/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Wed Jan 28 21:00:10 2004 UTC (21 years, 5 months ago) by molod
Branch: MAIN
File MIME type: application/x-tex
Description of diagnostics package

1 molod 1.1 \section{Diagnostics-Flexible model infrastructure for diagnostic (instananeous or time averaged) output}
2    
3     \subsection{Introduction}
4    
5     This section of the documentation describes the Diagnostics Utilities available within the GCM.
6     In addition to
7     a description on how to set and extract diagnostic quantities, this document also provides a
8     comprehensive list of all available diagnostic quantities and a short description of how they are
9     computed. It should be noted that this document is not intended to be a complete documentation
10     of the various packages used in the GCM, and the reader should
11     refer to original publications for further insight.
12    
13    
14     \subsection{Equations}
15     Not relevant.
16    
17     \subsection{Key Subroutines and Parameters}
18     \label{sec:diagnostics:diagover}
19    
20     A large selection of model diagnostics is available in the GCM. At the time of
21     this writing there are 92 different diagnostic quantities which can be enabled for an
22     experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
23     specify the exact diagnostic information required for an experiment. This is accomplished by
24     enabling the specific diagnostic of interest cataloged in the
25     Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
26     The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
27     GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
28     Menu. Once a diagnostic is enabled, the GCM will continually increment an array
29     specifically allocated for that diagnostic whenever the associated process for the diagnostic is
30     computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
31     which records how many times each diagnostic quantity has been computed. In addition
32     special diagnostics, called
33     ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
34     model grid location.
35    
36     The diagnostics are computed at various times and places within the GCM.
37     Some diagnostics are computed on the geophysical A-grid (such as
38     those within the Physics routines), while others are computed on the C-grid
39     (those computed during the dynamics time-stepping). Some diagnostics are
40     scalars, while others are vectors. Each of these possibilities requires
41     separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
42     to this complexity, and since the specific diagnostics enabled are User determined at the
43     time of the run,
44     a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
45     which contains information concerning various grid attributes of each diagnostic. The GDIAG
46     array is internally defined as a character*8 variable, and is equivalenced to
47     a character*1 "parse" array in output in order to extract the grid-attribute information.
48     The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
49    
50     \begin{table}
51     \caption{Diagnostic Parsing Array}
52     \label{tab:diagnostics:gdiag.tabl}
53     \begin{center}
54     \begin{tabular}{ |c|c|l| }
55     \hline
56     \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57     \hline
58     \hline
59     Array & Value & Description \\
60     \hline
61     parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62     & $\rightarrow$ U & U-vector component Diagnostic \\
63     & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64     parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65     & $\rightarrow$ V & C-Grid V-Point \\
66     & $\rightarrow$ M & C-Grid Mass Point \\
67     & $\rightarrow$ Z & C-Grid Vorticity Point \\ \hline
68     parse(3) & $\rightarrow$ R & Computed on the Rotated Grid \\
69     & $\rightarrow$ G & Computed on the Geophysical Grid \\ \hline
70     parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
71     parse(5) & $\rightarrow$ C & Counter Diagnostic \\
72     & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
73     parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
74     & & vector or counter component mate \\ \hline
75     \end{tabular}
76     \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
77     \end{center}
78     \end{table}
79    
80     As an example, consider a diagnostic whose associated GDIAG parameter is equal
81     to ``UUR 002''. From GDIAG we can determine that this diagnostic is a
82     U-vector component located at the C-grid U-point within the Rotated framework.
83     Its corresponding V-component diagnostic is located in Diagnostic \# 002.
84    
85     In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
86     rotated or geophysical, A-Grid or C-grid, etc.) defined internally. The Output routines
87     use this information in order to determine
88     what type of rotations and/or transformations need to be performed. Thus, all Diagnostic
89     interpolations are done at the time of output rather than during each model dynamic step.
90     In this way the User now has more flexibility
91     in determining the type of gridded data which is output.
92    
93     There are several utilities within the GCM available to users to enable, disable,
94     clear, and retrieve model diagnostics, and may be called from any user-supplied application
95     and/or output routine. The available utilities and the CALL sequences are listed below.
96    
97    
98     {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
99     space is allocated for the diagnostic and the
100     model routines will increment the diagnostic value during execution. This routine is useful when
101     called from either user application routines or user output routines, and is the underlying interface
102     between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
103     number from the menu, and its calling sequence is given by:
104    
105     \begin{tabbing}
106     XXXXXXXXX\=XXXXXX\= \kill
107     \> CALL SETDIAG (NUM) \\
108     \\
109     where \> NUM \>= Diagnostic number from menu \\
110     \end{tabbing}
111    
112    
113     {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
114     particulary useful when called from a user output routine, although it can be called from an
115     application routine as well. This routine returns the time-averaged value of the diagnostic by
116     dividing the current accumulated diagnostic value by its corresponding counter. This routine does
117     not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
118     time-average. The calling sequence for this routine is givin by:
119    
120     \begin{tabbing}
121     XXXXXXXXX\=XXXXXX\= \kill
122     \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
123     \\
124     where \> LEV \>= Model Level at which the diagnostic is desired \\
125     \> NUM \>= Diagnostic number from menu \\
126     \> QTMP \>= Time-Averaged Diagnostic Output \\
127     \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
128     \end{tabbing}
129    
130     {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
131     particularly useful when called from user output routines to re-initialize diagnostics during the
132     run. The calling sequence is:
133    
134    
135     \begin{tabbing}
136     XXXXXXXXX\=XXXXXX\= \kill
137     \> CALL CLRDIAG (NUM) \\
138     \\
139     where \> NUM \>= Diagnostic number from menu \\
140     \end{tabbing}
141    
142    
143    
144     {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
145     diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
146     is released when ZAPDIAG is invoked. The calling sequence is given by:
147    
148    
149     \begin{tabbing}
150     XXXXXXXXX\=XXXXXX\= \kill
151     \> CALL ZAPDIAG (NUM) \\
152     \\
153     where \> NUM \>= Diagnostic number from menu \\
154     \end{tabbing}
155    
156     {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
157     is allocated for diagnostics.
158     All GCM diagnostic quantities are stored in the single
159     diagnostic array QDIAG which is located in the DIAG COMMON, having the form:
160    
161     \begin{tabbing}
162     XXXXXXXXX\=XXXXXX\= \kill
163     \> COMMON /DIAG/ NDIAG\_MAX,QDIAG(IM,JM,1) \\
164     \\
165     \end{tabbing}
166    
167     where NDIAG\_MAX is an Integer variable which should be
168     set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
169     array. The first two-dimensions of QDIAG correspond to the horizontal dimension
170     of a given diagnostic, while the third dimension of QDIAG is used to identify
171     specific diagnostic types.
172     In order to minimize the maximum memory requirement used by the model,
173     the default GCM executable is compiled with room for only one horizontal
174     diagnostic array, as shown in the above example.
175     In order for the User to enable more than 1 two-dimensional diagnostic,
176     the size of the DIAG COMMON must be expanded to accomodate the desired diagnostics.
177     This can be accomplished by manually changing the parameter numdiags in the
178     file \filelink{FORWARD\_STEP}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
179     shell script (???????) to make this
180     change based on the choice of diagnostic output made in the namelist.
181    
182     \newpage
183    
184     \subsubsection{GCM Diagnostic Menu}
185     \label{sec:diagnostics:menu}
186    
187     \begin{tabular}{lllll}
188     \hline\hline
189     N & NAME & UNITS & LEVELS & DESCRIPTION \\
190     \hline
191    
192     &\\
193     1 & UFLUX & $Newton/m^2$ & 1
194     &\begin{minipage}[t]{3in}
195     {Surface U-Wind Stress on the atmosphere}
196     \end{minipage}\\
197     2 & VFLUX & $Newton/m^2$ & 1
198     &\begin{minipage}[t]{3in}
199     {Surface V-Wind Stress on the atmosphere}
200     \end{minipage}\\
201     3 & HFLUX & $Watts/m^2$ & 1
202     &\begin{minipage}[t]{3in}
203     {Surface Flux of Sensible Heat}
204     \end{minipage}\\
205     4 & EFLUX & $Watts/m^2$ & 1
206     &\begin{minipage}[t]{3in}
207     {Surface Flux of Latent Heat}
208     \end{minipage}\\
209     5 & QICE & $Watts/m^2$ & 1
210     &\begin{minipage}[t]{3in}
211     {Heat Conduction through Sea-Ice}
212     \end{minipage}\\
213     6 & RADLWG & $Watts/m^2$ & 1
214     &\begin{minipage}[t]{3in}
215     {Net upward LW flux at the ground}
216     \end{minipage}\\
217     7 & RADSWG & $Watts/m^2$ & 1
218     &\begin{minipage}[t]{3in}
219     {Net downward SW flux at the ground}
220     \end{minipage}\\
221     8 & RI & $dimensionless$ & Nrphys
222     &\begin{minipage}[t]{3in}
223     {Richardson Number}
224     \end{minipage}\\
225     9 & CT & $dimensionless$ & 1
226     &\begin{minipage}[t]{3in}
227     {Surface Drag coefficient for T and Q}
228     \end{minipage}\\
229     10 & CU & $dimensionless$ & 1
230     &\begin{minipage}[t]{3in}
231     {Surface Drag coefficient for U and V}
232     \end{minipage}\\
233     11 & ET & $m^2/sec$ & Nrphys
234     &\begin{minipage}[t]{3in}
235     {Diffusivity coefficient for T and Q}
236     \end{minipage}\\
237     12 & EU & $m^2/sec$ & Nrphys
238     &\begin{minipage}[t]{3in}
239     {Diffusivity coefficient for U and V}
240     \end{minipage}\\
241     13 & TURBU & $m/sec/day$ & Nrphys
242     &\begin{minipage}[t]{3in}
243     {U-Momentum Changes due to Turbulence}
244     \end{minipage}\\
245     14 & TURBV & $m/sec/day$ & Nrphys
246     &\begin{minipage}[t]{3in}
247     {V-Momentum Changes due to Turbulence}
248     \end{minipage}\\
249     15 & TURBT & $deg/day$ & Nrphys
250     &\begin{minipage}[t]{3in}
251     {Temperature Changes due to Turbulence}
252     \end{minipage}\\
253     16 & TURBQ & $g/kg/day$ & Nrphys
254     &\begin{minipage}[t]{3in}
255     {Specific Humidity Changes due to Turbulence}
256     \end{minipage}\\
257     17 & MOISTT & $deg/day$ & Nrphys
258     &\begin{minipage}[t]{3in}
259     {Temperature Changes due to Moist Processes}
260     \end{minipage}\\
261     18 & MOISTQ & $g/kg/day$ & Nrphys
262     &\begin{minipage}[t]{3in}
263     {Specific Humidity Changes due to Moist Processes}
264     \end{minipage}\\
265     19 & RADLW & $deg/day$ & Nrphys
266     &\begin{minipage}[t]{3in}
267     {Net Longwave heating rate for each level}
268     \end{minipage}\\
269     20 & RADSW & $deg/day$ & Nrphys
270     &\begin{minipage}[t]{3in}
271     {Net Shortwave heating rate for each level}
272     \end{minipage}\\
273     21 & PREACC & $mm/day$ & 1
274     &\begin{minipage}[t]{3in}
275     {Total Precipitation}
276     \end{minipage}\\
277     22 & PRECON & $mm/day$ & 1
278     &\begin{minipage}[t]{3in}
279     {Convective Precipitation}
280     \end{minipage}\\
281     23 & TUFLUX & $Newton/m^2$ & Nrphys
282     &\begin{minipage}[t]{3in}
283     {Turbulent Flux of U-Momentum}
284     \end{minipage}\\
285     24 & TVFLUX & $Newton/m^2$ & Nrphys
286     &\begin{minipage}[t]{3in}
287     {Turbulent Flux of V-Momentum}
288     \end{minipage}\\
289     25 & TTFLUX & $Watts/m^2$ & Nrphys
290     &\begin{minipage}[t]{3in}
291     {Turbulent Flux of Sensible Heat}
292     \end{minipage}\\
293     26 & TQFLUX & $Watts/m^2$ & Nrphys
294     &\begin{minipage}[t]{3in}
295     {Turbulent Flux of Latent Heat}
296     \end{minipage}\\
297     27 & CN & $dimensionless$ & 1
298     &\begin{minipage}[t]{3in}
299     {Neutral Drag Coefficient}
300     \end{minipage}\\
301     28 & WINDS & $m/sec$ & 1
302     &\begin{minipage}[t]{3in}
303     {Surface Wind Speed}
304     \end{minipage}\\
305     29 & DTSRF & $deg$ & 1
306     &\begin{minipage}[t]{3in}
307     {Air/Surface virtual temperature difference}
308     \end{minipage}\\
309     30 & TG & $deg$ & 1
310     &\begin{minipage}[t]{3in}
311     {Ground temperature}
312     \end{minipage}\\
313     31 & TS & $deg$ & 1
314     &\begin{minipage}[t]{3in}
315     {Surface air temperature (Adiabatic from lowest model layer)}
316     \end{minipage}\\
317     32 & DTG & $deg$ & 1
318     &\begin{minipage}[t]{3in}
319     {Ground temperature adjustment}
320     \end{minipage}\\
321    
322     \end{tabular}
323    
324     \newpage
325     \vspace*{\fill}
326     \begin{tabular}{lllll}
327     \hline\hline
328     N & NAME & UNITS & LEVELS & DESCRIPTION \\
329     \hline
330    
331     &\\
332     33 & QG & $g/kg$ & 1
333     &\begin{minipage}[t]{3in}
334     {Ground specific humidity}
335     \end{minipage}\\
336     34 & QS & $g/kg$ & 1
337     &\begin{minipage}[t]{3in}
338     {Saturation surface specific humidity}
339     \end{minipage}\\
340    
341     &\\
342     35 & TGRLW & $deg$ & 1
343     &\begin{minipage}[t]{3in}
344     {Instantaneous ground temperature used as input to the
345     Longwave radiation subroutine}
346     \end{minipage}\\
347     36 & ST4 & $Watts/m^2$ & 1
348     &\begin{minipage}[t]{3in}
349     {Upward Longwave flux at the ground ($\sigma T^4$)}
350     \end{minipage}\\
351     37 & OLR & $Watts/m^2$ & 1
352     &\begin{minipage}[t]{3in}
353     {Net upward Longwave flux at the top of the model}
354     \end{minipage}\\
355     38 & OLRCLR & $Watts/m^2$ & 1
356     &\begin{minipage}[t]{3in}
357     {Net upward clearsky Longwave flux at the top of the model}
358     \end{minipage}\\
359     39 & LWGCLR & $Watts/m^2$ & 1
360     &\begin{minipage}[t]{3in}
361     {Net upward clearsky Longwave flux at the ground}
362     \end{minipage}\\
363     40 & LWCLR & $deg/day$ & Nrphys
364     &\begin{minipage}[t]{3in}
365     {Net clearsky Longwave heating rate for each level}
366     \end{minipage}\\
367     41 & TLW & $deg$ & Nrphys
368     &\begin{minipage}[t]{3in}
369     {Instantaneous temperature used as input to the Longwave radiation
370     subroutine}
371     \end{minipage}\\
372     42 & SHLW & $g/g$ & Nrphys
373     &\begin{minipage}[t]{3in}
374     {Instantaneous specific humidity used as input to the Longwave radiation
375     subroutine}
376     \end{minipage}\\
377     43 & OZLW & $g/g$ & Nrphys
378     &\begin{minipage}[t]{3in}
379     {Instantaneous ozone used as input to the Longwave radiation
380     subroutine}
381     \end{minipage}\\
382     44 & CLMOLW & $0-1$ & Nrphys
383     &\begin{minipage}[t]{3in}
384     {Maximum overlap cloud fraction used in the Longwave radiation
385     subroutine}
386     \end{minipage}\\
387     45 & CLDTOT & $0-1$ & Nrphys
388     &\begin{minipage}[t]{3in}
389     {Total cloud fraction used in the Longwave and Shortwave radiation
390     subroutines}
391     \end{minipage}\\
392     46 & RADSWT & $Watts/m^2$ & 1
393     &\begin{minipage}[t]{3in}
394     {Incident Shortwave radiation at the top of the atmosphere}
395     \end{minipage}\\
396     47 & CLROSW & $0-1$ & Nrphys
397     &\begin{minipage}[t]{3in}
398     {Random overlap cloud fraction used in the shortwave radiation
399     subroutine}
400     \end{minipage}\\
401     48 & CLMOSW & $0-1$ & Nrphys
402     &\begin{minipage}[t]{3in}
403     {Maximum overlap cloud fraction used in the shortwave radiation
404     subroutine}
405     \end{minipage}\\
406     49 & EVAP & $mm/day$ & 1
407     &\begin{minipage}[t]{3in}
408     {Surface evaporation}
409     \end{minipage}\\
410     \end{tabular}
411     \vfill
412    
413     \newpage
414     \vspace*{\fill}
415     \begin{tabular}{lllll}
416     \hline\hline
417     N & NAME & UNITS & LEVELS & DESCRIPTION \\
418     \hline
419    
420     &\\
421     50 & DUDT & $m/sec/day$ & Nrphys
422     &\begin{minipage}[t]{3in}
423     {Total U-Wind tendency}
424     \end{minipage}\\
425     51 & DVDT & $m/sec/day$ & Nrphys
426     &\begin{minipage}[t]{3in}
427     {Total V-Wind tendency}
428     \end{minipage}\\
429     52 & DTDT & $deg/day$ & Nrphys
430     &\begin{minipage}[t]{3in}
431     {Total Temperature tendency}
432     \end{minipage}\\
433     53 & DQDT & $g/kg/day$ & Nrphys
434     &\begin{minipage}[t]{3in}
435     {Total Specific Humidity tendency}
436     \end{minipage}\\
437     54 & USTAR & $m/sec$ & 1
438     &\begin{minipage}[t]{3in}
439     {Surface USTAR wind}
440     \end{minipage}\\
441     55 & Z0 & $m$ & 1
442     &\begin{minipage}[t]{3in}
443     {Surface roughness}
444     \end{minipage}\\
445     56 & FRQTRB & $0-1$ & Nrphys-1
446     &\begin{minipage}[t]{3in}
447     {Frequency of Turbulence}
448     \end{minipage}\\
449     57 & PBL & $mb$ & 1
450     &\begin{minipage}[t]{3in}
451     {Planetary Boundary Layer depth}
452     \end{minipage}\\
453     58 & SWCLR & $deg/day$ & Nrphys
454     &\begin{minipage}[t]{3in}
455     {Net clearsky Shortwave heating rate for each level}
456     \end{minipage}\\
457     59 & OSR & $Watts/m^2$ & 1
458     &\begin{minipage}[t]{3in}
459     {Net downward Shortwave flux at the top of the model}
460     \end{minipage}\\
461     60 & OSRCLR & $Watts/m^2$ & 1
462     &\begin{minipage}[t]{3in}
463     {Net downward clearsky Shortwave flux at the top of the model}
464     \end{minipage}\\
465     61 & CLDMAS & $kg / m^2$ & Nrphys
466     &\begin{minipage}[t]{3in}
467     {Convective cloud mass flux}
468     \end{minipage}\\
469     62 & UAVE & $m/sec$ & Nrphys
470     &\begin{minipage}[t]{3in}
471     {Time-averaged $u-Wind$}
472     \end{minipage}\\
473     63 & VAVE & $m/sec$ & Nrphys
474     &\begin{minipage}[t]{3in}
475     {Time-averaged $v-Wind$}
476     \end{minipage}\\
477     64 & TAVE & $deg$ & Nrphys
478     &\begin{minipage}[t]{3in}
479     {Time-averaged $Temperature$}
480     \end{minipage}\\
481     65 & QAVE & $g/g$ & Nrphys
482     &\begin{minipage}[t]{3in}
483     {Time-averaged $Specific \, \, Humidity$}
484     \end{minipage}\\
485     66 & PAVE & $mb$ & 1
486     &\begin{minipage}[t]{3in}
487     {Time-averaged $p_{surf} - p_{top}$}
488     \end{minipage}\\
489     67 & QQAVE & $(m/sec)^2$ & Nrphys
490     &\begin{minipage}[t]{3in}
491     {Time-averaged $Turbulent Kinetic Energy$}
492     \end{minipage}\\
493     68 & SWGCLR & $Watts/m^2$ & 1
494     &\begin{minipage}[t]{3in}
495     {Net downward clearsky Shortwave flux at the ground}
496     \end{minipage}\\
497     69 & SDIAG1 & & 1
498     &\begin{minipage}[t]{3in}
499     {User-Defined Surface Diagnostic-1}
500     \end{minipage}\\
501     70 & SDIAG2 & & 1
502     &\begin{minipage}[t]{3in}
503     {User-Defined Surface Diagnostic-2}
504     \end{minipage}\\
505     71 & UDIAG1 & & Nrphys
506     &\begin{minipage}[t]{3in}
507     {User-Defined Upper-Air Diagnostic-1}
508     \end{minipage}\\
509     72 & UDIAG2 & & Nrphys
510     &\begin{minipage}[t]{3in}
511     {User-Defined Upper-Air Diagnostic-2}
512     \end{minipage}\\
513     73 & DIABU & $m/sec/day$ & Nrphys
514     &\begin{minipage}[t]{3in}
515     {Total Diabatic forcing on $u-Wind$}
516     \end{minipage}\\
517     74 & DIABV & $m/sec/day$ & Nrphys
518     &\begin{minipage}[t]{3in}
519     {Total Diabatic forcing on $v-Wind$}
520     \end{minipage}\\
521     75 & DIABT & $deg/day$ & Nrphys
522     &\begin{minipage}[t]{3in}
523     {Total Diabatic forcing on $Temperature$}
524     \end{minipage}\\
525     76 & DIABQ & $g/kg/day$ & Nrphys
526     &\begin{minipage}[t]{3in}
527     {Total Diabatic forcing on $Specific \, \, Humidity$}
528     \end{minipage}\\
529    
530     \end{tabular}
531     \vfill
532    
533     \newpage
534     \vspace*{\fill}
535     \begin{tabular}{lllll}
536     \hline\hline
537     N & NAME & UNITS & LEVELS & DESCRIPTION \\
538     \hline
539    
540     77 & VINTUQ & $m/sec \cdot g/kg$ & 1
541     &\begin{minipage}[t]{3in}
542     {Vertically integrated $u \, q$}
543     \end{minipage}\\
544     78 & VINTVQ & $m/sec \cdot g/kg$ & 1
545     &\begin{minipage}[t]{3in}
546     {Vertically integrated $v \, q$}
547     \end{minipage}\\
548     79 & VINTUT & $m/sec \cdot deg$ & 1
549     &\begin{minipage}[t]{3in}
550     {Vertically integrated $u \, T$}
551     \end{minipage}\\
552     80 & VINTVT & $m/sec \cdot deg$ & 1
553     &\begin{minipage}[t]{3in}
554     {Vertically integrated $v \, T$}
555     \end{minipage}\\
556     81 & CLDFRC & $0-1$ & 1
557     &\begin{minipage}[t]{3in}
558     {Total Cloud Fraction}
559     \end{minipage}\\
560     82 & QINT & $gm/cm^2$ & 1
561     &\begin{minipage}[t]{3in}
562     {Precipitable water}
563     \end{minipage}\\
564     83 & U2M & $m/sec$ & 1
565     &\begin{minipage}[t]{3in}
566     {U-Wind at 2 meters}
567     \end{minipage}\\
568     84 & V2M & $m/sec$ & 1
569     &\begin{minipage}[t]{3in}
570     {V-Wind at 2 meters}
571     \end{minipage}\\
572     85 & T2M & $deg$ & 1
573     &\begin{minipage}[t]{3in}
574     {Temperature at 2 meters}
575     \end{minipage}\\
576     86 & Q2M & $g/kg$ & 1
577     &\begin{minipage}[t]{3in}
578     {Specific Humidity at 2 meters}
579     \end{minipage}\\
580     87 & U10M & $m/sec$ & 1
581     &\begin{minipage}[t]{3in}
582     {U-Wind at 10 meters}
583     \end{minipage}\\
584     88 & V10M & $m/sec$ & 1
585     &\begin{minipage}[t]{3in}
586     {V-Wind at 10 meters}
587     \end{minipage}\\
588     89 & T10M & $deg$ & 1
589     &\begin{minipage}[t]{3in}
590     {Temperature at 10 meters}
591     \end{minipage}\\
592     90 & Q10M & $g/kg$ & 1
593     &\begin{minipage}[t]{3in}
594     {Specific Humidity at 10 meters}
595     \end{minipage}\\
596     91 & DTRAIN & $kg/m^2$ & Nrphys
597     &\begin{minipage}[t]{3in}
598     {Detrainment Cloud Mass Flux}
599     \end{minipage}\\
600     92 & QFILL & $g/kg/day$ & Nrphys
601     &\begin{minipage}[t]{3in}
602     {Filling of negative specific humidity}
603     \end{minipage}\\
604    
605     \end{tabular}
606     \vspace{1.5in}
607     \vfill
608    
609     \newpage
610    
611     \subsubsection{Diagnostic Description}
612    
613     In this section we list and describe the diagnostic quantities available within the
614     GCM. The diagnostics are listed in the order that they appear in the
615     Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
616     In all cases, each diagnostic as currently archived on the output datasets
617     is time-averaged over its diagnostic output frequency:
618    
619     \[
620     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
621     \]
622     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
623     output frequency of the diagnositc, and $\Delta t$ is
624     the timestep over which the diagnostic is updated. For further information on how
625     to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
626    
627     {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
628    
629     The zonal wind stress is the turbulent flux of zonal momentum from
630     the surface. See section 3.3 for a description of the surface layer parameterization.
631     \[
632     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
633     \]
634     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
635     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
636     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
637     the zonal wind in the lowest model layer.
638     \\
639    
640    
641     {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
642    
643     The meridional wind stress is the turbulent flux of meridional momentum from
644     the surface. See section 3.3 for a description of the surface layer parameterization.
645     \[
646     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
647     \]
648     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
649     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
650     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
651     the meridional wind in the lowest model layer.
652     \\
653    
654     {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
655    
656     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
657     gradient of virtual potential temperature and the eddy exchange coefficient:
658     \[
659     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
660     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
661     \]
662     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
663     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
664     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
665     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
666     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
667     at the surface and at the bottom model level.
668     \\
669    
670    
671     {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
672    
673     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
674     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
675     \[
676     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
677     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
678     \]
679     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
680     the potential evapotranspiration actually evaporated, L is the latent
681     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
682     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
683     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
684     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
685     humidity at the surface and at the bottom model level, respectively.
686     \\
687    
688     {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
689    
690     Over sea ice there is an additional source of energy at the surface due to the heat
691     conduction from the relatively warm ocean through the sea ice. The heat conduction
692     through sea ice represents an additional energy source term for the ground temperature equation.
693    
694     \[
695     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
696     \]
697    
698     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
699     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
700     $T_g$ is the temperature of the sea ice.
701    
702     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
703     \\
704    
705    
706     {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
707    
708     \begin{eqnarray*}
709     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
710     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
711     \end{eqnarray*}
712     \\
713     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
714     $F_{LW}^\uparrow$ is
715     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
716     \\
717    
718     {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
719    
720     \begin{eqnarray*}
721     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
722     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
723     \end{eqnarray*}
724     \\
725     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
726     $F_{SW}^\downarrow$ is
727     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
728     \\
729    
730    
731     \noindent
732     {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
733    
734     \noindent
735     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
736     \[
737     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
738     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
739     \]
740     \\
741     where we used the hydrostatic equation:
742     \[
743     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
744     \]
745     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
746     indicate dominantly unstable shear, and large positive values indicate dominantly stable
747     stratification.
748     \\
749    
750     \noindent
751     {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
752    
753     \noindent
754     The surface exchange coefficient is obtained from the similarity functions for the stability
755     dependant flux profile relationships:
756     \[
757     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
758     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
759     { k \over { (\psi_{h} + \psi_{g}) } }
760     \]
761     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
762     viscous sublayer non-dimensional temperature or moisture change:
763     \[
764     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
765     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
766     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
767     \]
768     and:
769     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
770    
771     \noindent
772     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
773     the temperature and moisture gradients, specified differently for stable and unstable
774     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
775     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
776     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
777     (see diagnostic number 67), and the subscript ref refers to a reference value.
778     \\
779    
780     \noindent
781     {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
782    
783     \noindent
784     The surface exchange coefficient is obtained from the similarity functions for the stability
785     dependant flux profile relationships:
786     \[
787     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
788     \]
789     where $\psi_m$ is the surface layer non-dimensional wind shear:
790     \[
791     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
792     \]
793     \noindent
794     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
795     the temperature and moisture gradients, specified differently for stable and unstable layers
796     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
797     non-dimensional stability parameter, $u_*$ is the surface stress velocity
798     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
799     \\
800    
801     \noindent
802     {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
803    
804     \noindent
805     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
806     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
807     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
808     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
809     takes the form:
810     \[
811     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
812     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
813     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
814     \]
815     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
816     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
817     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
818     depth,
819     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
820     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
821     dimensionless buoyancy and wind shear
822     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
823     are functions of the Richardson number.
824    
825     \noindent
826     For the detailed equations and derivations of the modified level 2.5 closure scheme,
827     see Helfand and Labraga, 1988.
828    
829     \noindent
830     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
831     in units of $m/sec$, given by:
832     \[
833     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
834     \]
835     \noindent
836     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
837     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
838     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
839     and $W_s$ is the magnitude of the surface layer wind.
840     \\
841    
842     \noindent
843     {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
844    
845     \noindent
846     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
847     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
848     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
849     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
850     takes the form:
851     \[
852     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
853     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
854     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
855     \]
856     \noindent
857     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
858     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
859     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
860     depth,
861     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
862     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
863     dimensionless buoyancy and wind shear
864     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
865     are functions of the Richardson number.
866    
867     \noindent
868     For the detailed equations and derivations of the modified level 2.5 closure scheme,
869     see Helfand and Labraga, 1988.
870    
871     \noindent
872     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
873     in units of $m/sec$, given by:
874     \[
875     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
876     \]
877     \noindent
878     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
879     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
880     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
881     magnitude of the surface layer wind.
882     \\
883    
884     \noindent
885     {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
886    
887     \noindent
888     The tendency of U-Momentum due to turbulence is written:
889     \[
890     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
891     = {\pp{}{z} }{(K_m \pp{u}{z})}
892     \]
893    
894     \noindent
895     The Helfand and Labraga level 2.5 scheme models the turbulent
896     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
897     equation.
898    
899     \noindent
900     {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
901    
902     \noindent
903     The tendency of V-Momentum due to turbulence is written:
904     \[
905     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
906     = {\pp{}{z} }{(K_m \pp{v}{z})}
907     \]
908    
909     \noindent
910     The Helfand and Labraga level 2.5 scheme models the turbulent
911     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
912     equation.
913     \\
914    
915     \noindent
916     {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
917    
918     \noindent
919     The tendency of temperature due to turbulence is written:
920     \[
921     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
922     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
923     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
924     \]
925    
926     \noindent
927     The Helfand and Labraga level 2.5 scheme models the turbulent
928     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
929     equation.
930     \\
931    
932     \noindent
933     {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
934    
935     \noindent
936     The tendency of specific humidity due to turbulence is written:
937     \[
938     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
939     = {\pp{}{z} }{(K_h \pp{q}{z})}
940     \]
941    
942     \noindent
943     The Helfand and Labraga level 2.5 scheme models the turbulent
944     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
945     equation.
946     \\
947    
948     \noindent
949     {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
950    
951     \noindent
952     \[
953     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
954     \]
955     where:
956     \[
957     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
958     \hspace{.4cm} and
959     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
960     \]
961     and
962     \[
963     \Gamma_s = g \eta \pp{s}{p}
964     \]
965    
966     \noindent
967     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
968     precipitation processes, or supersaturation rain.
969     The summation refers to contributions from each cloud type called by RAS.
970     The dry static energy is given
971     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
972     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
973     the description of the convective parameterization. The fractional adjustment, or relaxation
974     parameter, for each cloud type is given as $\alpha$, while
975     $R$ is the rain re-evaporation adjustment.
976     \\
977    
978     \noindent
979     {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
980    
981     \noindent
982     \[
983     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
984     \]
985     where:
986     \[
987     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
988     \hspace{.4cm} and
989     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
990     \]
991     and
992     \[
993     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
994     \]
995     \noindent
996     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
997     precipitation processes, or supersaturation rain.
998     The summation refers to contributions from each cloud type called by RAS.
999     The dry static energy is given as $s$,
1000     the moist static energy is given as $h$,
1001     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1002     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1003     the description of the convective parameterization. The fractional adjustment, or relaxation
1004     parameter, for each cloud type is given as $\alpha$, while
1005     $R$ is the rain re-evaporation adjustment.
1006     \\
1007    
1008     \noindent
1009     {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1010    
1011     \noindent
1012     The net longwave heating rate is calculated as the vertical divergence of the
1013     net terrestrial radiative fluxes.
1014     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1015     longwave routine.
1016     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1017     For a given cloud fraction,
1018     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1019     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1020     for the upward and downward radiative fluxes.
1021     (see Section \ref{sec:fizhi:radcloud}).
1022     The cloudy-sky flux is then obtained as:
1023    
1024     \noindent
1025     \[
1026     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1027     \]
1028    
1029     \noindent
1030     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1031     net terrestrial radiative fluxes:
1032     \[
1033     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1034     \]
1035     or
1036     \[
1037     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1038     \]
1039    
1040     \noindent
1041     where $g$ is the accelation due to gravity,
1042     $c_p$ is the heat capacity of air at constant pressure,
1043     and
1044     \[
1045     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1046     \]
1047     \\
1048    
1049    
1050     \noindent
1051     {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1052    
1053     \noindent
1054     The net Shortwave heating rate is calculated as the vertical divergence of the
1055     net solar radiative fluxes.
1056     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1057     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1058     both CLMO (maximum overlap cloud fraction) and
1059     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1060     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1061     true time-averaged cloud fractions CLMO
1062     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1063     input at the top of the atmosphere.
1064    
1065     \noindent
1066     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1067     \[
1068     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1069     \]
1070     or
1071     \[
1072     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1073     \]
1074    
1075     \noindent
1076     where $g$ is the accelation due to gravity,
1077     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1078     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1079     \[
1080     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1081     \]
1082     \\
1083    
1084     \noindent
1085     {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1086    
1087     \noindent
1088     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1089     the vertical integral or total precipitable amount is given by:
1090     \[
1091     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1092     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1093     \]
1094     \\
1095    
1096     \noindent
1097     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1098     time step, scaled to $mm/day$.
1099     \\
1100    
1101     \noindent
1102     {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1103    
1104     \noindent
1105     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1106     the vertical integral or total precipitable amount is given by:
1107     \[
1108     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1109     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1110     \]
1111     \\
1112    
1113     \noindent
1114     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1115     time step, scaled to $mm/day$.
1116     \\
1117    
1118     \noindent
1119     {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1120    
1121     \noindent
1122     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1123     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1124    
1125     \[
1126     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1127     {\rho } {(- K_m \pp{U}{z})}
1128     \]
1129    
1130     \noindent
1131     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1132     \\
1133    
1134     \noindent
1135     {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1136    
1137     \noindent
1138     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1139     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1140    
1141     \[
1142     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1143     {\rho } {(- K_m \pp{V}{z})}
1144     \]
1145    
1146     \noindent
1147     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1148     \\
1149    
1150    
1151     \noindent
1152     {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1153    
1154     \noindent
1155     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1156     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1157    
1158     \noindent
1159     \[
1160     {\bf TTFLUX} = c_p {\rho }
1161     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1162     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1163     \]
1164    
1165     \noindent
1166     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1167     \\
1168    
1169    
1170     \noindent
1171     {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1172    
1173     \noindent
1174     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1175     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1176    
1177     \noindent
1178     \[
1179     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1180     {L {\rho }(- K_h \pp{q}{z})}
1181     \]
1182    
1183     \noindent
1184     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1185     \\
1186    
1187    
1188     \noindent
1189     {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1190    
1191     \noindent
1192     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1193     \[
1194     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1195     \]
1196    
1197     \noindent
1198     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1199     $z_0$ is the surface roughness.
1200    
1201     \noindent
1202     NOTE: CN is not available through model version 5.3, but is available in subsequent
1203     versions.
1204     \\
1205    
1206     \noindent
1207     {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1208    
1209     \noindent
1210     The surface wind speed is calculated for the last internal turbulence time step:
1211     \[
1212     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1213     \]
1214    
1215     \noindent
1216     where the subscript $Nrphys$ refers to the lowest model level.
1217     \\
1218    
1219     \noindent
1220     {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1221    
1222     \noindent
1223     The air/surface virtual temperature difference measures the stability of the surface layer:
1224     \[
1225     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1226     \]
1227     \noindent
1228     where
1229     \[
1230     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1231     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1232     \]
1233    
1234     \noindent
1235     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1236     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1237     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1238     refers to the surface.
1239     \\
1240    
1241    
1242     \noindent
1243     {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1244    
1245     \noindent
1246     The ground temperature equation is solved as part of the turbulence package
1247     using a backward implicit time differencing scheme:
1248     \[
1249     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1250     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1251     \]
1252    
1253     \noindent
1254     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1255     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1256     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1257     flux, and $C_g$ is the total heat capacity of the ground.
1258     $C_g$ is obtained by solving a heat diffusion equation
1259     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1260     \[
1261     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1262     { 86400. \over {2 \pi} } } \, \, .
1263     \]
1264     \noindent
1265     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1266     {cm \over {^oK}}$,
1267     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1268     by $2 \pi$ $radians/
1269     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1270     is a function of the ground wetness, $W$.
1271     \\
1272    
1273     \noindent
1274     {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1275    
1276     \noindent
1277     The surface temperature estimate is made by assuming that the model's lowest
1278     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1279     The surface temperature is therefore:
1280     \[
1281     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1282     \]
1283     \\
1284    
1285     \noindent
1286     {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1287    
1288     \noindent
1289     The change in surface temperature from one turbulence time step to the next, solved
1290     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1291     \[
1292     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1293     \]
1294    
1295     \noindent
1296     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1297     refers to the value at the previous turbulence time level.
1298     \\
1299    
1300     \noindent
1301     {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1302    
1303     \noindent
1304     The ground specific humidity is obtained by interpolating between the specific
1305     humidity at the lowest model level and the specific humidity of a saturated ground.
1306     The interpolation is performed using the potential evapotranspiration function:
1307     \[
1308     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1309     \]
1310    
1311     \noindent
1312     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1313     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1314     pressure.
1315     \\
1316    
1317     \noindent
1318     {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1319    
1320     \noindent
1321     The surface saturation specific humidity is the saturation specific humidity at
1322     the ground temprature and surface pressure:
1323     \[
1324     {\bf QS} = q^*(T_g,P_s)
1325     \]
1326     \\
1327    
1328     \noindent
1329     {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1330     radiation subroutine (deg)}
1331     \[
1332     {\bf TGRLW} = T_g(\lambda , \phi ,n)
1333     \]
1334     \noindent
1335     where $T_g$ is the model ground temperature at the current time step $n$.
1336     \\
1337    
1338    
1339     \noindent
1340     {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1341     \[
1342     {\bf ST4} = \sigma T^4
1343     \]
1344     \noindent
1345     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1346     \\
1347    
1348     \noindent
1349     {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1350     \[
1351     {\bf OLR} = F_{LW,top}^{NET}
1352     \]
1353     \noindent
1354     where top indicates the top of the first model layer.
1355     In the GCM, $p_{top}$ = 0.0 mb.
1356     \\
1357    
1358    
1359     \noindent
1360     {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1361     \[
1362     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1363     \]
1364     \noindent
1365     where top indicates the top of the first model layer.
1366     In the GCM, $p_{top}$ = 0.0 mb.
1367     \\
1368    
1369     \noindent
1370     {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1371    
1372     \noindent
1373     \begin{eqnarray*}
1374     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1375     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1376     \end{eqnarray*}
1377     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1378     $F(clearsky)_{LW}^\uparrow$ is
1379     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1380     \\
1381    
1382     \noindent
1383     {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1384    
1385     \noindent
1386     The net longwave heating rate is calculated as the vertical divergence of the
1387     net terrestrial radiative fluxes.
1388     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1389     longwave routine.
1390     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1391     For a given cloud fraction,
1392     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1393     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1394     for the upward and downward radiative fluxes.
1395     (see Section \ref{sec:fizhi:radcloud}).
1396     The cloudy-sky flux is then obtained as:
1397    
1398     \noindent
1399     \[
1400     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1401     \]
1402    
1403     \noindent
1404     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1405     vertical divergence of the
1406     clear-sky longwave radiative flux:
1407     \[
1408     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1409     \]
1410     or
1411     \[
1412     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1413     \]
1414    
1415     \noindent
1416     where $g$ is the accelation due to gravity,
1417     $c_p$ is the heat capacity of air at constant pressure,
1418     and
1419     \[
1420     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1421     \]
1422     \\
1423    
1424    
1425     \noindent
1426     {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1427     radiation subroutine (deg)}
1428     \[
1429     {\bf TLW} = T(\lambda , \phi ,level, n)
1430     \]
1431     \noindent
1432     where $T$ is the model temperature at the current time step $n$.
1433     \\
1434    
1435    
1436     \noindent
1437     {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1438     the Longwave radiation subroutine (kg/kg)}
1439     \[
1440     {\bf SHLW} = q(\lambda , \phi , level , n)
1441     \]
1442     \noindent
1443     where $q$ is the model specific humidity at the current time step $n$.
1444     \\
1445    
1446    
1447     \noindent
1448     {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1449     the Longwave radiation subroutine (kg/kg)}
1450     \[
1451     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1452     \]
1453     \noindent
1454     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1455     mean zonally averaged ozone data set.
1456     \\
1457    
1458    
1459     \noindent
1460     {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1461    
1462     \noindent
1463     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1464     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1465     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1466     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1467     \[
1468     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1469     \]
1470     \\
1471    
1472    
1473     {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1474    
1475     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1476     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1477     Radiation packages.
1478     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1479     \[
1480     {\bf CLDTOT} = F_{RAS} + F_{LS}
1481     \]
1482     \\
1483     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1484     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1485     \\
1486    
1487    
1488     \noindent
1489     {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1490    
1491     \noindent
1492     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1493     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1494     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1495     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1496     \[
1497     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1498     \]
1499     \\
1500    
1501     \noindent
1502     {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1503    
1504     \noindent
1505     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1506     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1507     Radiation algorithm. These are
1508     convective and large-scale clouds whose radiative characteristics are not
1509     assumed to be correlated in the vertical.
1510     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1511     \[
1512     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1513     \]
1514     \\
1515    
1516     \noindent
1517     {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1518     \[
1519     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1520     \]
1521     \noindent
1522     where $S_0$, is the extra-terrestial solar contant,
1523     $R_a$ is the earth-sun distance in Astronomical Units,
1524     and $cos \phi_z$ is the cosine of the zenith angle.
1525     It should be noted that {\bf RADSWT}, as well as
1526     {\bf OSR} and {\bf OSRCLR},
1527     are calculated at the top of the atmosphere (p=0 mb). However, the
1528     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1529     calculated at $p= p_{top}$ (0.0 mb for the GCM).
1530     \\
1531    
1532     \noindent
1533     {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1534    
1535     \noindent
1536     The surface evaporation is a function of the gradient of moisture, the potential
1537     evapotranspiration fraction and the eddy exchange coefficient:
1538     \[
1539     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1540     \]
1541     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1542     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1543     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1544     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1545     number 34) and at the bottom model level, respectively.
1546     \\
1547    
1548     \noindent
1549     {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1550    
1551     \noindent
1552     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1553     and Analysis forcing.
1554     \[
1555     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1556     \]
1557     \\
1558    
1559     \noindent
1560     {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1561    
1562     \noindent
1563     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1564     and Analysis forcing.
1565     \[
1566     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1567     \]
1568     \\
1569    
1570     \noindent
1571     {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1572    
1573     \noindent
1574     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1575     and Analysis forcing.
1576     \begin{eqnarray*}
1577     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1578     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1579     \end{eqnarray*}
1580     \\
1581    
1582     \noindent
1583     {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1584    
1585     \noindent
1586     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1587     and Analysis forcing.
1588     \[
1589     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1590     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1591     \]
1592     \\
1593    
1594     \noindent
1595     {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1596    
1597     \noindent
1598     The surface stress velocity, or the friction velocity, is the wind speed at
1599     the surface layer top impeded by the surface drag:
1600     \[
1601     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1602     C_u = {k \over {\psi_m} }
1603     \]
1604    
1605     \noindent
1606     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1607     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1608    
1609     \noindent
1610     {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1611    
1612     \noindent
1613     Over the land surface, the surface roughness length is interpolated to the local
1614     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1615     the roughness length is a function of the surface-stress velocity, $u_*$.
1616     \[
1617     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1618     \]
1619    
1620     \noindent
1621     where the constants are chosen to interpolate between the reciprocal relation of
1622     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1623     for moderate to large winds.
1624     \\
1625    
1626     \noindent
1627     {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1628    
1629     \noindent
1630     The fraction of time when turbulence is present is defined as the fraction of
1631     time when the turbulent kinetic energy exceeds some minimum value, defined here
1632     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1633     incremented. The fraction over the averaging interval is reported.
1634     \\
1635    
1636     \noindent
1637     {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1638    
1639     \noindent
1640     The depth of the PBL is defined by the turbulence parameterization to be the
1641     depth at which the turbulent kinetic energy reduces to ten percent of its surface
1642     value.
1643    
1644     \[
1645     {\bf PBL} = P_{PBL} - P_{surface}
1646     \]
1647    
1648     \noindent
1649     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1650     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1651     \\
1652    
1653     \noindent
1654     {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1655    
1656     \noindent
1657     The net Shortwave heating rate is calculated as the vertical divergence of the
1658     net solar radiative fluxes.
1659     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1660     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1661     both CLMO (maximum overlap cloud fraction) and
1662     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1663     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1664     true time-averaged cloud fractions CLMO
1665     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1666     input at the top of the atmosphere.
1667    
1668     \noindent
1669     The heating rate due to Shortwave Radiation under clear skies is defined as:
1670     \[
1671     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1672     \]
1673     or
1674     \[
1675     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1676     \]
1677    
1678     \noindent
1679     where $g$ is the accelation due to gravity,
1680     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1681     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1682     \[
1683     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1684     \]
1685     \\
1686    
1687     \noindent
1688     {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1689     \[
1690     {\bf OSR} = F_{SW,top}^{NET}
1691     \]
1692     \noindent
1693     where top indicates the top of the first model layer used in the shortwave radiation
1694     routine.
1695     In the GCM, $p_{SW_{top}}$ = 0 mb.
1696     \\
1697    
1698     \noindent
1699     {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1700     \[
1701     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1702     \]
1703     \noindent
1704     where top indicates the top of the first model layer used in the shortwave radiation
1705     routine.
1706     In the GCM, $p_{SW_{top}}$ = 0 mb.
1707     \\
1708    
1709    
1710     \noindent
1711     {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1712    
1713     \noindent
1714     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1715     \[
1716     {\bf CLDMAS} = \eta m_B
1717     \]
1718     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1719     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1720     description of the convective parameterization.
1721     \\
1722    
1723    
1724    
1725     \noindent
1726     {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1727    
1728     \noindent
1729     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1730     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1731     Zonal U-Wind which is archived on the Prognostic Output data stream.
1732     \[
1733     {\bf UAVE} = u(\lambda, \phi, level , t)
1734     \]
1735     \\
1736     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1737     \\
1738    
1739     \noindent
1740     {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1741    
1742     \noindent
1743     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1744     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1745     Meridional V-Wind which is archived on the Prognostic Output data stream.
1746     \[
1747     {\bf VAVE} = v(\lambda, \phi, level , t)
1748     \]
1749     \\
1750     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1751     \\
1752    
1753     \noindent
1754     {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1755    
1756     \noindent
1757     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1758     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1759     Temperature which is archived on the Prognostic Output data stream.
1760     \[
1761     {\bf TAVE} = T(\lambda, \phi, level , t)
1762     \]
1763     \\
1764    
1765     \noindent
1766     {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1767    
1768     \noindent
1769     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1770     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1771     Specific Humidity which is archived on the Prognostic Output data stream.
1772     \[
1773     {\bf QAVE} = q(\lambda, \phi, level , t)
1774     \]
1775     \\
1776    
1777     \noindent
1778     {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1779    
1780     \noindent
1781     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1782     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1783     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1784     \begin{eqnarray*}
1785     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1786     & = & p_s(\lambda, \phi, level , t) - p_T
1787     \end{eqnarray*}
1788     \\
1789    
1790    
1791     \noindent
1792     {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1793    
1794     \noindent
1795     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1796     produced by the GCM Turbulence parameterization over
1797     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1798     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1799     \[
1800     {\bf QQAVE} = qq(\lambda, \phi, level , t)
1801     \]
1802     \\
1803     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1804     \\
1805    
1806     \noindent
1807     {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1808    
1809     \noindent
1810     \begin{eqnarray*}
1811     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1812     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1813     \end{eqnarray*}
1814     \noindent
1815     \\
1816     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1817     $F(clearsky){SW}^\downarrow$ is
1818     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1819     the upward clearsky Shortwave flux.
1820     \\
1821    
1822     \noindent
1823     {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1824    
1825     \noindent
1826     The GCM provides Users with a built-in mechanism for archiving user-defined
1827     diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1828     diagnostic counters and pointers located in COMMON /DIAGP/,
1829     must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1830     A convenient method for incorporating all necessary COMMON files is to
1831     include the GCM {\em vstate.com} file in the routine which employs the
1832     user-defined diagnostics.
1833    
1834     \noindent
1835     In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1836     the QDIAG array with the desired quantity within the User's
1837     application program or within modified GCM subroutines, as well as increment
1838     the diagnostic counter at the time when the diagnostic is updated.
1839     The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1840     automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1841     diagnostic has been enabled.
1842     The syntax for its use is given by
1843     \begin{verbatim}
1844     do j=1,jm
1845     do i=1,im
1846     qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1847     enddo
1848     enddo
1849    
1850     NSDIAG1 = NSDIAG1 + 1
1851     \end{verbatim}
1852     The diagnostics defined in this manner will automatically be archived by the output routines.
1853     \\
1854    
1855     \noindent
1856     {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1857    
1858     \noindent
1859     The GCM provides Users with a built-in mechanism for archiving user-defined
1860     diagnostics. For a complete description refer to Diagnostic \#84.
1861     The syntax for using the surface SDIAG2 diagnostic is given by
1862     \begin{verbatim}
1863     do j=1,jm
1864     do i=1,im
1865     qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1866     enddo
1867     enddo
1868    
1869     NSDIAG2 = NSDIAG2 + 1
1870     \end{verbatim}
1871     The diagnostics defined in this manner will automatically be archived by the output routines.
1872     \\
1873    
1874     \noindent
1875     {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1876    
1877     \noindent
1878     The GCM provides Users with a built-in mechanism for archiving user-defined
1879     diagnostics. For a complete description refer to Diagnostic \#84.
1880     The syntax for using the upper-air UDIAG1 diagnostic is given by
1881     \begin{verbatim}
1882     do L=1,Nrphys
1883     do j=1,jm
1884     do i=1,im
1885     qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1886     enddo
1887     enddo
1888     enddo
1889    
1890     NUDIAG1 = NUDIAG1 + 1
1891     \end{verbatim}
1892     The diagnostics defined in this manner will automatically be archived by the
1893     output programs.
1894     \\
1895    
1896     \noindent
1897     {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1898    
1899     \noindent
1900     The GCM provides Users with a built-in mechanism for archiving user-defined
1901     diagnostics. For a complete description refer to Diagnostic \#84.
1902     The syntax for using the upper-air UDIAG2 diagnostic is given by
1903     \begin{verbatim}
1904     do L=1,Nrphys
1905     do j=1,jm
1906     do i=1,im
1907     qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1908     enddo
1909     enddo
1910     enddo
1911    
1912     NUDIAG2 = NUDIAG2 + 1
1913     \end{verbatim}
1914     The diagnostics defined in this manner will automatically be archived by the
1915     output programs.
1916     \\
1917    
1918    
1919     \noindent
1920     {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1921    
1922     \noindent
1923     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1924     and the Analysis forcing.
1925     \[
1926     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1927     \]
1928     \\
1929    
1930     \noindent
1931     {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1932    
1933     \noindent
1934     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1935     and the Analysis forcing.
1936     \[
1937     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1938     \]
1939     \\
1940    
1941     \noindent
1942     {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1943    
1944     \noindent
1945     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1946     and the Analysis forcing.
1947     \begin{eqnarray*}
1948     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1949     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1950     \end{eqnarray*}
1951     \\
1952     If we define the time-tendency of Temperature due to Diabatic processes as
1953     \begin{eqnarray*}
1954     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1955     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1956     \end{eqnarray*}
1957     then, since there are no surface pressure changes due to Diabatic processes, we may write
1958     \[
1959     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1960     \]
1961     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1962     \[
1963     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1964     \]
1965     \\
1966    
1967     \noindent
1968     {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1969    
1970     \noindent
1971     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
1972     and the Analysis forcing.
1973     \[
1974     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1975     \]
1976     If we define the time-tendency of Specific Humidity due to Diabatic processes as
1977     \[
1978     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
1979     \]
1980     then, since there are no surface pressure changes due to Diabatic processes, we may write
1981     \[
1982     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
1983     \]
1984     Thus, {\bf DIABQ} may be written as
1985     \[
1986     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
1987     \]
1988     \\
1989    
1990     \noindent
1991     {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
1992    
1993     \noindent
1994     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
1995     $u q$ over the depth of the atmosphere at each model timestep,
1996     and dividing by the total mass of the column.
1997     \[
1998     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
1999     \]
2000     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2001     \[
2002     {\bf VINTUQ} = { \int_0^1 u q dp }
2003     \]
2004     \\
2005    
2006    
2007     \noindent
2008     {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2009    
2010     \noindent
2011     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2012     $v q$ over the depth of the atmosphere at each model timestep,
2013     and dividing by the total mass of the column.
2014     \[
2015     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2016     \]
2017     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2018     \[
2019     {\bf VINTVQ} = { \int_0^1 v q dp }
2020     \]
2021     \\
2022    
2023    
2024     \noindent
2025     {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2026    
2027     \noindent
2028     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2029     $u T$ over the depth of the atmosphere at each model timestep,
2030     and dividing by the total mass of the column.
2031     \[
2032     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2033     \]
2034     Or,
2035     \[
2036     {\bf VINTUT} = { \int_0^1 u T dp }
2037     \]
2038     \\
2039    
2040     \noindent
2041     {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2042    
2043     \noindent
2044     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2045     $v T$ over the depth of the atmosphere at each model timestep,
2046     and dividing by the total mass of the column.
2047     \[
2048     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2049     \]
2050     Using $\rho \delta z = -{\delta p \over g} $, we have
2051     \[
2052     {\bf VINTVT} = { \int_0^1 v T dp }
2053     \]
2054     \\
2055    
2056     \noindent
2057     {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2058    
2059     If we define the
2060     time-averaged random and maximum overlapped cloudiness as CLRO and
2061     CLMO respectively, then the probability of clear sky associated
2062     with random overlapped clouds at any level is (1-CLRO) while the probability of
2063     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2064     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2065     the total cloud fraction at each level may be obtained by
2066     1-(1-CLRO)*(1-CLMO).
2067    
2068     At any given level, we may define the clear line-of-site probability by
2069     appropriately accounting for the maximum and random overlap
2070     cloudiness. The clear line-of-site probability is defined to be
2071     equal to the product of the clear line-of-site probabilities
2072     associated with random and maximum overlap cloudiness. The clear
2073     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2074     from the current pressure $p$
2075     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2076     is simply 1.0 minus the largest maximum overlap cloud value along the
2077     line-of-site, ie.
2078    
2079     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2080    
2081     Thus, even in the time-averaged sense it is assumed that the
2082     maximum overlap clouds are correlated in the vertical. The clear
2083     line-of-site probability associated with random overlap clouds is
2084     defined to be the product of the clear sky probabilities at each
2085     level along the line-of-site, ie.
2086    
2087     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2088    
2089     The total cloud fraction at a given level associated with a line-
2090     of-site calculation is given by
2091    
2092     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2093     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2094    
2095    
2096     \noindent
2097     The 2-dimensional net cloud fraction as seen from the top of the
2098     atmosphere is given by
2099     \[
2100     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2101     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2102     \]
2103     \\
2104     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2105    
2106    
2107     \noindent
2108     {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2109    
2110     \noindent
2111     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2112     given by:
2113     \begin{eqnarray*}
2114     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2115     & = & {\pi \over g} \int_0^1 q dp
2116     \end{eqnarray*}
2117     where we have used the hydrostatic relation
2118     $\rho \delta z = -{\delta p \over g} $.
2119     \\
2120    
2121    
2122     \noindent
2123     {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2124    
2125     \noindent
2126     The u-wind at the 2-meter depth is determined from the similarity theory:
2127     \[
2128     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2129     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2130     \]
2131    
2132     \noindent
2133     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2134     $sl$ refers to the height of the top of the surface layer. If the roughness height
2135     is above two meters, ${\bf U2M}$ is undefined.
2136     \\
2137    
2138     \noindent
2139     {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2140    
2141     \noindent
2142     The v-wind at the 2-meter depth is a determined from the similarity theory:
2143     \[
2144     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2145     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2146     \]
2147    
2148     \noindent
2149     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2150     $sl$ refers to the height of the top of the surface layer. If the roughness height
2151     is above two meters, ${\bf V2M}$ is undefined.
2152     \\
2153    
2154     \noindent
2155     {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2156    
2157     \noindent
2158     The temperature at the 2-meter depth is a determined from the similarity theory:
2159     \[
2160     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2161     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2162     (\theta_{sl} - \theta_{surf}))
2163     \]
2164     where:
2165     \[
2166     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2167     \]
2168    
2169     \noindent
2170     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2171     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2172     $sl$ refers to the height of the top of the surface layer. If the roughness height
2173     is above two meters, ${\bf T2M}$ is undefined.
2174     \\
2175    
2176     \noindent
2177     {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2178    
2179     \noindent
2180     The specific humidity at the 2-meter depth is determined from the similarity theory:
2181     \[
2182     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2183     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2184     (q_{sl} - q_{surf}))
2185     \]
2186     where:
2187     \[
2188     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2189     \]
2190    
2191     \noindent
2192     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2193     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2194     $sl$ refers to the height of the top of the surface layer. If the roughness height
2195     is above two meters, ${\bf Q2M}$ is undefined.
2196     \\
2197    
2198     \noindent
2199     {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2200    
2201     \noindent
2202     The u-wind at the 10-meter depth is an interpolation between the surface wind
2203     and the model lowest level wind using the ratio of the non-dimensional wind shear
2204     at the two levels:
2205     \[
2206     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2207     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2208     \]
2209    
2210     \noindent
2211     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2212     $sl$ refers to the height of the top of the surface layer.
2213     \\
2214    
2215     \noindent
2216     {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2217    
2218     \noindent
2219     The v-wind at the 10-meter depth is an interpolation between the surface wind
2220     and the model lowest level wind using the ratio of the non-dimensional wind shear
2221     at the two levels:
2222     \[
2223     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2224     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2225     \]
2226    
2227     \noindent
2228     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2229     $sl$ refers to the height of the top of the surface layer.
2230     \\
2231    
2232     \noindent
2233     {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2234    
2235     \noindent
2236     The temperature at the 10-meter depth is an interpolation between the surface potential
2237     temperature and the model lowest level potential temperature using the ratio of the
2238     non-dimensional temperature gradient at the two levels:
2239     \[
2240     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2241     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2242     (\theta_{sl} - \theta_{surf}))
2243     \]
2244     where:
2245     \[
2246     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2247     \]
2248    
2249     \noindent
2250     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2251     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2252     $sl$ refers to the height of the top of the surface layer.
2253     \\
2254    
2255     \noindent
2256     {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2257    
2258     \noindent
2259     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2260     humidity and the model lowest level specific humidity using the ratio of the
2261     non-dimensional temperature gradient at the two levels:
2262     \[
2263     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2264     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2265     (q_{sl} - q_{surf}))
2266     \]
2267     where:
2268     \[
2269     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2270     \]
2271    
2272     \noindent
2273     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2274     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2275     $sl$ refers to the height of the top of the surface layer.
2276     \\
2277    
2278     \noindent
2279     {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2280    
2281     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2282     \[
2283     {\bf DTRAIN} = \eta_{r_D}m_B
2284     \]
2285     \noindent
2286     where $r_D$ is the detrainment level,
2287     $m_B$ is the cloud base mass flux, and $\eta$
2288     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2289     \\
2290    
2291     \noindent
2292     {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2293    
2294     \noindent
2295     Due to computational errors associated with the numerical scheme used for
2296     the advection of moisture, negative values of specific humidity may be generated. The
2297     specific humidity is checked for negative values after every dynamics timestep. If negative
2298     values have been produced, a filling algorithm is invoked which redistributes moisture from
2299     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2300     to eliminate negative specific humidity, scaled to a per-day rate:
2301     \[
2302     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2303     \]
2304     where
2305     \[
2306     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2307     \]
2308    
2309     \subsection{Dos and Donts}
2310    
2311     \subsection{Diagnostics Reference}
2312    

  ViewVC Help
Powered by ViewVC 1.1.22