 & DTSRF & $deg$ & 1 |
306 |
|
|
&\begin{minipage}[t]{3in} |
307 |
|
|
{Air/Surface virtual temperature difference} |
308 |
|
|
\end{minipage}\\ |
309 |
|
|
30 & TG & $deg$ & 1 |
310 |
|
|
&\begin{minipage}[t]{3in} |
311 |
|
|
{Ground temperature} |
312 |
|
|
\end{minipage}\\ |
313 |
|
|
31 & TS & $deg$ & 1 |
314 |
|
|
&\begin{minipage}[t]{3in} |
315 |
|
|
{Surface air temperature (Adiabatic from lowest model layer)} |
316 |
|
|
\end{minipage}\\ |
317 |
|
|
32 & DTG & $deg$ & 1 |
318 |
|
|
&\begin{minipage}[t]{3in} |
319 |
|
|
{Ground temperature adjustment} |
320 |
|
|
\end{minipage}\\ |
321 |
|
|
|
322 |
|
|
\end{tabular} |
323 |
|
|
|
324 |
|
|
\newpage |
325 |
|
|
\vspace*{\fill} |
326 |
|
|
\begin{tabular}{lllll} |
327 |
|
|
\hline\hline |
328 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
329 |
|
|
\hline |
330 |
|
|
|
331 |
|
|
&\\ |
332 |
|
|
33 & QG & $g/kg$ & 1 |
333 |
|
|
&\begin{minipage}[t]{3in} |
334 |
|
|
{Ground specific humidity} |
335 |
|
|
\end{minipage}\\ |
336 |
|
|
34 & QS & $g/kg$ & 1 |
337 |
|
|
&\begin{minipage}[t]{3in} |
338 |
|
|
{Saturation surface specific humidity} |
339 |
|
|
\end{minipage}\\ |
340 |
|
|
|
341 |
|
|
&\\ |
342 |
|
|
35 & TGRLW & $deg$ & 1 |
343 |
|
|
&\begin{minipage}[t]{3in} |
344 |
|
|
{Instantaneous ground temperature used as input to the |
345 |
|
|
Longwave radiation subroutine} |
346 |
|
|
\end{minipage}\\ |
347 |
|
|
36 & ST4 & $Watts/m^2$ & 1 |
348 |
|
|
&\begin{minipage}[t]{3in} |
349 |
|
|
{Upward Longwave flux at the ground ($\sigma T^4$)} |
350 |
|
|
\end{minipage}\\ |
351 |
|
|
37 & OLR & $Watts/m^2$ & 1 |
352 |
|
|
&\begin{minipage}[t]{3in} |
353 |
|
|
{Net upward Longwave flux at the top of the model} |
354 |
|
|
\end{minipage}\\ |
355 |
|
|
38 & OLRCLR & $Watts/m^2$ & 1 |
356 |
|
|
&\begin{minipage}[t]{3in} |
357 |
|
|
{Net upward clearsky Longwave flux at the top of the model} |
358 |
|
|
\end{minipage}\\ |
359 |
|
|
39 & LWGCLR & $Watts/m^2$ & 1 |
360 |
|
|
&\begin{minipage}[t]{3in} |
361 |
|
|
{Net upward clearsky Longwave flux at the ground} |
362 |
|
|
\end{minipage}\\ |
363 |
|
|
40 & LWCLR & $deg/day$ & Nrphys |
364 |
|
|
&\begin{minipage}[t]{3in} |
365 |
|
|
{Net clearsky Longwave heating rate for each level} |
366 |
|
|
\end{minipage}\\ |
367 |
|
|
41 & TLW & $deg$ & Nrphys |
368 |
|
|
&\begin{minipage}[t]{3in} |
369 |
|
|
{Instantaneous temperature used as input to the Longwave radiation |
370 |
|
|
subroutine} |
371 |
|
|
\end{minipage}\\ |
372 |
|
|
42 & SHLW & $g/g$ & Nrphys |
373 |
|
|
&\begin{minipage}[t]{3in} |
374 |
|
|
{Instantaneous specific humidity used as input to the Longwave radiation |
375 |
|
|
subroutine} |
376 |
|
|
\end{minipage}\\ |
377 |
|
|
43 & OZLW & $g/g$ & Nrphys |
378 |
|
|
&\begin{minipage}[t]{3in} |
379 |
|
|
{Instantaneous ozone used as input to the Longwave radiation |
380 |
|
|
subroutine} |
381 |
|
|
\end{minipage}\\ |
382 |
|
|
44 & CLMOLW & $0-1$ & Nrphys |
383 |
|
|
&\begin{minipage}[t]{3in} |
384 |
|
|
{Maximum overlap cloud fraction used in the Longwave radiation |
385 |
|
|
subroutine} |
386 |
|
|
\end{minipage}\\ |
387 |
|
|
45 & CLDTOT & $0-1$ & Nrphys |
388 |
|
|
&\begin{minipage}[t]{3in} |
389 |
|
|
{Total cloud fraction used in the Longwave and Shortwave radiation |
390 |
|
|
subroutines} |
391 |
|
|
\end{minipage}\\ |
392 |
|
|
46 & RADSWT & $Watts/m^2$ & 1 |
393 |
|
|
&\begin{minipage}[t]{3in} |
394 |
|
|
{Incident Shortwave radiation at the top of the atmosphere} |
395 |
|
|
\end{minipage}\\ |
396 |
|
|
47 & CLROSW & $0-1$ & Nrphys |
397 |
|
|
&\begin{minipage}[t]{3in} |
398 |
|
|
{Random overlap cloud fraction used in the shortwave radiation |
399 |
|
|
subroutine} |
400 |
|
|
\end{minipage}\\ |
401 |
|
|
48 & CLMOSW & $0-1$ & Nrphys |
402 |
|
|
&\begin{minipage}[t]{3in} |
403 |
|
|
{Maximum overlap cloud fraction used in the shortwave radiation |
404 |
|
|
subroutine} |
405 |
|
|
\end{minipage}\\ |
406 |
|
|
49 & EVAP & $mm/day$ & 1 |
407 |
|
|
&\begin{minipage}[t]{3in} |
408 |
|
|
{Surface evaporation} |
409 |
|
|
\end{minipage}\\ |
410 |
|
|
\end{tabular} |
411 |
|
|
\vfill |
412 |
|
|
|
413 |
|
|
\newpage |
414 |
|
|
\vspace*{\fill} |
415 |
|
|
\begin{tabular}{lllll} |
416 |
|
|
\hline\hline |
417 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
418 |
|
|
\hline |
419 |
|
|
|
420 |
|
|
&\\ |
421 |
|
|
50 & DUDT & $m/sec/day$ & Nrphys |
422 |
|
|
&\begin{minipage}[t]{3in} |
423 |
|
|
{Total U-Wind tendency} |
424 |
|
|
\end{minipage}\\ |
425 |
|
|
51 & DVDT & $m/sec/day$ & Nrphys |
426 |
|
|
&\begin{minipage}[t]{3in} |
427 |
|
|
{Total V-Wind tendency} |
428 |
|
|
\end{minipage}\\ |
429 |
|
|
52 & DTDT & $deg/day$ & Nrphys |
430 |
|
|
&\begin{minipage}[t]{3in} |
431 |
|
|
{Total Temperature tendency} |
432 |
|
|
\end{minipage}\\ |
433 |
|
|
53 & DQDT & $g/kg/day$ & Nrphys |
434 |
|
|
&\begin{minipage}[t]{3in} |
435 |
|
|
{Total Specific Humidity tendency} |
436 |
|
|
\end{minipage}\\ |
437 |
|
|
54 & USTAR & $m/sec$ & 1 |
438 |
|
|
&\begin{minipage}[t]{3in} |
439 |
|
|
{Surface USTAR wind} |
440 |
|
|
\end{minipage}\\ |
441 |
|
|
55 & Z0 & $m$ & 1 |
442 |
|
|
&\begin{minipage}[t]{3in} |
443 |
|
|
{Surface roughness} |
444 |
|
|
\end{minipage}\\ |
445 |
|
|
56 & FRQTRB & $0-1$ & Nrphys-1 |
446 |
|
|
&\begin{minipage}[t]{3in} |
447 |
|
|
{Frequency of Turbulence} |
448 |
|
|
\end{minipage}\\ |
449 |
|
|
57 & PBL & $mb$ & 1 |
450 |
|
|
&\begin{minipage}[t]{3in} |
451 |
|
|
{Planetary Boundary Layer depth} |
452 |
|
|
\end{minipage}\\ |
453 |
|
|
58 & SWCLR & $deg/day$ & Nrphys |
454 |
|
|
&\begin{minipage}[t]{3in} |
455 |
|
|
{Net clearsky Shortwave heating rate for each level} |
456 |
|
|
\end{minipage}\\ |
457 |
|
|
59 & OSR & $Watts/m^2$ & 1 |
458 |
|
|
&\begin{minipage}[t]{3in} |
459 |
|
|
{Net downward Shortwave flux at the top of the model} |
460 |
|
|
\end{minipage}\\ |
461 |
|
|
60 & OSRCLR & $Watts/m^2$ & 1 |
462 |
|
|
&\begin{minipage}[t]{3in} |
463 |
|
|
{Net downward clearsky Shortwave flux at the top of the model} |
464 |
|
|
\end{minipage}\\ |
465 |
|
|
61 & CLDMAS & $kg / m^2$ & Nrphys |
466 |
|
|
&\begin{minipage}[t]{3in} |
467 |
|
|
{Convective cloud mass flux} |
468 |
|
|
\end{minipage}\\ |
469 |
|
|
62 & UAVE & $m/sec$ & Nrphys |
470 |
|
|
&\begin{minipage}[t]{3in} |
471 |
|
|
{Time-averaged $u-Wind$} |
472 |
|
|
\end{minipage}\\ |
473 |
|
|
63 & VAVE & $m/sec$ & Nrphys |
474 |
|
|
&\begin{minipage}[t]{3in} |
475 |
|
|
{Time-averaged $v-Wind$} |
476 |
|
|
\end{minipage}\\ |
477 |
|
|
64 & TAVE & $deg$ & Nrphys |
478 |
|
|
&\begin{minipage}[t]{3in} |
479 |
|
|
{Time-averaged $Temperature$} |
480 |
|
|
\end{minipage}\\ |
481 |
|
|
65 & QAVE & $g/g$ & Nrphys |
482 |
|
|
&\begin{minipage}[t]{3in} |
483 |
|
|
{Time-averaged $Specific \, \, Humidity$} |
484 |
|
|
\end{minipage}\\ |
485 |
|
|
66 & PAVE & $mb$ & 1 |
486 |
|
|
&\begin{minipage}[t]{3in} |
487 |
|
|
{Time-averaged $p_{surf} - p_{top}$} |
488 |
|
|
\end{minipage}\\ |
489 |
|
|
67 & QQAVE & $(m/sec)^2$ & Nrphys |
490 |
|
|
&\begin{minipage}[t]{3in} |
491 |
|
|
{Time-averaged $Turbulent Kinetic Energy$} |
492 |
|
|
\end{minipage}\\ |
493 |
|
|
68 & SWGCLR & $Watts/m^2$ & 1 |
494 |
|
|
&\begin{minipage}[t]{3in} |
495 |
|
|
{Net downward clearsky Shortwave flux at the ground} |
496 |
|
|
\end{minipage}\\ |
497 |
|
|
69 & SDIAG1 & & 1 |
498 |
|
|
&\begin{minipage}[t]{3in} |
499 |
|
|
{User-Defined Surface Diagnostic-1} |
500 |
|
|
\end{minipage}\\ |
501 |
|
|
70 & SDIAG2 & & 1 |
502 |
|
|
&\begin{minipage}[t]{3in} |
503 |
|
|
{User-Defined Surface Diagnostic-2} |
504 |
|
|
\end{minipage}\\ |
505 |
|
|
71 & UDIAG1 & & Nrphys |
506 |
|
|
&\begin{minipage}[t]{3in} |
507 |
|
|
{User-Defined Upper-Air Diagnostic-1} |
508 |
|
|
\end{minipage}\\ |
509 |
|
|
72 & UDIAG2 & & Nrphys |
510 |
|
|
&\begin{minipage}[t]{3in} |
511 |
|
|
{User-Defined Upper-Air Diagnostic-2} |
512 |
|
|
\end{minipage}\\ |
513 |
|
|
73 & DIABU & $m/sec/day$ & Nrphys |
514 |
|
|
&\begin{minipage}[t]{3in} |
515 |
|
|
{Total Diabatic forcing on $u-Wind$} |
516 |
|
|
\end{minipage}\\ |
517 |
|
|
74 & DIABV & $m/sec/day$ & Nrphys |
518 |
|
|
&\begin{minipage}[t]{3in} |
519 |
|
|
{Total Diabatic forcing on $v-Wind$} |
520 |
|
|
\end{minipage}\\ |
521 |
|
|
75 & DIABT & $deg/day$ & Nrphys |
522 |
|
|
&\begin{minipage}[t]{3in} |
523 |
|
|
{Total Diabatic forcing on $Temperature$} |
524 |
|
|
\end{minipage}\\ |
525 |
|
|
76 & DIABQ & $g/kg/day$ & Nrphys |
526 |
|
|
&\begin{minipage}[t]{3in} |
527 |
|
|
{Total Diabatic forcing on $Specific \, \, Humidity$} |
528 |
|
|
\end{minipage}\\ |
529 |
|
|
|
530 |
|
|
\end{tabular} |
531 |
|
|
\vfill |
532 |
|
|
|
533 |
|
|
\newpage |
534 |
|
|
\vspace*{\fill} |
535 |
|
|
\begin{tabular}{lllll} |
536 |
|
|
\hline\hline |
537 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
538 |
|
|
\hline |
539 |
|
|
|
540 |
|
|
77 & VINTUQ & $m/sec \cdot g/kg$ & 1 |
541 |
|
|
&\begin{minipage}[t]{3in} |
542 |
|
|
{Vertically integrated $u \, q$} |
543 |
|
|
\end{minipage}\\ |
544 |
|
|
78 & VINTVQ & $m/sec \cdot g/kg$ & 1 |
545 |
|
|
&\begin{minipage}[t]{3in} |
546 |
|
|
{Vertically integrated $v \, q$} |
547 |
|
|
\end{minipage}\\ |
548 |
|
|
79 & VINTUT & $m/sec \cdot deg$ & 1 |
549 |
|
|
&\begin{minipage}[t]{3in} |
550 |
|
|
{Vertically integrated $u \, T$} |
551 |
|
|
\end{minipage}\\ |
552 |
|
|
80 & VINTVT & $m/sec \cdot deg$ & 1 |
553 |
|
|
&\begin{minipage}[t]{3in} |
554 |
|
|
{Vertically integrated $v \, T$} |
555 |
|
|
\end{minipage}\\ |
556 |
|
|
81 & CLDFRC & $0-1$ & 1 |
557 |
|
|
&\begin{minipage}[t]{3in} |
558 |
|
|
{Total Cloud Fraction} |
559 |
|
|
\end{minipage}\\ |
560 |
|
|
82 & QINT & $gm/cm^2$ & 1 |
561 |
|
|
&\begin{minipage}[t]{3in} |
562 |
|
|
{Precipitable water} |
563 |
|
|
\end{minipage}\\ |
564 |
|
|
83 & U2M & $m/sec$ & 1 |
565 |
|
|
&\begin{minipage}[t]{3in} |
566 |
|
|
{U-Wind at 2 meters} |
567 |
|
|
\end{minipage}\\ |
568 |
|
|
84 & V2M & $m/sec$ & 1 |
569 |
|
|
&\begin{minipage}[t]{3in} |
570 |
|
|
{V-Wind at 2 meters} |
571 |
|
|
\end{minipage}\\ |
572 |
|
|
85 & T2M & $deg$ & 1 |
573 |
|
|
&\begin{minipage}[t]{3in} |
574 |
|
|
{Temperature at 2 meters} |
575 |
|
|
\end{minipage}\\ |
576 |
|
|
86 & Q2M & $g/kg$ & 1 |
577 |
|
|
&\begin{minipage}[t]{3in} |
578 |
|
|
{Specific Humidity at 2 meters} |
579 |
|
|
\end{minipage}\\ |
580 |
|
|
87 & U10M & $m/sec$ & 1 |
581 |
|
|
&\begin{minipage}[t]{3in} |
582 |
|
|
{U-Wind at 10 meters} |
583 |
|
|
\end{minipage}\\ |
584 |
|
|
88 & V10M & $m/sec$ & 1 |
585 |
|
|
&\begin{minipage}[t]{3in} |
586 |
|
|
{V-Wind at 10 meters} |
587 |
|
|
\end{minipage}\\ |
588 |
|
|
89 & T10M & $deg$ & 1 |
589 |
|
|
&\begin{minipage}[t]{3in} |
590 |
|
|
{Temperature at 10 meters} |
591 |
|
|
\end{minipage}\\ |
592 |
|
|
90 & Q10M & $g/kg$ & 1 |
593 |
|
|
&\begin{minipage}[t]{3in} |
594 |
|
|
{Specific Humidity at 10 meters} |
595 |
|
|
\end{minipage}\\ |
596 |
|
|
91 & DTRAIN & $kg/m^2$ & Nrphys |
597 |
|
|
&\begin{minipage}[t]{3in} |
598 |
|
|
{Detrainment Cloud Mass Flux} |
599 |
|
|
\end{minipage}\\ |
600 |
|
|
92 & QFILL & $g/kg/day$ & Nrphys |
601 |
|
|
&\begin{minipage}[t]{3in} |
602 |
|
|
{Filling of negative specific humidity} |
603 |
|
|
\end{minipage}\\ |
604 |
|
|
|
605 |
|
|
\end{tabular} |
606 |
|
|
\vspace{1.5in} |
607 |
|
|
\vfill |
608 |
|
|
|
609 |
|
|
\newpage |
610 |
|
|
|
611 |
|
|
\subsubsection{Diagnostic Description} |
612 |
|
|
|
613 |
|
|
In this section we list and describe the diagnostic quantities available within the |
614 |
|
|
GCM. The diagnostics are listed in the order that they appear in the |
615 |
|
|
Diagnostic Menu, Section \ref{sec:diagnostics:menu}. |
616 |
|
|
In all cases, each diagnostic as currently archived on the output datasets |
617 |
|
|
is time-averaged over its diagnostic output frequency: |
618 |
|
|
|
619 |
|
|
\[ |
620 |
|
|
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
621 |
|
|
\] |
622 |
|
|
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
623 |
|
|
output frequency of the diagnositc, and $\Delta t$ is |
624 |
|
|
the timestep over which the diagnostic is updated. For further information on how |
625 |
|
|
to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide. |
626 |
|
|
|
627 |
|
|
{\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } |
628 |
|
|
|
629 |
|
|
The zonal wind stress is the turbulent flux of zonal momentum from |
630 |
|
|
the surface. See section 3.3 for a description of the surface layer parameterization. |
631 |
|
|
\[ |
632 |
|
|
{\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
633 |
|
|
\] |
634 |
|
|
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
635 |
|
|
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
636 |
|
|
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is |
637 |
|
|
the zonal wind in the lowest model layer. |
638 |
|
|
\\ |
639 |
|
|
|
640 |
|
|
|
641 |
|
|
{\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) } |
642 |
|
|
|
643 |
|
|
The meridional wind stress is the turbulent flux of meridional momentum from |
644 |
|
|
the surface. See section 3.3 for a description of the surface layer parameterization. |
645 |
|
|
\[ |
646 |
|
|
{\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
647 |
|
|
\] |
648 |
|
|
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
649 |
|
|
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
650 |
|
|
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is |
651 |
|
|
the meridional wind in the lowest model layer. |
652 |
|
|
\\ |
653 |
|
|
|
654 |
|
|
{\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) } |
655 |
|
|
|
656 |
|
|
The turbulent flux of sensible heat from the surface to the atmosphere is a function of the |
657 |
|
|
gradient of virtual potential temperature and the eddy exchange coefficient: |
658 |
|
|
\[ |
659 |
|
|
{\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys}) |
660 |
|
|
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
661 |
|
|
\] |
662 |
|
|
where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific |
663 |
|
|
heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
664 |
|
|
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
665 |
|
|
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
666 |
|
|
for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature |
667 |
|
|
at the surface and at the bottom model level. |
668 |
|
|
\\ |
669 |
|
|
|
670 |
|
|
|
671 |
|
|
{\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) } |
672 |
|
|
|
673 |
|
|
The turbulent flux of latent heat from the surface to the atmosphere is a function of the |
674 |
|
|
gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient: |
675 |
|
|
\[ |
676 |
|
|
{\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys}) |
677 |
|
|
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
678 |
|
|
\] |
679 |
|
|
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
680 |
|
|
the potential evapotranspiration actually evaporated, L is the latent |
681 |
|
|
heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
682 |
|
|
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
683 |
|
|
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
684 |
|
|
for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific |
685 |
|
|
humidity at the surface and at the bottom model level, respectively. |
686 |
|
|
\\ |
687 |
|
|
|
688 |
|
|
{\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) } |
689 |
|
|
|
690 |
|
|
Over sea ice there is an additional source of energy at the surface due to the heat |
691 |
|
|
conduction from the relatively warm ocean through the sea ice. The heat conduction |
692 |
|
|
through sea ice represents an additional energy source term for the ground temperature equation. |
693 |
|
|
|
694 |
|
|
\[ |
695 |
|
|
{\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g) |
696 |
|
|
\] |
697 |
|
|
|
698 |
|
|
where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to |
699 |
|
|
be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and |
700 |
|
|
$T_g$ is the temperature of the sea ice. |
701 |
|
|
|
702 |
|
|
NOTE: QICE is not available through model version 5.3, but is available in subsequent versions. |
703 |
|
|
\\ |
704 |
|
|
|
705 |
|
|
|
706 |
|
|
{\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)} |
707 |
|
|
|
708 |
|
|
\begin{eqnarray*} |
709 |
|
|
{\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\ |
710 |
|
|
& = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow |
711 |
|
|
\end{eqnarray*} |
712 |
|
|
\\ |
713 |
|
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
714 |
|
|
$F_{LW}^\uparrow$ is |
715 |
|
|
the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux. |
716 |
|
|
\\ |
717 |
|
|
|
718 |
|
|
{\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)} |
719 |
|
|
|
720 |
|
|
\begin{eqnarray*} |
721 |
|
|
{\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\ |
722 |
|
|
& = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow |
723 |
|
|
\end{eqnarray*} |
724 |
|
|
\\ |
725 |
|
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
726 |
|
|
$F_{SW}^\downarrow$ is |
727 |
|
|
the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux. |
728 |
|
|
\\ |
729 |
|
|
|
730 |
|
|
|
731 |
|
|
\noindent |
732 |
|
|
{\bf 8) \underline {RI} Richardson Number} ($dimensionless$) |
733 |
|
|
|
734 |
|
|
\noindent |
735 |
|
|
The non-dimensional stability indicator is the ratio of the buoyancy to the shear: |
736 |
|
|
\[ |
737 |
|
|
{\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
738 |
|
|
= { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
739 |
|
|
\] |
740 |
|
|
\\ |
741 |
|
|
where we used the hydrostatic equation: |
742 |
|
|
\[ |
743 |
|
|
{\pp{\Phi}{P^ \kappa}} = c_p \theta_v |
744 |
|
|
\] |
745 |
|
|
Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$) |
746 |
|
|
indicate dominantly unstable shear, and large positive values indicate dominantly stable |
747 |
|
|
stratification. |
748 |
|
|
\\ |
749 |
|
|
|
750 |
|
|
\noindent |
751 |
|
|
{\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) } |
752 |
|
|
|
753 |
|
|
\noindent |
754 |
|
|
The surface exchange coefficient is obtained from the similarity functions for the stability |
755 |
|
|
dependant flux profile relationships: |
756 |
|
|
\[ |
757 |
|
|
{\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = |
758 |
|
|
-{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = |
759 |
|
|
{ k \over { (\psi_{h} + \psi_{g}) } } |
760 |
|
|
\] |
761 |
|
|
where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the |
762 |
|
|
viscous sublayer non-dimensional temperature or moisture change: |
763 |
|
|
\[ |
764 |
|
|
\psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and |
765 |
|
|
\hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } |
766 |
|
|
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} |
767 |
|
|
\] |
768 |
|
|
and: |
769 |
|
|
$h_{0} = 30z_{0}$ with a maximum value over land of 0.01 |
770 |
|
|
|
771 |
|
|
\noindent |
772 |
|
|
$\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of |
773 |
|
|
the temperature and moisture gradients, specified differently for stable and unstable |
774 |
|
|
layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
775 |
|
|
non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular |
776 |
|
|
viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity |
777 |
|
|
(see diagnostic number 67), and the subscript ref refers to a reference value. |
778 |
|
|
\\ |
779 |
|
|
|
780 |
|
|
\noindent |
781 |
|
|
{\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) } |
782 |
|
|
|
783 |
|
|
\noindent |
784 |
|
|
The surface exchange coefficient is obtained from the similarity functions for the stability |
785 |
|
|
dependant flux profile relationships: |
786 |
|
|
\[ |
787 |
|
|
{\bf CU} = {u_* \over W_s} = { k \over \psi_{m} } |
788 |
|
|
\] |
789 |
|
|
where $\psi_m$ is the surface layer non-dimensional wind shear: |
790 |
|
|
\[ |
791 |
|
|
\psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} |
792 |
|
|
\] |
793 |
|
|
\noindent |
794 |
|
|
$\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of |
795 |
|
|
the temperature and moisture gradients, specified differently for stable and unstable layers |
796 |
|
|
according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
797 |
|
|
non-dimensional stability parameter, $u_*$ is the surface stress velocity |
798 |
|
|
(see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. |
799 |
|
|
\\ |
800 |
|
|
|
801 |
|
|
\noindent |
802 |
|
|
{\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) } |
803 |
|
|
|
804 |
|
|
\noindent |
805 |
|
|
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or |
806 |
|
|
moisture flux for the atmosphere above the surface layer can be expressed as a turbulent |
807 |
|
|
diffusion coefficient $K_h$ times the negative of the gradient of potential temperature |
808 |
|
|
or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$ |
809 |
|
|
takes the form: |
810 |
|
|
\[ |
811 |
|
|
{\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} } |
812 |
|
|
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} |
813 |
|
|
\\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
814 |
|
|
\] |
815 |
|
|
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
816 |
|
|
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
817 |
|
|
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
818 |
|
|
depth, |
819 |
|
|
$S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
820 |
|
|
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
821 |
|
|
dimensionless buoyancy and wind shear |
822 |
|
|
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
823 |
|
|
are functions of the Richardson number. |
824 |
|
|
|
825 |
|
|
\noindent |
826 |
|
|
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
827 |
|
|
see Helfand and Labraga, 1988. |
828 |
|
|
|
829 |
|
|
\noindent |
830 |
|
|
In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, |
831 |
|
|
in units of $m/sec$, given by: |
832 |
|
|
\[ |
833 |
|
|
{\bf ET_{Nrphys}} = C_t * u_* = C_H W_s |
834 |
|
|
\] |
835 |
|
|
\noindent |
836 |
|
|
where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the |
837 |
|
|
surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface |
838 |
|
|
friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient, |
839 |
|
|
and $W_s$ is the magnitude of the surface layer wind. |
840 |
|
|
\\ |
841 |
|
|
|
842 |
|
|
\noindent |
843 |
|
|
{\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) } |
844 |
|
|
|
845 |
|
|
\noindent |
846 |
|
|
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat |
847 |
|
|
momentum flux for the atmosphere above the surface layer can be expressed as a turbulent |
848 |
|
|
diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. |
849 |
|
|
In the Helfand and Labraga (1988) adaptation of this closure, $K_m$ |
850 |
|
|
takes the form: |
851 |
|
|
\[ |
852 |
|
|
{\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} } |
853 |
|
|
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} |
854 |
|
|
\\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
855 |
|
|
\] |
856 |
|
|
\noindent |
857 |
|
|
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
858 |
|
|
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
859 |
|
|
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
860 |
|
|
depth, |
861 |
|
|
$S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
862 |
|
|
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
863 |
|
|
dimensionless buoyancy and wind shear |
864 |
|
|
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
865 |
|
|
are functions of the Richardson number. |
866 |
|
|
|
867 |
|
|
\noindent |
868 |
|
|
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
869 |
|
|
see Helfand and Labraga, 1988. |
870 |
|
|
|
871 |
|
|
\noindent |
872 |
|
|
In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, |
873 |
|
|
in units of $m/sec$, given by: |
874 |
|
|
\[ |
875 |
|
|
{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s |
876 |
|
|
\] |
877 |
|
|
\noindent |
878 |
|
|
where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer |
879 |
|
|
similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity |
880 |
|
|
(see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the |
881 |
|
|
magnitude of the surface layer wind. |
882 |
|
|
\\ |
883 |
|
|
|
884 |
|
|
\noindent |
885 |
|
|
{\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) } |
886 |
|
|
|
887 |
|
|
\noindent |
888 |
|
|
The tendency of U-Momentum due to turbulence is written: |
889 |
|
|
\[ |
890 |
|
|
{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} |
891 |
|
|
= {\pp{}{z} }{(K_m \pp{u}{z})} |
892 |
|
|
\] |
893 |
|
|
|
894 |
|
|
\noindent |
895 |
|
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
896 |
|
|
flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion |
897 |
|
|
equation. |
898 |
|
|
|
899 |
|
|
\noindent |
900 |
|
|
{\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) } |
901 |
|
|
|
902 |
|
|
\noindent |
903 |
|
|
The tendency of V-Momentum due to turbulence is written: |
904 |
|
|
\[ |
905 |
|
|
{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} |
906 |
|
|
= {\pp{}{z} }{(K_m \pp{v}{z})} |
907 |
|
|
\] |
908 |
|
|
|
909 |
|
|
\noindent |
910 |
|
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
911 |
|
|
flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion |
912 |
|
|
equation. |
913 |
|
|
\\ |
914 |
|
|
|
915 |
|
|
\noindent |
916 |
|
|
{\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) } |
917 |
|
|
|
918 |
|
|
\noindent |
919 |
|
|
The tendency of temperature due to turbulence is written: |
920 |
|
|
\[ |
921 |
|
|
{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} = |
922 |
|
|
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} |
923 |
|
|
= P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} |
924 |
|
|
\] |
925 |
|
|
|
926 |
|
|
\noindent |
927 |
|
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
928 |
|
|
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
929 |
|
|
equation. |
930 |
|
|
\\ |
931 |
|
|
|
932 |
|
|
\noindent |
933 |
|
|
{\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) } |
934 |
|
|
|
935 |
|
|
\noindent |
936 |
|
|
The tendency of specific humidity due to turbulence is written: |
937 |
|
|
\[ |
938 |
|
|
{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} |
939 |
|
|
= {\pp{}{z} }{(K_h \pp{q}{z})} |
940 |
|
|
\] |
941 |
|
|
|
942 |
|
|
\noindent |
943 |
|
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
944 |
|
|
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
945 |
|
|
equation. |
946 |
|
|
\\ |
947 |
|
|
|
948 |
|
|
\noindent |
949 |
|
|
{\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) } |
950 |
|
|
|
951 |
|
|
\noindent |
952 |
|
|
\[ |
953 |
|
|
{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls} |
954 |
|
|
\] |
955 |
|
|
where: |
956 |
|
|
\[ |
957 |
|
|
\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i |
958 |
|
|
\hspace{.4cm} and |
959 |
|
|
\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q) |
960 |
|
|
\] |
961 |
|
|
and |
962 |
|
|
\[ |
963 |
|
|
\Gamma_s = g \eta \pp{s}{p} |
964 |
|
|
\] |
965 |
|
|
|
966 |
|
|
\noindent |
967 |
|
|
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
968 |
|
|
precipitation processes, or supersaturation rain. |
969 |
|
|
The summation refers to contributions from each cloud type called by RAS. |
970 |
|
|
The dry static energy is given |
971 |
|
|
as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
972 |
|
|
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
973 |
|
|
the description of the convective parameterization. The fractional adjustment, or relaxation |
974 |
|
|
parameter, for each cloud type is given as $\alpha$, while |
975 |
|
|
$R$ is the rain re-evaporation adjustment. |
976 |
|
|
\\ |
977 |
|
|
|
978 |
|
|
\noindent |
979 |
|
|
{\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) } |
980 |
|
|
|
981 |
|
|
\noindent |
982 |
|
|
\[ |
983 |
|
|
{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls} |
984 |
|
|
\] |
985 |
|
|
where: |
986 |
|
|
\[ |
987 |
|
|
\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i |
988 |
|
|
\hspace{.4cm} and |
989 |
|
|
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) |
990 |
|
|
\] |
991 |
|
|
and |
992 |
|
|
\[ |
993 |
|
|
\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p} |
994 |
|
|
\] |
995 |
|
|
\noindent |
996 |
|
|
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
997 |
|
|
precipitation processes, or supersaturation rain. |
998 |
|
|
The summation refers to contributions from each cloud type called by RAS. |
999 |
|
|
The dry static energy is given as $s$, |
1000 |
|
|
the moist static energy is given as $h$, |
1001 |
|
|
the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
1002 |
|
|
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
1003 |
|
|
the description of the convective parameterization. The fractional adjustment, or relaxation |
1004 |
|
|
parameter, for each cloud type is given as $\alpha$, while |
1005 |
|
|
$R$ is the rain re-evaporation adjustment. |
1006 |
|
|
\\ |
1007 |
|
|
|
1008 |
|
|
\noindent |
1009 |
|
|
{\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) } |
1010 |
|
|
|
1011 |
|
|
\noindent |
1012 |
|
|
The net longwave heating rate is calculated as the vertical divergence of the |
1013 |
|
|
net terrestrial radiative fluxes. |
1014 |
|
|
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
1015 |
|
|
longwave routine. |
1016 |
|
|
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
1017 |
|
|
For a given cloud fraction, |
1018 |
|
|
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
1019 |
|
|
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
1020 |
|
|
for the upward and downward radiative fluxes. |
1021 |
|
|
(see Section \ref{sec:fizhi:radcloud}). |
1022 |
|
|
The cloudy-sky flux is then obtained as: |
1023 |
|
|
|
1024 |
|
|
\noindent |
1025 |
|
|
\[ |
1026 |
|
|
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
1027 |
|
|
\] |
1028 |
|
|
|
1029 |
|
|
\noindent |
1030 |
|
|
Finally, the net longwave heating rate is calculated as the vertical divergence of the |
1031 |
|
|
net terrestrial radiative fluxes: |
1032 |
|
|
\[ |
1033 |
|
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} , |
1034 |
|
|
\] |
1035 |
|
|
or |
1036 |
|
|
\[ |
1037 |
|
|
{\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} . |
1038 |
|
|
\] |
1039 |
|
|
|
1040 |
|
|
\noindent |
1041 |
|
|
where $g$ is the accelation due to gravity, |
1042 |
|
|
$c_p$ is the heat capacity of air at constant pressure, |
1043 |
|
|
and |
1044 |
|
|
\[ |
1045 |
|
|
F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow |
1046 |
|
|
\] |
1047 |
|
|
\\ |
1048 |
|
|
|
1049 |
|
|
|
1050 |
|
|
\noindent |
1051 |
|
|
{\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) } |
1052 |
|
|
|
1053 |
|
|
\noindent |
1054 |
|
|
The net Shortwave heating rate is calculated as the vertical divergence of the |
1055 |
|
|
net solar radiative fluxes. |
1056 |
|
|
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
1057 |
|
|
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
1058 |
|
|
both CLMO (maximum overlap cloud fraction) and |
1059 |
|
|
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
1060 |
|
|
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
1061 |
|
|
true time-averaged cloud fractions CLMO |
1062 |
|
|
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
1063 |
|
|
input at the top of the atmosphere. |
1064 |
|
|
|
1065 |
|
|
\noindent |
1066 |
|
|
The heating rate due to Shortwave Radiation under cloudy skies is defined as: |
1067 |
|
|
\[ |
1068 |
|
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, |
1069 |
|
|
\] |
1070 |
|
|
or |
1071 |
|
|
\[ |
1072 |
|
|
{\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . |
1073 |
|
|
\] |
1074 |
|
|
|
1075 |
|
|
\noindent |
1076 |
|
|
where $g$ is the accelation due to gravity, |
1077 |
|
|
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
1078 |
|
|
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
1079 |
|
|
\[ |
1080 |
|
|
F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow |
1081 |
|
|
\] |
1082 |
|
|
\\ |
1083 |
|
|
|
1084 |
|
|
\noindent |
1085 |
|
|
{\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) } |
1086 |
|
|
|
1087 |
|
|
\noindent |
1088 |
|
|
For a change in specific humidity due to moist processes, $\Delta q_{moist}$, |
1089 |
|
|
the vertical integral or total precipitable amount is given by: |
1090 |
|
|
\[ |
1091 |
|
|
{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist} |
1092 |
|
|
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp |
1093 |
|
|
\] |
1094 |
|
|
\\ |
1095 |
|
|
|
1096 |
|
|
\noindent |
1097 |
|
|
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1098 |
|
|
time step, scaled to $mm/day$. |
1099 |
|
|
\\ |
1100 |
|
|
|
1101 |
|
|
\noindent |
1102 |
|
|
{\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) } |
1103 |
|
|
|
1104 |
|
|
\noindent |
1105 |
|
|
For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$, |
1106 |
|
|
the vertical integral or total precipitable amount is given by: |
1107 |
|
|
\[ |
1108 |
|
|
{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum} |
1109 |
|
|
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp |
1110 |
|
|
\] |
1111 |
|
|
\\ |
1112 |
|
|
|
1113 |
|
|
\noindent |
1114 |
|
|
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1115 |
|
|
time step, scaled to $mm/day$. |
1116 |
|
|
\\ |
1117 |
|
|
|
1118 |
|
|
\noindent |
1119 |
|
|
{\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) } |
1120 |
|
|
|
1121 |
|
|
\noindent |
1122 |
|
|
The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1123 |
|
|
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1124 |
|
|
|
1125 |
|
|
\[ |
1126 |
|
|
{\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} = |
1127 |
|
|
{\rho } {(- K_m \pp{U}{z})} |
1128 |
|
|
\] |
1129 |
|
|
|
1130 |
|
|
\noindent |
1131 |
|
|
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1132 |
|
|
\\ |
1133 |
|
|
|
1134 |
|
|
\noindent |
1135 |
|
|
{\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) } |
1136 |
|
|
|
1137 |
|
|
\noindent |
1138 |
|
|
The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1139 |
|
|
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1140 |
|
|
|
1141 |
|
|
\[ |
1142 |
|
|
{\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} = |
1143 |
|
|
{\rho } {(- K_m \pp{V}{z})} |
1144 |
|
|
\] |
1145 |
|
|
|
1146 |
|
|
\noindent |
1147 |
|
|
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1148 |
|
|
\\ |
1149 |
|
|
|
1150 |
|
|
|
1151 |
|
|
\noindent |
1152 |
|
|
{\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) } |
1153 |
|
|
|
1154 |
|
|
\noindent |
1155 |
|
|
The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes |
1156 |
|
|
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1157 |
|
|
|
1158 |
|
|
\noindent |
1159 |
|
|
\[ |
1160 |
|
|
{\bf TTFLUX} = c_p {\rho } |
1161 |
|
|
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})} |
1162 |
|
|
= c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})} |
1163 |
|
|
\] |
1164 |
|
|
|
1165 |
|
|
\noindent |
1166 |
|
|
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
1167 |
|
|
\\ |
1168 |
|
|
|
1169 |
|
|
|
1170 |
|
|
\noindent |
1171 |
|
|
{\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) } |
1172 |
|
|
|
1173 |
|
|
\noindent |
1174 |
|
|
The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes |
1175 |
|
|
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1176 |
|
|
|
1177 |
|
|
\noindent |
1178 |
|
|
\[ |
1179 |
|
|
{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} = |
1180 |
|
|
{L {\rho }(- K_h \pp{q}{z})} |
1181 |
|
|
\] |
1182 |
|
|
|
1183 |
|
|
\noindent |
1184 |
|
|
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
1185 |
|
|
\\ |
1186 |
|
|
|
1187 |
|
|
|
1188 |
|
|
\noindent |
1189 |
|
|
{\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) } |
1190 |
|
|
|
1191 |
|
|
\noindent |
1192 |
|
|
The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: |
1193 |
|
|
\[ |
1194 |
|
|
{\bf CN} = { k \over { \ln({h \over {z_0}})} } |
1195 |
|
|
\] |
1196 |
|
|
|
1197 |
|
|
\noindent |
1198 |
|
|
where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and |
1199 |
|
|
$z_0$ is the surface roughness. |
1200 |
|
|
|
1201 |
|
|
\noindent |
1202 |
|
|
NOTE: CN is not available through model version 5.3, but is available in subsequent |
1203 |
|
|
versions. |
1204 |
|
|
\\ |
1205 |
|
|
|
1206 |
|
|
\noindent |
1207 |
|
|
{\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) } |
1208 |
|
|
|
1209 |
|
|
\noindent |
1210 |
|
|
The surface wind speed is calculated for the last internal turbulence time step: |
1211 |
|
|
\[ |
1212 |
|
|
{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2} |
1213 |
|
|
\] |
1214 |
|
|
|
1215 |
|
|
\noindent |
1216 |
|
|
where the subscript $Nrphys$ refers to the lowest model level. |
1217 |
|
|
\\ |
1218 |
|
|
|
1219 |
|
|
\noindent |
1220 |
|
|
{\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) } |
1221 |
|
|
|
1222 |
|
|
\noindent |
1223 |
|
|
The air/surface virtual temperature difference measures the stability of the surface layer: |
1224 |
|
|
\[ |
1225 |
|
|
{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf} |
1226 |
|
|
\] |
1227 |
|
|
\noindent |
1228 |
|
|
where |
1229 |
|
|
\[ |
1230 |
|
|
\theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} |
1231 |
|
|
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
1232 |
|
|
\] |
1233 |
|
|
|
1234 |
|
|
\noindent |
1235 |
|
|
$\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
1236 |
|
|
$q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature |
1237 |
|
|
and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$ |
1238 |
|
|
refers to the surface. |
1239 |
|
|
\\ |
1240 |
|
|
|
1241 |
|
|
|
1242 |
|
|
\noindent |
1243 |
|
|
{\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) } |
1244 |
|
|
|
1245 |
|
|
\noindent |
1246 |
|
|
The ground temperature equation is solved as part of the turbulence package |
1247 |
|
|
using a backward implicit time differencing scheme: |
1248 |
|
|
\[ |
1249 |
|
|
{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm} |
1250 |
|
|
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE |
1251 |
|
|
\] |
1252 |
|
|
|
1253 |
|
|
\noindent |
1254 |
|
|
where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the |
1255 |
|
|
net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through |
1256 |
|
|
sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat |
1257 |
|
|
flux, and $C_g$ is the total heat capacity of the ground. |
1258 |
|
|
$C_g$ is obtained by solving a heat diffusion equation |
1259 |
|
|
for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: |
1260 |
|
|
\[ |
1261 |
|
|
C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} |
1262 |
|
|
{ 86400. \over {2 \pi} } } \, \, . |
1263 |
|
|
\] |
1264 |
|
|
\noindent |
1265 |
|
|
Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}} |
1266 |
|
|
{cm \over {^oK}}$, |
1267 |
|
|
the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided |
1268 |
|
|
by $2 \pi$ $radians/ |
1269 |
|
|
day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, |
1270 |
|
|
is a function of the ground wetness, $W$. |
1271 |
|
|
\\ |
1272 |
|
|
|
1273 |
|
|
\noindent |
1274 |
|
|
{\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) } |
1275 |
|
|
|
1276 |
|
|
\noindent |
1277 |
|
|
The surface temperature estimate is made by assuming that the model's lowest |
1278 |
|
|
layer is well-mixed, and therefore that $\theta$ is constant in that layer. |
1279 |
|
|
The surface temperature is therefore: |
1280 |
|
|
\[ |
1281 |
|
|
{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf} |
1282 |
|
|
\] |
1283 |
|
|
\\ |
1284 |
|
|
|
1285 |
|
|
\noindent |
1286 |
|
|
{\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) } |
1287 |
|
|
|
1288 |
|
|
\noindent |
1289 |
|
|
The change in surface temperature from one turbulence time step to the next, solved |
1290 |
|
|
using the Ground Temperature Equation (see diagnostic number 30) is calculated: |
1291 |
|
|
\[ |
1292 |
|
|
{\bf DTG} = {T_g}^{n} - {T_g}^{n-1} |
1293 |
|
|
\] |
1294 |
|
|
|
1295 |
|
|
\noindent |
1296 |
|
|
where superscript $n$ refers to the new, updated time level, and the superscript $n-1$ |
1297 |
|
|
refers to the value at the previous turbulence time level. |
1298 |
|
|
\\ |
1299 |
|
|
|
1300 |
|
|
\noindent |
1301 |
|
|
{\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) } |
1302 |
|
|
|
1303 |
|
|
\noindent |
1304 |
|
|
The ground specific humidity is obtained by interpolating between the specific |
1305 |
|
|
humidity at the lowest model level and the specific humidity of a saturated ground. |
1306 |
|
|
The interpolation is performed using the potential evapotranspiration function: |
1307 |
|
|
\[ |
1308 |
|
|
{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
1309 |
|
|
\] |
1310 |
|
|
|
1311 |
|
|
\noindent |
1312 |
|
|
where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
1313 |
|
|
and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface |
1314 |
|
|
pressure. |
1315 |
|
|
\\ |
1316 |
|
|
|
1317 |
|
|
\noindent |
1318 |
|
|
{\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) } |
1319 |
|
|
|
1320 |
|
|
\noindent |
1321 |
|
|
The surface saturation specific humidity is the saturation specific humidity at |
1322 |
|
|
the ground temprature and surface pressure: |
1323 |
|
|
\[ |
1324 |
|
|
{\bf QS} = q^*(T_g,P_s) |
1325 |
|
|
\] |
1326 |
|
|
\\ |
1327 |
|
|
|
1328 |
|
|
\noindent |
1329 |
|
|
{\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave |
1330 |
|
|
radiation subroutine (deg)} |
1331 |
|
|
\[ |
1332 |
|
|
{\bf TGRLW} = T_g(\lambda , \phi ,n) |
1333 |
|
|
\] |
1334 |
|
|
\noindent |
1335 |
|
|
where $T_g$ is the model ground temperature at the current time step $n$. |
1336 |
|
|
\\ |
1337 |
|
|
|
1338 |
|
|
|
1339 |
|
|
\noindent |
1340 |
|
|
{\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) } |
1341 |
|
|
\[ |
1342 |
|
|
{\bf ST4} = \sigma T^4 |
1343 |
|
|
\] |
1344 |
|
|
\noindent |
1345 |
|
|
where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature. |
1346 |
|
|
\\ |
1347 |
|
|
|
1348 |
|
|
\noindent |
1349 |
|
|
{\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
1350 |
|
|
\[ |
1351 |
|
|
{\bf OLR} = F_{LW,top}^{NET} |
1352 |
|
|
\] |
1353 |
|
|
\noindent |
1354 |
|
|
where top indicates the top of the first model layer. |
1355 |
|
|
In the GCM, $p_{top}$ = 0.0 mb. |
1356 |
|
|
\\ |
1357 |
|
|
|
1358 |
|
|
|
1359 |
|
|
\noindent |
1360 |
|
|
{\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
1361 |
|
|
\[ |
1362 |
|
|
{\bf OLRCLR} = F(clearsky)_{LW,top}^{NET} |
1363 |
|
|
\] |
1364 |
|
|
\noindent |
1365 |
|
|
where top indicates the top of the first model layer. |
1366 |
|
|
In the GCM, $p_{top}$ = 0.0 mb. |
1367 |
|
|
\\ |
1368 |
|
|
|
1369 |
|
|
\noindent |
1370 |
|
|
{\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) } |
1371 |
|
|
|
1372 |
|
|
\noindent |
1373 |
|
|
\begin{eqnarray*} |
1374 |
|
|
{\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\ |
1375 |
|
|
& = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow |
1376 |
|
|
\end{eqnarray*} |
1377 |
|
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1378 |
|
|
$F(clearsky)_{LW}^\uparrow$ is |
1379 |
|
|
the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux. |
1380 |
|
|
\\ |
1381 |
|
|
|
1382 |
|
|
\noindent |
1383 |
|
|
{\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) } |
1384 |
|
|
|
1385 |
|
|
\noindent |
1386 |
|
|
The net longwave heating rate is calculated as the vertical divergence of the |
1387 |
|
|
net terrestrial radiative fluxes. |
1388 |
|
|
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
1389 |
|
|
longwave routine. |
1390 |
|
|
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
1391 |
|
|
For a given cloud fraction, |
1392 |
|
|
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
1393 |
|
|
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
1394 |
|
|
for the upward and downward radiative fluxes. |
1395 |
|
|
(see Section \ref{sec:fizhi:radcloud}). |
1396 |
|
|
The cloudy-sky flux is then obtained as: |
1397 |
|
|
|
1398 |
|
|
\noindent |
1399 |
|
|
\[ |
1400 |
|
|
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
1401 |
|
|
\] |
1402 |
|
|
|
1403 |
|
|
\noindent |
1404 |
|
|
Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the |
1405 |
|
|
vertical divergence of the |
1406 |
|
|
clear-sky longwave radiative flux: |
1407 |
|
|
\[ |
1408 |
|
|
\pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} , |
1409 |
|
|
\] |
1410 |
|
|
or |
1411 |
|
|
\[ |
1412 |
|
|
{\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} . |
1413 |
|
|
\] |
1414 |
|
|
|
1415 |
|
|
\noindent |
1416 |
|
|
where $g$ is the accelation due to gravity, |
1417 |
|
|
$c_p$ is the heat capacity of air at constant pressure, |
1418 |
|
|
and |
1419 |
|
|
\[ |
1420 |
|
|
F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow |
1421 |
|
|
\] |
1422 |
|
|
\\ |
1423 |
|
|
|
1424 |
|
|
|
1425 |
|
|
\noindent |
1426 |
|
|
{\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave |
1427 |
|
|
radiation subroutine (deg)} |
1428 |
|
|
\[ |
1429 |
|
|
{\bf TLW} = T(\lambda , \phi ,level, n) |
1430 |
|
|
\] |
1431 |
|
|
\noindent |
1432 |
|
|
where $T$ is the model temperature at the current time step $n$. |
1433 |
|
|
\\ |
1434 |
|
|
|
1435 |
|
|
|
1436 |
|
|
\noindent |
1437 |
|
|
{\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to |
1438 |
|
|
the Longwave radiation subroutine (kg/kg)} |
1439 |
|
|
\[ |
1440 |
|
|
{\bf SHLW} = q(\lambda , \phi , level , n) |
1441 |
|
|
\] |
1442 |
|
|
\noindent |
1443 |
|
|
where $q$ is the model specific humidity at the current time step $n$. |
1444 |
|
|
\\ |
1445 |
|
|
|
1446 |
|
|
|
1447 |
|
|
\noindent |
1448 |
|
|
{\bf 43) \underline {OZLW} Instantaneous ozone used as input to |
1449 |
|
|
the Longwave radiation subroutine (kg/kg)} |
1450 |
|
|
\[ |
1451 |
|
|
{\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n) |
1452 |
|
|
\] |
1453 |
|
|
\noindent |
1454 |
|
|
where $\rm OZ$ is the interpolated ozone data set from the climatological monthly |
1455 |
|
|
mean zonally averaged ozone data set. |
1456 |
|
|
\\ |
1457 |
|
|
|
1458 |
|
|
|
1459 |
|
|
\noindent |
1460 |
|
|
{\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) } |
1461 |
|
|
|
1462 |
|
|
\noindent |
1463 |
|
|
{\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
1464 |
|
|
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are |
1465 |
|
|
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
1466 |
|
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1467 |
|
|
\[ |
1468 |
|
|
{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level ) |
1469 |
|
|
\] |
1470 |
|
|
\\ |
1471 |
|
|
|
1472 |
|
|
|
1473 |
|
|
{\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) } |
1474 |
|
|
|
1475 |
|
|
{\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed |
1476 |
|
|
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave |
1477 |
|
|
Radiation packages. |
1478 |
|
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1479 |
|
|
\[ |
1480 |
|
|
{\bf CLDTOT} = F_{RAS} + F_{LS} |
1481 |
|
|
\] |
1482 |
|
|
\\ |
1483 |
|
|
where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the |
1484 |
|
|
time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes. |
1485 |
|
|
\\ |
1486 |
|
|
|
1487 |
|
|
|
1488 |
|
|
\noindent |
1489 |
|
|
{\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) } |
1490 |
|
|
|
1491 |
|
|
\noindent |
1492 |
|
|
{\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
1493 |
|
|
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are |
1494 |
|
|
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
1495 |
|
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1496 |
|
|
\[ |
1497 |
|
|
{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level ) |
1498 |
|
|
\] |
1499 |
|
|
\\ |
1500 |
|
|
|
1501 |
|
|
\noindent |
1502 |
|
|
{\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) } |
1503 |
|
|
|
1504 |
|
|
\noindent |
1505 |
|
|
{\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed |
1506 |
|
|
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave |
1507 |
|
|
Radiation algorithm. These are |
1508 |
|
|
convective and large-scale clouds whose radiative characteristics are not |
1509 |
|
|
assumed to be correlated in the vertical. |
1510 |
|
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1511 |
|
|
\[ |
1512 |
|
|
{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level ) |
1513 |
|
|
\] |
1514 |
|
|
\\ |
1515 |
|
|
|
1516 |
|
|
\noindent |
1517 |
|
|
{\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) } |
1518 |
|
|
\[ |
1519 |
|
|
{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z |
1520 |
|
|
\] |
1521 |
|
|
\noindent |
1522 |
|
|
where $S_0$, is the extra-terrestial solar contant, |
1523 |
|
|
$R_a$ is the earth-sun distance in Astronomical Units, |
1524 |
|
|
and $cos \phi_z$ is the cosine of the zenith angle. |
1525 |
|
|
It should be noted that {\bf RADSWT}, as well as |
1526 |
|
|
{\bf OSR} and {\bf OSRCLR}, |
1527 |
|
|
are calculated at the top of the atmosphere (p=0 mb). However, the |
1528 |
|
|
{\bf OLR} and {\bf OLRCLR} diagnostics are currently |
1529 |
|
|
calculated at $p= p_{top}$ (0.0 mb for the GCM). |
1530 |
|
|
\\ |
1531 |
|
|
|
1532 |
|
|
\noindent |
1533 |
|
|
{\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) } |
1534 |
|
|
|
1535 |
|
|
\noindent |
1536 |
|
|
The surface evaporation is a function of the gradient of moisture, the potential |
1537 |
|
|
evapotranspiration fraction and the eddy exchange coefficient: |
1538 |
|
|
\[ |
1539 |
|
|
{\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys}) |
1540 |
|
|
\] |
1541 |
|
|
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
1542 |
|
|
the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the |
1543 |
|
|
turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and |
1544 |
|
|
$q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic |
1545 |
|
|
number 34) and at the bottom model level, respectively. |
1546 |
|
|
\\ |
1547 |
|
|
|
1548 |
|
|
\noindent |
1549 |
|
|
{\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) } |
1550 |
|
|
|
1551 |
|
|
\noindent |
1552 |
|
|
{\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, |
1553 |
|
|
and Analysis forcing. |
1554 |
|
|
\[ |
1555 |
|
|
{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
1556 |
|
|
\] |
1557 |
|
|
\\ |
1558 |
|
|
|
1559 |
|
|
\noindent |
1560 |
|
|
{\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) } |
1561 |
|
|
|
1562 |
|
|
\noindent |
1563 |
|
|
{\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, |
1564 |
|
|
and Analysis forcing. |
1565 |
|
|
\[ |
1566 |
|
|
{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
1567 |
|
|
\] |
1568 |
|
|
\\ |
1569 |
|
|
|
1570 |
|
|
\noindent |
1571 |
|
|
{\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) } |
1572 |
|
|
|
1573 |
|
|
\noindent |
1574 |
|
|
{\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, |
1575 |
|
|
and Analysis forcing. |
1576 |
|
|
\begin{eqnarray*} |
1577 |
|
|
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
1578 |
|
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
1579 |
|
|
\end{eqnarray*} |
1580 |
|
|
\\ |
1581 |
|
|
|
1582 |
|
|
\noindent |
1583 |
|
|
{\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) } |
1584 |
|
|
|
1585 |
|
|
\noindent |
1586 |
|
|
{\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, |
1587 |
|
|
and Analysis forcing. |
1588 |
|
|
\[ |
1589 |
|
|
{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes} |
1590 |
|
|
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
1591 |
|
|
\] |
1592 |
|
|
\\ |
1593 |
|
|
|
1594 |
|
|
\noindent |
1595 |
|
|
{\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) } |
1596 |
|
|
|
1597 |
|
|
\noindent |
1598 |
|
|
The surface stress velocity, or the friction velocity, is the wind speed at |
1599 |
|
|
the surface layer top impeded by the surface drag: |
1600 |
|
|
\[ |
1601 |
|
|
{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} |
1602 |
|
|
C_u = {k \over {\psi_m} } |
1603 |
|
|
\] |
1604 |
|
|
|
1605 |
|
|
\noindent |
1606 |
|
|
$C_u$ is the non-dimensional surface drag coefficient (see diagnostic |
1607 |
|
|
number 10), and $W_s$ is the surface wind speed (see diagnostic number 28). |
1608 |
|
|
|
1609 |
|
|
\noindent |
1610 |
|
|
{\bf 55) \underline {Z0} Surface Roughness Length ($m$) } |
1611 |
|
|
|
1612 |
|
|
\noindent |
1613 |
|
|
Over the land surface, the surface roughness length is interpolated to the local |
1614 |
|
|
time from the monthly mean data of Dorman and Sellers (1989). Over the ocean, |
1615 |
|
|
the roughness length is a function of the surface-stress velocity, $u_*$. |
1616 |
|
|
\[ |
1617 |
|
|
{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} |
1618 |
|
|
\] |
1619 |
|
|
|
1620 |
|
|
\noindent |
1621 |
|
|
where the constants are chosen to interpolate between the reciprocal relation of |
1622 |
|
|
Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) |
1623 |
|
|
for moderate to large winds. |
1624 |
|
|
\\ |
1625 |
|
|
|
1626 |
|
|
\noindent |
1627 |
|
|
{\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) } |
1628 |
|
|
|
1629 |
|
|
\noindent |
1630 |
|
|
The fraction of time when turbulence is present is defined as the fraction of |
1631 |
|
|
time when the turbulent kinetic energy exceeds some minimum value, defined here |
1632 |
|
|
to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is |
1633 |
|
|
incremented. The fraction over the averaging interval is reported. |
1634 |
|
|
\\ |
1635 |
|
|
|
1636 |
|
|
\noindent |
1637 |
|
|
{\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) } |
1638 |
|
|
|
1639 |
|
|
\noindent |
1640 |
|
|
The depth of the PBL is defined by the turbulence parameterization to be the |
1641 |
|
|
depth at which the turbulent kinetic energy reduces to ten percent of its surface |
1642 |
|
|
value. |
1643 |
|
|
|
1644 |
|
|
\[ |
1645 |
|
|
{\bf PBL} = P_{PBL} - P_{surface} |
1646 |
|
|
\] |
1647 |
|
|
|
1648 |
|
|
\noindent |
1649 |
|
|
where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy |
1650 |
|
|
reaches one tenth of its surface value, and $P_s$ is the surface pressure. |
1651 |
|
|
\\ |
1652 |
|
|
|
1653 |
|
|
\noindent |
1654 |
|
|
{\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) } |
1655 |
|
|
|
1656 |
|
|
\noindent |
1657 |
|
|
The net Shortwave heating rate is calculated as the vertical divergence of the |
1658 |
|
|
net solar radiative fluxes. |
1659 |
|
|
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
1660 |
|
|
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
1661 |
|
|
both CLMO (maximum overlap cloud fraction) and |
1662 |
|
|
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
1663 |
|
|
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
1664 |
|
|
true time-averaged cloud fractions CLMO |
1665 |
|
|
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
1666 |
|
|
input at the top of the atmosphere. |
1667 |
|
|
|
1668 |
|
|
\noindent |
1669 |
|
|
The heating rate due to Shortwave Radiation under clear skies is defined as: |
1670 |
|
|
\[ |
1671 |
|
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, |
1672 |
|
|
\] |
1673 |
|
|
or |
1674 |
|
|
\[ |
1675 |
|
|
{\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . |
1676 |
|
|
\] |
1677 |
|
|
|
1678 |
|
|
\noindent |
1679 |
|
|
where $g$ is the accelation due to gravity, |
1680 |
|
|
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
1681 |
|
|
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
1682 |
|
|
\[ |
1683 |
|
|
F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow |
1684 |
|
|
\] |
1685 |
|
|
\\ |
1686 |
|
|
|
1687 |
|
|
\noindent |
1688 |
|
|
{\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) } |
1689 |
|
|
\[ |
1690 |
|
|
{\bf OSR} = F_{SW,top}^{NET} |
1691 |
|
|
\] |
1692 |
|
|
\noindent |
1693 |
|
|
where top indicates the top of the first model layer used in the shortwave radiation |
1694 |
|
|
routine. |
1695 |
|
|
In the GCM, $p_{SW_{top}}$ = 0 mb. |
1696 |
|
|
\\ |
1697 |
|
|
|
1698 |
|
|
\noindent |
1699 |
|
|
{\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) } |
1700 |
|
|
\[ |
1701 |
|
|
{\bf OSRCLR} = F(clearsky)_{SW,top}^{NET} |
1702 |
|
|
\] |
1703 |
|
|
\noindent |
1704 |
|
|
where top indicates the top of the first model layer used in the shortwave radiation |
1705 |
|
|
routine. |
1706 |
|
|
In the GCM, $p_{SW_{top}}$ = 0 mb. |
1707 |
|
|
\\ |
1708 |
|
|
|
1709 |
|
|
|
1710 |
|
|
\noindent |
1711 |
|
|
{\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) } |
1712 |
|
|
|
1713 |
|
|
\noindent |
1714 |
|
|
The amount of cloud mass moved per RAS timestep from all convective clouds is written: |
1715 |
|
|
\[ |
1716 |
|
|
{\bf CLDMAS} = \eta m_B |
1717 |
|
|
\] |
1718 |
|
|
where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is |
1719 |
|
|
the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the |
1720 |
|
|
description of the convective parameterization. |
1721 |
|
|
\\ |
1722 |
|
|
|
1723 |
|
|
|
1724 |
|
|
|
1725 |
|
|
\noindent |
1726 |
|
|
{\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) } |
1727 |
|
|
|
1728 |
|
|
\noindent |
1729 |
|
|
The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over |
1730 |
|
|
the {\bf NUAVE} output frequency. This is contrasted to the instantaneous |
1731 |
|
|
Zonal U-Wind which is archived on the Prognostic Output data stream. |
1732 |
|
|
\[ |
1733 |
|
|
{\bf UAVE} = u(\lambda, \phi, level , t) |
1734 |
|
|
\] |
1735 |
|
|
\\ |
1736 |
|
|
Note, {\bf UAVE} is computed and stored on the staggered C-grid. |
1737 |
|
|
\\ |
1738 |
|
|
|
1739 |
|
|
\noindent |
1740 |
|
|
{\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) } |
1741 |
|
|
|
1742 |
|
|
\noindent |
1743 |
|
|
The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over |
1744 |
|
|
the {\bf NVAVE} output frequency. This is contrasted to the instantaneous |
1745 |
|
|
Meridional V-Wind which is archived on the Prognostic Output data stream. |
1746 |
|
|
\[ |
1747 |
|
|
{\bf VAVE} = v(\lambda, \phi, level , t) |
1748 |
|
|
\] |
1749 |
|
|
\\ |
1750 |
|
|
Note, {\bf VAVE} is computed and stored on the staggered C-grid. |
1751 |
|
|
\\ |
1752 |
|
|
|
1753 |
|
|
\noindent |
1754 |
|
|
{\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) } |
1755 |
|
|
|
1756 |
|
|
\noindent |
1757 |
|
|
The diagnostic {\bf TAVE} is simply the time-averaged Temperature over |
1758 |
|
|
the {\bf NTAVE} output frequency. This is contrasted to the instantaneous |
1759 |
|
|
Temperature which is archived on the Prognostic Output data stream. |
1760 |
|
|
\[ |
1761 |
|
|
{\bf TAVE} = T(\lambda, \phi, level , t) |
1762 |
|
|
\] |
1763 |
|
|
\\ |
1764 |
|
|
|
1765 |
|
|
\noindent |
1766 |
|
|
{\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) } |
1767 |
|
|
|
1768 |
|
|
\noindent |
1769 |
|
|
The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over |
1770 |
|
|
the {\bf NQAVE} output frequency. This is contrasted to the instantaneous |
1771 |
|
|
Specific Humidity which is archived on the Prognostic Output data stream. |
1772 |
|
|
\[ |
1773 |
|
|
{\bf QAVE} = q(\lambda, \phi, level , t) |
1774 |
|
|
\] |
1775 |
|
|
\\ |
1776 |
|
|
|
1777 |
|
|
\noindent |
1778 |
|
|
{\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) } |
1779 |
|
|
|
1780 |
|
|
\noindent |
1781 |
|
|
The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over |
1782 |
|
|
the {\bf NPAVE} output frequency. This is contrasted to the instantaneous |
1783 |
|
|
Surface Pressure - PTOP which is archived on the Prognostic Output data stream. |
1784 |
|
|
\begin{eqnarray*} |
1785 |
|
|
{\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\ |
1786 |
|
|
& = & p_s(\lambda, \phi, level , t) - p_T |
1787 |
|
|
\end{eqnarray*} |
1788 |
|
|
\\ |
1789 |
|
|
|
1790 |
|
|
|
1791 |
|
|
\noindent |
1792 |
|
|
{\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ } |
1793 |
|
|
|
1794 |
|
|
\noindent |
1795 |
|
|
The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy |
1796 |
|
|
produced by the GCM Turbulence parameterization over |
1797 |
|
|
the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous |
1798 |
|
|
Turbulent Kinetic Energy which is archived on the Prognostic Output data stream. |
1799 |
|
|
\[ |
1800 |
|
|
{\bf QQAVE} = qq(\lambda, \phi, level , t) |
1801 |
|
|
\] |
1802 |
|
|
\\ |
1803 |
|
|
Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid. |
1804 |
|
|
\\ |
1805 |
|
|
|
1806 |
|
|
\noindent |
1807 |
|
|
{\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) } |
1808 |
|
|
|
1809 |
|
|
\noindent |
1810 |
|
|
\begin{eqnarray*} |
1811 |
|
|
{\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\ |
1812 |
|
|
& = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow |
1813 |
|
|
\end{eqnarray*} |
1814 |
|
|
\noindent |
1815 |
|
|
\\ |
1816 |
|
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1817 |
|
|
$F(clearsky){SW}^\downarrow$ is |
1818 |
|
|
the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is |
1819 |
|
|
the upward clearsky Shortwave flux. |
1820 |
|
|
\\ |
1821 |
|
|
|
1822 |
|
|
\noindent |
1823 |
|
|
{\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 } |
1824 |
|
|
|
1825 |
|
|
\noindent |
1826 |
|
|
The GCM provides Users with a built-in mechanism for archiving user-defined |
1827 |
|
|
diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated |
1828 |
|
|
diagnostic counters and pointers located in COMMON /DIAGP/, |
1829 |
|
|
must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}). |
1830 |
|
|
A convenient method for incorporating all necessary COMMON files is to |
1831 |
|
|
include the GCM {\em vstate.com} file in the routine which employs the |
1832 |
|
|
user-defined diagnostics. |
1833 |
|
|
|
1834 |
|
|
\noindent |
1835 |
|
|
In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill |
1836 |
|
|
the QDIAG array with the desired quantity within the User's |
1837 |
|
|
application program or within modified GCM subroutines, as well as increment |
1838 |
|
|
the diagnostic counter at the time when the diagnostic is updated. |
1839 |
|
|
The QDIAG location index for {\bf SDIAG1} and its corresponding counter is |
1840 |
|
|
automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the |
1841 |
|
|
diagnostic has been enabled. |
1842 |
|
|
The syntax for its use is given by |
1843 |
|
|
\begin{verbatim} |
1844 |
|
|
do j=1,jm |
1845 |
|
|
do i=1,im |
1846 |
|
|
qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ... |
1847 |
|
|
enddo |
1848 |
|
|
enddo |
1849 |
|
|
|
1850 |
|
|
NSDIAG1 = NSDIAG1 + 1 |
1851 |
|
|
\end{verbatim} |
1852 |
|
|
The diagnostics defined in this manner will automatically be archived by the output routines. |
1853 |
|
|
\\ |
1854 |
|
|
|
1855 |
|
|
\noindent |
1856 |
|
|
{\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 } |
1857 |
|
|
|
1858 |
|
|
\noindent |
1859 |
|
|
The GCM provides Users with a built-in mechanism for archiving user-defined |
1860 |
|
|
diagnostics. For a complete description refer to Diagnostic \#84. |
1861 |
|
|
The syntax for using the surface SDIAG2 diagnostic is given by |
1862 |
|
|
\begin{verbatim} |
1863 |
|
|
do j=1,jm |
1864 |
|
|
do i=1,im |
1865 |
|
|
qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ... |
1866 |
|
|
enddo |
1867 |
|
|
enddo |
1868 |
|
|
|
1869 |
|
|
NSDIAG2 = NSDIAG2 + 1 |
1870 |
|
|
\end{verbatim} |
1871 |
|
|
The diagnostics defined in this manner will automatically be archived by the output routines. |
1872 |
|
|
\\ |
1873 |
|
|
|
1874 |
|
|
\noindent |
1875 |
|
|
{\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 } |
1876 |
|
|
|
1877 |
|
|
\noindent |
1878 |
|
|
The GCM provides Users with a built-in mechanism for archiving user-defined |
1879 |
|
|
diagnostics. For a complete description refer to Diagnostic \#84. |
1880 |
|
|
The syntax for using the upper-air UDIAG1 diagnostic is given by |
1881 |
|
|
\begin{verbatim} |
1882 |
|
|
do L=1,Nrphys |
1883 |
|
|
do j=1,jm |
1884 |
|
|
do i=1,im |
1885 |
|
|
qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ... |
1886 |
|
|
enddo |
1887 |
|
|
enddo |
1888 |
|
|
enddo |
1889 |
|
|
|
1890 |
|
|
NUDIAG1 = NUDIAG1 + 1 |
1891 |
|
|
\end{verbatim} |
1892 |
|
|
The diagnostics defined in this manner will automatically be archived by the |
1893 |
|
|
output programs. |
1894 |
|
|
\\ |
1895 |
|
|
|
1896 |
|
|
\noindent |
1897 |
|
|
{\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 } |
1898 |
|
|
|
1899 |
|
|
\noindent |
1900 |
|
|
The GCM provides Users with a built-in mechanism for archiving user-defined |
1901 |
|
|
diagnostics. For a complete description refer to Diagnostic \#84. |
1902 |
|
|
The syntax for using the upper-air UDIAG2 diagnostic is given by |
1903 |
|
|
\begin{verbatim} |
1904 |
|
|
do L=1,Nrphys |
1905 |
|
|
do j=1,jm |
1906 |
|
|
do i=1,im |
1907 |
|
|
qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ... |
1908 |
|
|
enddo |
1909 |
|
|
enddo |
1910 |
|
|
enddo |
1911 |
|
|
|
1912 |
|
|
NUDIAG2 = NUDIAG2 + 1 |
1913 |
|
|
\end{verbatim} |
1914 |
|
|
The diagnostics defined in this manner will automatically be archived by the |
1915 |
|
|
output programs. |
1916 |
|
|
\\ |
1917 |
|
|
|
1918 |
|
|
|
1919 |
|
|
\noindent |
1920 |
|
|
{\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) } |
1921 |
|
|
|
1922 |
|
|
\noindent |
1923 |
|
|
{\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes |
1924 |
|
|
and the Analysis forcing. |
1925 |
|
|
\[ |
1926 |
|
|
{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
1927 |
|
|
\] |
1928 |
|
|
\\ |
1929 |
|
|
|
1930 |
|
|
\noindent |
1931 |
|
|
{\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) } |
1932 |
|
|
|
1933 |
|
|
\noindent |
1934 |
|
|
{\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes |
1935 |
|
|
and the Analysis forcing. |
1936 |
|
|
\[ |
1937 |
|
|
{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
1938 |
|
|
\] |
1939 |
|
|
\\ |
1940 |
|
|
|
1941 |
|
|
\noindent |
1942 |
|
|
{\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) } |
1943 |
|
|
|
1944 |
|
|
\noindent |
1945 |
|
|
{\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes |
1946 |
|
|
and the Analysis forcing. |
1947 |
|
|
\begin{eqnarray*} |
1948 |
|
|
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
1949 |
|
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
1950 |
|
|
\end{eqnarray*} |
1951 |
|
|
\\ |
1952 |
|
|
If we define the time-tendency of Temperature due to Diabatic processes as |
1953 |
|
|
\begin{eqnarray*} |
1954 |
|
|
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
1955 |
|
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} |
1956 |
|
|
\end{eqnarray*} |
1957 |
|
|
then, since there are no surface pressure changes due to Diabatic processes, we may write |
1958 |
|
|
\[ |
1959 |
|
|
\pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic} |
1960 |
|
|
\] |
1961 |
|
|
where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as |
1962 |
|
|
\[ |
1963 |
|
|
{\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) |
1964 |
|
|
\] |
1965 |
|
|
\\ |
1966 |
|
|
|
1967 |
|
|
\noindent |
1968 |
|
|
{\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) } |
1969 |
|
|
|
1970 |
|
|
\noindent |
1971 |
|
|
{\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes |
1972 |
|
|
and the Analysis forcing. |
1973 |
|
|
\[ |
1974 |
|
|
{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
1975 |
|
|
\] |
1976 |
|
|
If we define the time-tendency of Specific Humidity due to Diabatic processes as |
1977 |
|
|
\[ |
1978 |
|
|
\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} |
1979 |
|
|
\] |
1980 |
|
|
then, since there are no surface pressure changes due to Diabatic processes, we may write |
1981 |
|
|
\[ |
1982 |
|
|
\pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic} |
1983 |
|
|
\] |
1984 |
|
|
Thus, {\bf DIABQ} may be written as |
1985 |
|
|
\[ |
1986 |
|
|
{\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) |
1987 |
|
|
\] |
1988 |
|
|
\\ |
1989 |
|
|
|
1990 |
|
|
\noindent |
1991 |
|
|
{\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
1992 |
|
|
|
1993 |
|
|
\noindent |
1994 |
|
|
The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating |
1995 |
|
|
$u q$ over the depth of the atmosphere at each model timestep, |
1996 |
|
|
and dividing by the total mass of the column. |
1997 |
|
|
\[ |
1998 |
|
|
{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz } |
1999 |
|
|
\] |
2000 |
|
|
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2001 |
|
|
\[ |
2002 |
|
|
{\bf VINTUQ} = { \int_0^1 u q dp } |
2003 |
|
|
\] |
2004 |
|
|
\\ |
2005 |
|
|
|
2006 |
|
|
|
2007 |
|
|
\noindent |
2008 |
|
|
{\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
2009 |
|
|
|
2010 |
|
|
\noindent |
2011 |
|
|
The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating |
2012 |
|
|
$v q$ over the depth of the atmosphere at each model timestep, |
2013 |
|
|
and dividing by the total mass of the column. |
2014 |
|
|
\[ |
2015 |
|
|
{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz } |
2016 |
|
|
\] |
2017 |
|
|
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2018 |
|
|
\[ |
2019 |
|
|
{\bf VINTVQ} = { \int_0^1 v q dp } |
2020 |
|
|
\] |
2021 |
|
|
\\ |
2022 |
|
|
|
2023 |
|
|
|
2024 |
|
|
\noindent |
2025 |
|
|
{\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2026 |
|
|
|
2027 |
|
|
\noindent |
2028 |
|
|
The vertically integrated heat flux due to the zonal u-wind is obtained by integrating |
2029 |
|
|
$u T$ over the depth of the atmosphere at each model timestep, |
2030 |
|
|
and dividing by the total mass of the column. |
2031 |
|
|
\[ |
2032 |
|
|
{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz } |
2033 |
|
|
\] |
2034 |
|
|
Or, |
2035 |
|
|
\[ |
2036 |
|
|
{\bf VINTUT} = { \int_0^1 u T dp } |
2037 |
|
|
\] |
2038 |
|
|
\\ |
2039 |
|
|
|
2040 |
|
|
\noindent |
2041 |
|
|
{\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2042 |
|
|
|
2043 |
|
|
\noindent |
2044 |
|
|
The vertically integrated heat flux due to the meridional v-wind is obtained by integrating |
2045 |
|
|
$v T$ over the depth of the atmosphere at each model timestep, |
2046 |
|
|
and dividing by the total mass of the column. |
2047 |
|
|
\[ |
2048 |
|
|
{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz } |
2049 |
|
|
\] |
2050 |
|
|
Using $\rho \delta z = -{\delta p \over g} $, we have |
2051 |
|
|
\[ |
2052 |
|
|
{\bf VINTVT} = { \int_0^1 v T dp } |
2053 |
|
|
\] |
2054 |
|
|
\\ |
2055 |
|
|
|
2056 |
|
|
\noindent |
2057 |
|
|
{\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) } |
2058 |
|
|
|
2059 |
|
|
If we define the |
2060 |
|
|
time-averaged random and maximum overlapped cloudiness as CLRO and |
2061 |
|
|
CLMO respectively, then the probability of clear sky associated |
2062 |
|
|
with random overlapped clouds at any level is (1-CLRO) while the probability of |
2063 |
|
|
clear sky associated with maximum overlapped clouds at any level is (1-CLMO). |
2064 |
|
|
The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus |
2065 |
|
|
the total cloud fraction at each level may be obtained by |
2066 |
|
|
1-(1-CLRO)*(1-CLMO). |
2067 |
|
|
|
2068 |
|
|
At any given level, we may define the clear line-of-site probability by |
2069 |
|
|
appropriately accounting for the maximum and random overlap |
2070 |
|
|
cloudiness. The clear line-of-site probability is defined to be |
2071 |
|
|
equal to the product of the clear line-of-site probabilities |
2072 |
|
|
associated with random and maximum overlap cloudiness. The clear |
2073 |
|
|
line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds, |
2074 |
|
|
from the current pressure $p$ |
2075 |
|
|
to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$, |
2076 |
|
|
is simply 1.0 minus the largest maximum overlap cloud value along the |
2077 |
|
|
line-of-site, ie. |
2078 |
|
|
|
2079 |
|
|
$$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$ |
2080 |
|
|
|
2081 |
|
|
Thus, even in the time-averaged sense it is assumed that the |
2082 |
|
|
maximum overlap clouds are correlated in the vertical. The clear |
2083 |
|
|
line-of-site probability associated with random overlap clouds is |
2084 |
|
|
defined to be the product of the clear sky probabilities at each |
2085 |
|
|
level along the line-of-site, ie. |
2086 |
|
|
|
2087 |
|
|
$$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2088 |
|
|
|
2089 |
|
|
The total cloud fraction at a given level associated with a line- |
2090 |
|
|
of-site calculation is given by |
2091 |
|
|
|
2092 |
|
|
$$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right) |
2093 |
|
|
\prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2094 |
|
|
|
2095 |
|
|
|
2096 |
|
|
\noindent |
2097 |
|
|
The 2-dimensional net cloud fraction as seen from the top of the |
2098 |
|
|
atmosphere is given by |
2099 |
|
|
\[ |
2100 |
|
|
{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right) |
2101 |
|
|
\prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right) |
2102 |
|
|
\] |
2103 |
|
|
\\ |
2104 |
|
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2105 |
|
|
|
2106 |
|
|
|
2107 |
|
|
\noindent |
2108 |
|
|
{\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) } |
2109 |
|
|
|
2110 |
|
|
\noindent |
2111 |
|
|
The Total Precipitable Water is defined as the vertical integral of the specific humidity, |
2112 |
|
|
given by: |
2113 |
|
|
\begin{eqnarray*} |
2114 |
|
|
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ |
2115 |
|
|
& = & {\pi \over g} \int_0^1 q dp |
2116 |
|
|
\end{eqnarray*} |
2117 |
|
|
where we have used the hydrostatic relation |
2118 |
|
|
$\rho \delta z = -{\delta p \over g} $. |
2119 |
|
|
\\ |
2120 |
|
|
|
2121 |
|
|
|
2122 |
|
|
\noindent |
2123 |
|
|
{\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) } |
2124 |
|
|
|
2125 |
|
|
\noindent |
2126 |
|
|
The u-wind at the 2-meter depth is determined from the similarity theory: |
2127 |
|
|
\[ |
2128 |
|
|
{\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} = |
2129 |
|
|
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl} |
2130 |
|
|
\] |
2131 |
|
|
|
2132 |
|
|
\noindent |
2133 |
|
|
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2134 |
|
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2135 |
|
|
is above two meters, ${\bf U2M}$ is undefined. |
2136 |
|
|
\\ |
2137 |
|
|
|
2138 |
|
|
\noindent |
2139 |
|
|
{\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) } |
2140 |
|
|
|
2141 |
|
|
\noindent |
2142 |
|
|
The v-wind at the 2-meter depth is a determined from the similarity theory: |
2143 |
|
|
\[ |
2144 |
|
|
{\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} = |
2145 |
|
|
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl} |
2146 |
|
|
\] |
2147 |
|
|
|
2148 |
|
|
\noindent |
2149 |
|
|
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2150 |
|
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2151 |
|
|
is above two meters, ${\bf V2M}$ is undefined. |
2152 |
|
|
\\ |
2153 |
|
|
|
2154 |
|
|
\noindent |
2155 |
|
|
{\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) } |
2156 |
|
|
|
2157 |
|
|
\noindent |
2158 |
|
|
The temperature at the 2-meter depth is a determined from the similarity theory: |
2159 |
|
|
\[ |
2160 |
|
|
{\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = |
2161 |
|
|
P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2162 |
|
|
(\theta_{sl} - \theta_{surf})) |
2163 |
|
|
\] |
2164 |
|
|
where: |
2165 |
|
|
\[ |
2166 |
|
|
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2167 |
|
|
\] |
2168 |
|
|
|
2169 |
|
|
\noindent |
2170 |
|
|
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2171 |
|
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2172 |
|
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2173 |
|
|
is above two meters, ${\bf T2M}$ is undefined. |
2174 |
|
|
\\ |
2175 |
|
|
|
2176 |
|
|
\noindent |
2177 |
|
|
{\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) } |
2178 |
|
|
|
2179 |
|
|
\noindent |
2180 |
|
|
The specific humidity at the 2-meter depth is determined from the similarity theory: |
2181 |
|
|
\[ |
2182 |
|
|
{\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = |
2183 |
|
|
P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2184 |
|
|
(q_{sl} - q_{surf})) |
2185 |
|
|
\] |
2186 |
|
|
where: |
2187 |
|
|
\[ |
2188 |
|
|
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2189 |
|
|
\] |
2190 |
|
|
|
2191 |
|
|
\noindent |
2192 |
|
|
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2193 |
|
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2194 |
|
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2195 |
|
|
is above two meters, ${\bf Q2M}$ is undefined. |
2196 |
|
|
\\ |
2197 |
|
|
|
2198 |
|
|
\noindent |
2199 |
|
|
{\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) } |
2200 |
|
|
|
2201 |
|
|
\noindent |
2202 |
|
|
The u-wind at the 10-meter depth is an interpolation between the surface wind |
2203 |
|
|
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2204 |
|
|
at the two levels: |
2205 |
|
|
\[ |
2206 |
|
|
{\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} = |
2207 |
|
|
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl} |
2208 |
|
|
\] |
2209 |
|
|
|
2210 |
|
|
\noindent |
2211 |
|
|
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2212 |
|
|
$sl$ refers to the height of the top of the surface layer. |
2213 |
|
|
\\ |
2214 |
|
|
|
2215 |
|
|
\noindent |
2216 |
|
|
{\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) } |
2217 |
|
|
|
2218 |
|
|
\noindent |
2219 |
|
|
The v-wind at the 10-meter depth is an interpolation between the surface wind |
2220 |
|
|
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2221 |
|
|
at the two levels: |
2222 |
|
|
\[ |
2223 |
|
|
{\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} = |
2224 |
|
|
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl} |
2225 |
|
|
\] |
2226 |
|
|
|
2227 |
|
|
\noindent |
2228 |
|
|
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2229 |
|
|
$sl$ refers to the height of the top of the surface layer. |
2230 |
|
|
\\ |
2231 |
|
|
|
2232 |
|
|
\noindent |
2233 |
|
|
{\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) } |
2234 |
|
|
|
2235 |
|
|
\noindent |
2236 |
|
|
The temperature at the 10-meter depth is an interpolation between the surface potential |
2237 |
|
|
temperature and the model lowest level potential temperature using the ratio of the |
2238 |
|
|
non-dimensional temperature gradient at the two levels: |
2239 |
|
|
\[ |
2240 |
|
|
{\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = |
2241 |
|
|
P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2242 |
|
|
(\theta_{sl} - \theta_{surf})) |
2243 |
|
|
\] |
2244 |
|
|
where: |
2245 |
|
|
\[ |
2246 |
|
|
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2247 |
|
|
\] |
2248 |
|
|
|
2249 |
|
|
\noindent |
2250 |
|
|
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2251 |
|
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2252 |
|
|
$sl$ refers to the height of the top of the surface layer. |
2253 |
|
|
\\ |
2254 |
|
|
|
2255 |
|
|
\noindent |
2256 |
|
|
{\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) } |
2257 |
|
|
|
2258 |
|
|
\noindent |
2259 |
|
|
The specific humidity at the 10-meter depth is an interpolation between the surface specific |
2260 |
|
|
humidity and the model lowest level specific humidity using the ratio of the |
2261 |
|
|
non-dimensional temperature gradient at the two levels: |
2262 |
|
|
\[ |
2263 |
|
|
{\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = |
2264 |
|
|
P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2265 |
|
|
(q_{sl} - q_{surf})) |
2266 |
|
|
\] |
2267 |
|
|
where: |
2268 |
|
|
\[ |
2269 |
|
|
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2270 |
|
|
\] |
2271 |
|
|
|
2272 |
|
|
\noindent |
2273 |
|
|
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2274 |
|
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2275 |
|
|
$sl$ refers to the height of the top of the surface layer. |
2276 |
|
|
\\ |
2277 |
|
|
|
2278 |
|
|
\noindent |
2279 |
|
|
{\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) } |
2280 |
|
|
|
2281 |
|
|
The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written: |
2282 |
|
|
\[ |
2283 |
|
|
{\bf DTRAIN} = \eta_{r_D}m_B |
2284 |
|
|
\] |
2285 |
|
|
\noindent |
2286 |
|
|
where $r_D$ is the detrainment level, |
2287 |
|
|
$m_B$ is the cloud base mass flux, and $\eta$ |
2288 |
|
|
is the entrainment, defined in Section \ref{sec:fizhi:mc}. |
2289 |
|
|
\\ |
2290 |
|
|
|
2291 |
|
|
\noindent |
2292 |
|
|
{\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) } |
2293 |
|
|
|
2294 |
|
|
\noindent |
2295 |
|
|
Due to computational errors associated with the numerical scheme used for |
2296 |
|
|
the advection of moisture, negative values of specific humidity may be generated. The |
2297 |
|
|
specific humidity is checked for negative values after every dynamics timestep. If negative |
2298 |
|
|
values have been produced, a filling algorithm is invoked which redistributes moisture from |
2299 |
|
|
below. Diagnostic {\bf QFILL} is equal to the net filling needed |
2300 |
|
|
to eliminate negative specific humidity, scaled to a per-day rate: |
2301 |
|
|
\[ |
2302 |
|
|
{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial} |
2303 |
|
|
\] |
2304 |
|
|
where |
2305 |
|
|
\[ |
2306 |
|
|
q^{n+1} = (\pi q)^{n+1} / \pi^{n+1} |
2307 |
|
|
\] |
2308 |
|
|
|
2309 |
|
|
\subsection{Dos and Donts} |
2310 |
|
|
|
2311 |
|
|
\subsection{Diagnostics Reference} |
2312 |
|
|
|