/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Thu Oct 14 15:28:53 2004 UTC (20 years, 9 months ago) by molod
Branch: MAIN
Changes since 1.2: +51 -26 lines
File MIME type: application/x-tex
Bringing diagnostics documentation more current

1 edhill 1.2 \section{Diagnostics--A Flexible Infrastructure}
2     \label{sec:pkg:diagnostics}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_diagnostics: -->
5     \end{rawhtml}
6 molod 1.1
7     \subsection{Introduction}
8    
9 molod 1.3 This section of the documentation describes the Diagnostics Utilities available within
10     the GCM. In addition to a description on how to set and extract diagnostic quantities,
11     this document also provides a comprehensive list of all available diagnostic quantities
12     and a short description of how they are computed. It should be noted that this document
13     is not intended to be a complete documentation of the various packages used in the GCM,
14     and the reader should refer to original publications and the appropriate sections of this
15     documentation for further insight.
16 molod 1.1
17     \subsection{Equations}
18     Not relevant.
19    
20     \subsection{Key Subroutines and Parameters}
21     \label{sec:diagnostics:diagover}
22    
23     A large selection of model diagnostics is available in the GCM. At the time of
24 molod 1.3 this writing there are 280 different diagnostic quantities which can be enabled for an
25 molod 1.1 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
26     specify the exact diagnostic information required for an experiment. This is accomplished by
27     enabling the specific diagnostic of interest cataloged in the
28     Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
29     The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
30     GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
31     Menu. Once a diagnostic is enabled, the GCM will continually increment an array
32     specifically allocated for that diagnostic whenever the associated process for the diagnostic is
33     computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
34     which records how many times each diagnostic quantity has been computed. In addition
35     special diagnostics, called
36     ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
37     model grid location.
38    
39     The diagnostics are computed at various times and places within the GCM.
40     Some diagnostics are computed on the geophysical A-grid (such as
41     those within the Physics routines), while others are computed on the C-grid
42     (those computed during the dynamics time-stepping). Some diagnostics are
43     scalars, while others are vectors. Each of these possibilities requires
44     separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
45     to this complexity, and since the specific diagnostics enabled are User determined at the
46     time of the run,
47     a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
48     which contains information concerning various grid attributes of each diagnostic. The GDIAG
49     array is internally defined as a character*8 variable, and is equivalenced to
50     a character*1 "parse" array in output in order to extract the grid-attribute information.
51     The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
52    
53     \begin{table}
54     \caption{Diagnostic Parsing Array}
55     \label{tab:diagnostics:gdiag.tabl}
56     \begin{center}
57     \begin{tabular}{ |c|c|l| }
58     \hline
59     \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
60     \hline
61     \hline
62     Array & Value & Description \\
63     \hline
64     parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
65     & $\rightarrow$ U & U-vector component Diagnostic \\
66     & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
67     parse(2) & $\rightarrow$ U & C-Grid U-Point \\
68     & $\rightarrow$ V & C-Grid V-Point \\
69     & $\rightarrow$ M & C-Grid Mass Point \\
70 molod 1.3 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
71     parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
72 molod 1.1 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
73     parse(5) & $\rightarrow$ C & Counter Diagnostic \\
74     & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
75     parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
76     & & vector or counter component mate \\ \hline
77     \end{tabular}
78     \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
79     \end{center}
80     \end{table}
81    
82     As an example, consider a diagnostic whose associated GDIAG parameter is equal
83 molod 1.3 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
84     U-vector component located at the C-grid U-point.
85 molod 1.1 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
86    
87     In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
88 molod 1.3 A-Grid or C-grid, etc.) defined internally. The Output routines
89 molod 1.1 use this information in order to determine
90 molod 1.3 what type of transformations need to be performed. Thus, all Diagnostic
91 molod 1.1 interpolations are done at the time of output rather than during each model dynamic step.
92     In this way the User now has more flexibility
93     in determining the type of gridded data which is output.
94    
95     There are several utilities within the GCM available to users to enable, disable,
96     clear, and retrieve model diagnostics, and may be called from any user-supplied application
97     and/or output routine. The available utilities and the CALL sequences are listed below.
98    
99    
100     {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
101     space is allocated for the diagnostic and the
102     model routines will increment the diagnostic value during execution. This routine is useful when
103     called from either user application routines or user output routines, and is the underlying interface
104     between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
105     number from the menu, and its calling sequence is given by:
106    
107     \begin{tabbing}
108     XXXXXXXXX\=XXXXXX\= \kill
109     \> CALL SETDIAG (NUM) \\
110     \\
111     where \> NUM \>= Diagnostic number from menu \\
112     \end{tabbing}
113    
114    
115     {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
116     particulary useful when called from a user output routine, although it can be called from an
117     application routine as well. This routine returns the time-averaged value of the diagnostic by
118     dividing the current accumulated diagnostic value by its corresponding counter. This routine does
119     not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
120     time-average. The calling sequence for this routine is givin by:
121    
122     \begin{tabbing}
123     XXXXXXXXX\=XXXXXX\= \kill
124     \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
125     \\
126     where \> LEV \>= Model Level at which the diagnostic is desired \\
127     \> NUM \>= Diagnostic number from menu \\
128     \> QTMP \>= Time-Averaged Diagnostic Output \\
129     \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
130     \end{tabbing}
131    
132     {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
133     particularly useful when called from user output routines to re-initialize diagnostics during the
134     run. The calling sequence is:
135    
136    
137     \begin{tabbing}
138     XXXXXXXXX\=XXXXXX\= \kill
139     \> CALL CLRDIAG (NUM) \\
140     \\
141     where \> NUM \>= Diagnostic number from menu \\
142     \end{tabbing}
143    
144    
145    
146     {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
147     diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
148     is released when ZAPDIAG is invoked. The calling sequence is given by:
149    
150    
151     \begin{tabbing}
152     XXXXXXXXX\=XXXXXX\= \kill
153     \> CALL ZAPDIAG (NUM) \\
154     \\
155     where \> NUM \>= Diagnostic number from menu \\
156     \end{tabbing}
157    
158     {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
159     is allocated for diagnostics.
160     All GCM diagnostic quantities are stored in the single
161 molod 1.3 diagnostic array QDIAG which is located in diagnostics.h, and has the form:
162 molod 1.1
163 molod 1.3 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
164 molod 1.1
165 molod 1.3 where numdiags is an Integer variable which should be
166 molod 1.1 set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
167     array. The first two-dimensions of QDIAG correspond to the horizontal dimension
168     of a given diagnostic, while the third dimension of QDIAG is used to identify
169     specific diagnostic types.
170 molod 1.3 In order to minimize the memory requirement of the model for diagnostics,
171 molod 1.1 the default GCM executable is compiled with room for only one horizontal
172     diagnostic array, as shown in the above example.
173     In order for the User to enable more than 1 two-dimensional diagnostic,
174 molod 1.3 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
175 molod 1.1 This can be accomplished by manually changing the parameter numdiags in the
176 molod 1.3 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
177 molod 1.1 shell script (???????) to make this
178     change based on the choice of diagnostic output made in the namelist.
179    
180 molod 1.3 \subsection{Usage Notes}
181     \label{sec:diagnostics:usersguide}
182     To use the diagnostics package, other than enabling it in packages.conf
183     and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
184     must be supplied in the run directory called data.diagnostics. The namelist
185     will activate a user-defined list of diagnostics quantities to be computed,
186     specify the frequency of output, the number of levels, and the name of
187     up to 10 separate output files. A sample data.diagnostics namelist file:
188    
189     \# Diagnostic Package Choices
190     \&diagnostics_list
191     frequency(1) = 10, \
192     levels(1,1) = 1.,2.,3.,4.,5., \
193     fields(1,1) = 'UVEL ','VVEL ', \
194     filename(1) = 'diagout1', \
195     frequency(2) = 100, \
196     levels(1,2) = 1.,2.,3.,4.,5., \
197     fields(1,2) = 'THETA ','SALT ', \
198     filename(2) = 'diagout2', \
199     \&end \
200    
201     In this example, there are two output files that will be generated
202     for each tile and for each output time. The first set of output files
203     has the prefix diagout1, does time averaging every 10 time steps,
204     for fields which are multiple-level fields the levels output are 1-5,
205     and the names of diagnostics quantities are UVEL and VVEL.
206     The second set of output files
207     has the prefix diagout2, does time averaging every 100 time steps,
208     for fields which are multiple-level fields the levels output are 1-5,
209     and the names of diagnostics quantities are THETA and SALT.
210    
211 molod 1.1 \newpage
212    
213     \subsubsection{GCM Diagnostic Menu}
214     \label{sec:diagnostics:menu}
215    
216     \begin{tabular}{lllll}
217     \hline\hline
218     N & NAME & UNITS & LEVELS & DESCRIPTION \\
219     \hline
220    
221     &\\
222     1 & UFLUX & $Newton/m^2$ & 1
223     &\begin{minipage}[t]{3in}
224     {Surface U-Wind Stress on the atmosphere}
225     \end{minipage}\\
226     2 & VFLUX & $Newton/m^2$ & 1
227     &\begin{minipage}[t]{3in}
228     {Surface V-Wind Stress on the atmosphere}
229     \end{minipage}\\
230     3 & HFLUX & $Watts/m^2$ & 1
231     &\begin{minipage}[t]{3in}
232     {Surface Flux of Sensible Heat}
233     \end{minipage}\\
234     4 & EFLUX & $Watts/m^2$ & 1
235     &\begin{minipage}[t]{3in}
236     {Surface Flux of Latent Heat}
237     \end{minipage}\\
238     5 & QICE & $Watts/m^2$ & 1
239     &\begin{minipage}[t]{3in}
240     {Heat Conduction through Sea-Ice}
241     \end{minipage}\\
242     6 & RADLWG & $Watts/m^2$ & 1
243     &\begin{minipage}[t]{3in}
244     {Net upward LW flux at the ground}
245     \end{minipage}\\
246     7 & RADSWG & $Watts/m^2$ & 1
247     &\begin{minipage}[t]{3in}
248     {Net downward SW flux at the ground}
249     \end{minipage}\\
250     8 & RI & $dimensionless$ & Nrphys
251     &\begin{minipage}[t]{3in}
252     {Richardson Number}
253     \end{minipage}\\
254     9 & CT & $dimensionless$ & 1
255     &\begin{minipage}[t]{3in}
256     {Surface Drag coefficient for T and Q}
257     \end{minipage}\\
258     10 & CU & $dimensionless$ & 1
259     &\begin{minipage}[t]{3in}
260     {Surface Drag coefficient for U and V}
261     \end{minipage}\\
262     11 & ET & $m^2/sec$ & Nrphys
263     &\begin{minipage}[t]{3in}
264     {Diffusivity coefficient for T and Q}
265     \end{minipage}\\
266     12 & EU & $m^2/sec$ & Nrphys
267     &\begin{minipage}[t]{3in}
268     {Diffusivity coefficient for U and V}
269     \end{minipage}\\
270     13 & TURBU & $m/sec/day$ & Nrphys
271     &\begin{minipage}[t]{3in}
272     {U-Momentum Changes due to Turbulence}
273     \end{minipage}\\
274     14 & TURBV & $m/sec/day$ & Nrphys
275     &\begin{minipage}[t]{3in}
276     {V-Momentum Changes due to Turbulence}
277     \end{minipage}\\
278     15 & TURBT & $deg/day$ & Nrphys
279     &\begin{minipage}[t]{3in}
280     {Temperature Changes due to Turbulence}
281     \end{minipage}\\
282     16 & TURBQ & $g/kg/day$ & Nrphys
283     &\begin{minipage}[t]{3in}
284     {Specific Humidity Changes due to Turbulence}
285     \end{minipage}\\
286     17 & MOISTT & $deg/day$ & Nrphys
287     &\begin{minipage}[t]{3in}
288     {Temperature Changes due to Moist Processes}
289     \end{minipage}\\
290     18 & MOISTQ & $g/kg/day$ & Nrphys
291     &\begin{minipage}[t]{3in}
292     {Specific Humidity Changes due to Moist Processes}
293     \end{minipage}\\
294     19 & RADLW & $deg/day$ & Nrphys
295     &\begin{minipage}[t]{3in}
296     {Net Longwave heating rate for each level}
297     \end{minipage}\\
298     20 & RADSW & $deg/day$ & Nrphys
299     &\begin{minipage}[t]{3in}
300     {Net Shortwave heating rate for each level}
301     \end{minipage}\\
302     21 & PREACC & $mm/day$ & 1
303     &\begin{minipage}[t]{3in}
304     {Total Precipitation}
305     \end{minipage}\\
306     22 & PRECON & $mm/day$ & 1
307     &\begin{minipage}[t]{3in}
308     {Convective Precipitation}
309     \end{minipage}\\
310     23 & TUFLUX & $Newton/m^2$ & Nrphys
311     &\begin{minipage}[t]{3in}
312     {Turbulent Flux of U-Momentum}
313     \end{minipage}\\
314     24 & TVFLUX & $Newton/m^2$ & Nrphys
315     &\begin{minipage}[t]{3in}
316     {Turbulent Flux of V-Momentum}
317     \end{minipage}\\
318     25 & TTFLUX & $Watts/m^2$ & Nrphys
319     &\begin{minipage}[t]{3in}
320     {Turbulent Flux of Sensible Heat}
321     \end{minipage}\\
322     26 & TQFLUX & $Watts/m^2$ & Nrphys
323     &\begin{minipage}[t]{3in}
324     {Turbulent Flux of Latent Heat}
325     \end{minipage}\\
326     27 & CN & $dimensionless$ & 1
327     &\begin{minipage}[t]{3in}
328     {Neutral Drag Coefficient}
329     \end{minipage}\\
330     28 & WINDS & $m/sec$ & 1
331     &\begin{minipage}[t]{3in}
332     {Surface Wind Speed}
333     \end{minipage}\\
334     29 & DTSRF & $deg$ & 1
335     &\begin{minipage}[t]{3in}
336     {Air/Surface virtual temperature difference}
337     \end{minipage}\\
338     30 & TG & $deg$ & 1
339     &\begin{minipage}[t]{3in}
340     {Ground temperature}
341     \end{minipage}\\
342     31 & TS & $deg$ & 1
343     &\begin{minipage}[t]{3in}
344     {Surface air temperature (Adiabatic from lowest model layer)}
345     \end{minipage}\\
346     32 & DTG & $deg$ & 1
347     &\begin{minipage}[t]{3in}
348     {Ground temperature adjustment}
349     \end{minipage}\\
350    
351     \end{tabular}
352    
353     \newpage
354     \vspace*{\fill}
355     \begin{tabular}{lllll}
356     \hline\hline
357     N & NAME & UNITS & LEVELS & DESCRIPTION \\
358     \hline
359    
360     &\\
361     33 & QG & $g/kg$ & 1
362     &\begin{minipage}[t]{3in}
363     {Ground specific humidity}
364     \end{minipage}\\
365     34 & QS & $g/kg$ & 1
366     &\begin{minipage}[t]{3in}
367     {Saturation surface specific humidity}
368     \end{minipage}\\
369    
370     &\\
371     35 & TGRLW & $deg$ & 1
372     &\begin{minipage}[t]{3in}
373     {Instantaneous ground temperature used as input to the
374     Longwave radiation subroutine}
375     \end{minipage}\\
376     36 & ST4 & $Watts/m^2$ & 1
377     &\begin{minipage}[t]{3in}
378     {Upward Longwave flux at the ground ($\sigma T^4$)}
379     \end{minipage}\\
380     37 & OLR & $Watts/m^2$ & 1
381     &\begin{minipage}[t]{3in}
382     {Net upward Longwave flux at the top of the model}
383     \end{minipage}\\
384     38 & OLRCLR & $Watts/m^2$ & 1
385     &\begin{minipage}[t]{3in}
386     {Net upward clearsky Longwave flux at the top of the model}
387     \end{minipage}\\
388     39 & LWGCLR & $Watts/m^2$ & 1
389     &\begin{minipage}[t]{3in}
390     {Net upward clearsky Longwave flux at the ground}
391     \end{minipage}\\
392     40 & LWCLR & $deg/day$ & Nrphys
393     &\begin{minipage}[t]{3in}
394     {Net clearsky Longwave heating rate for each level}
395     \end{minipage}\\
396     41 & TLW & $deg$ & Nrphys
397     &\begin{minipage}[t]{3in}
398     {Instantaneous temperature used as input to the Longwave radiation
399     subroutine}
400     \end{minipage}\\
401     42 & SHLW & $g/g$ & Nrphys
402     &\begin{minipage}[t]{3in}
403     {Instantaneous specific humidity used as input to the Longwave radiation
404     subroutine}
405     \end{minipage}\\
406     43 & OZLW & $g/g$ & Nrphys
407     &\begin{minipage}[t]{3in}
408     {Instantaneous ozone used as input to the Longwave radiation
409     subroutine}
410     \end{minipage}\\
411     44 & CLMOLW & $0-1$ & Nrphys
412     &\begin{minipage}[t]{3in}
413     {Maximum overlap cloud fraction used in the Longwave radiation
414     subroutine}
415     \end{minipage}\\
416     45 & CLDTOT & $0-1$ & Nrphys
417     &\begin{minipage}[t]{3in}
418     {Total cloud fraction used in the Longwave and Shortwave radiation
419     subroutines}
420     \end{minipage}\\
421     46 & RADSWT & $Watts/m^2$ & 1
422     &\begin{minipage}[t]{3in}
423     {Incident Shortwave radiation at the top of the atmosphere}
424     \end{minipage}\\
425     47 & CLROSW & $0-1$ & Nrphys
426     &\begin{minipage}[t]{3in}
427     {Random overlap cloud fraction used in the shortwave radiation
428     subroutine}
429     \end{minipage}\\
430     48 & CLMOSW & $0-1$ & Nrphys
431     &\begin{minipage}[t]{3in}
432     {Maximum overlap cloud fraction used in the shortwave radiation
433     subroutine}
434     \end{minipage}\\
435     49 & EVAP & $mm/day$ & 1
436     &\begin{minipage}[t]{3in}
437     {Surface evaporation}
438     \end{minipage}\\
439     \end{tabular}
440     \vfill
441    
442     \newpage
443     \vspace*{\fill}
444     \begin{tabular}{lllll}
445     \hline\hline
446     N & NAME & UNITS & LEVELS & DESCRIPTION \\
447     \hline
448    
449     &\\
450     50 & DUDT & $m/sec/day$ & Nrphys
451     &\begin{minipage}[t]{3in}
452     {Total U-Wind tendency}
453     \end{minipage}\\
454     51 & DVDT & $m/sec/day$ & Nrphys
455     &\begin{minipage}[t]{3in}
456     {Total V-Wind tendency}
457     \end{minipage}\\
458     52 & DTDT & $deg/day$ & Nrphys
459     &\begin{minipage}[t]{3in}
460     {Total Temperature tendency}
461     \end{minipage}\\
462     53 & DQDT & $g/kg/day$ & Nrphys
463     &\begin{minipage}[t]{3in}
464     {Total Specific Humidity tendency}
465     \end{minipage}\\
466     54 & USTAR & $m/sec$ & 1
467     &\begin{minipage}[t]{3in}
468     {Surface USTAR wind}
469     \end{minipage}\\
470     55 & Z0 & $m$ & 1
471     &\begin{minipage}[t]{3in}
472     {Surface roughness}
473     \end{minipage}\\
474     56 & FRQTRB & $0-1$ & Nrphys-1
475     &\begin{minipage}[t]{3in}
476     {Frequency of Turbulence}
477     \end{minipage}\\
478     57 & PBL & $mb$ & 1
479     &\begin{minipage}[t]{3in}
480     {Planetary Boundary Layer depth}
481     \end{minipage}\\
482     58 & SWCLR & $deg/day$ & Nrphys
483     &\begin{minipage}[t]{3in}
484     {Net clearsky Shortwave heating rate for each level}
485     \end{minipage}\\
486     59 & OSR & $Watts/m^2$ & 1
487     &\begin{minipage}[t]{3in}
488     {Net downward Shortwave flux at the top of the model}
489     \end{minipage}\\
490     60 & OSRCLR & $Watts/m^2$ & 1
491     &\begin{minipage}[t]{3in}
492     {Net downward clearsky Shortwave flux at the top of the model}
493     \end{minipage}\\
494     61 & CLDMAS & $kg / m^2$ & Nrphys
495     &\begin{minipage}[t]{3in}
496     {Convective cloud mass flux}
497     \end{minipage}\\
498     62 & UAVE & $m/sec$ & Nrphys
499     &\begin{minipage}[t]{3in}
500     {Time-averaged $u-Wind$}
501     \end{minipage}\\
502     63 & VAVE & $m/sec$ & Nrphys
503     &\begin{minipage}[t]{3in}
504     {Time-averaged $v-Wind$}
505     \end{minipage}\\
506     64 & TAVE & $deg$ & Nrphys
507     &\begin{minipage}[t]{3in}
508     {Time-averaged $Temperature$}
509     \end{minipage}\\
510     65 & QAVE & $g/g$ & Nrphys
511     &\begin{minipage}[t]{3in}
512     {Time-averaged $Specific \, \, Humidity$}
513     \end{minipage}\\
514     66 & PAVE & $mb$ & 1
515     &\begin{minipage}[t]{3in}
516     {Time-averaged $p_{surf} - p_{top}$}
517     \end{minipage}\\
518     67 & QQAVE & $(m/sec)^2$ & Nrphys
519     &\begin{minipage}[t]{3in}
520     {Time-averaged $Turbulent Kinetic Energy$}
521     \end{minipage}\\
522     68 & SWGCLR & $Watts/m^2$ & 1
523     &\begin{minipage}[t]{3in}
524     {Net downward clearsky Shortwave flux at the ground}
525     \end{minipage}\\
526     69 & SDIAG1 & & 1
527     &\begin{minipage}[t]{3in}
528     {User-Defined Surface Diagnostic-1}
529     \end{minipage}\\
530     70 & SDIAG2 & & 1
531     &\begin{minipage}[t]{3in}
532     {User-Defined Surface Diagnostic-2}
533     \end{minipage}\\
534     71 & UDIAG1 & & Nrphys
535     &\begin{minipage}[t]{3in}
536     {User-Defined Upper-Air Diagnostic-1}
537     \end{minipage}\\
538     72 & UDIAG2 & & Nrphys
539     &\begin{minipage}[t]{3in}
540     {User-Defined Upper-Air Diagnostic-2}
541     \end{minipage}\\
542     73 & DIABU & $m/sec/day$ & Nrphys
543     &\begin{minipage}[t]{3in}
544     {Total Diabatic forcing on $u-Wind$}
545     \end{minipage}\\
546     74 & DIABV & $m/sec/day$ & Nrphys
547     &\begin{minipage}[t]{3in}
548     {Total Diabatic forcing on $v-Wind$}
549     \end{minipage}\\
550     75 & DIABT & $deg/day$ & Nrphys
551     &\begin{minipage}[t]{3in}
552     {Total Diabatic forcing on $Temperature$}
553     \end{minipage}\\
554     76 & DIABQ & $g/kg/day$ & Nrphys
555     &\begin{minipage}[t]{3in}
556     {Total Diabatic forcing on $Specific \, \, Humidity$}
557     \end{minipage}\\
558    
559     \end{tabular}
560     \vfill
561    
562     \newpage
563     \vspace*{\fill}
564     \begin{tabular}{lllll}
565     \hline\hline
566     N & NAME & UNITS & LEVELS & DESCRIPTION \\
567     \hline
568    
569     77 & VINTUQ & $m/sec \cdot g/kg$ & 1
570     &\begin{minipage}[t]{3in}
571     {Vertically integrated $u \, q$}
572     \end{minipage}\\
573     78 & VINTVQ & $m/sec \cdot g/kg$ & 1
574     &\begin{minipage}[t]{3in}
575     {Vertically integrated $v \, q$}
576     \end{minipage}\\
577     79 & VINTUT & $m/sec \cdot deg$ & 1
578     &\begin{minipage}[t]{3in}
579     {Vertically integrated $u \, T$}
580     \end{minipage}\\
581     80 & VINTVT & $m/sec \cdot deg$ & 1
582     &\begin{minipage}[t]{3in}
583     {Vertically integrated $v \, T$}
584     \end{minipage}\\
585     81 & CLDFRC & $0-1$ & 1
586     &\begin{minipage}[t]{3in}
587     {Total Cloud Fraction}
588     \end{minipage}\\
589     82 & QINT & $gm/cm^2$ & 1
590     &\begin{minipage}[t]{3in}
591     {Precipitable water}
592     \end{minipage}\\
593     83 & U2M & $m/sec$ & 1
594     &\begin{minipage}[t]{3in}
595     {U-Wind at 2 meters}
596     \end{minipage}\\
597     84 & V2M & $m/sec$ & 1
598     &\begin{minipage}[t]{3in}
599     {V-Wind at 2 meters}
600     \end{minipage}\\
601     85 & T2M & $deg$ & 1
602     &\begin{minipage}[t]{3in}
603     {Temperature at 2 meters}
604     \end{minipage}\\
605     86 & Q2M & $g/kg$ & 1
606     &\begin{minipage}[t]{3in}
607     {Specific Humidity at 2 meters}
608     \end{minipage}\\
609     87 & U10M & $m/sec$ & 1
610     &\begin{minipage}[t]{3in}
611     {U-Wind at 10 meters}
612     \end{minipage}\\
613     88 & V10M & $m/sec$ & 1
614     &\begin{minipage}[t]{3in}
615     {V-Wind at 10 meters}
616     \end{minipage}\\
617     89 & T10M & $deg$ & 1
618     &\begin{minipage}[t]{3in}
619     {Temperature at 10 meters}
620     \end{minipage}\\
621     90 & Q10M & $g/kg$ & 1
622     &\begin{minipage}[t]{3in}
623     {Specific Humidity at 10 meters}
624     \end{minipage}\\
625     91 & DTRAIN & $kg/m^2$ & Nrphys
626     &\begin{minipage}[t]{3in}
627     {Detrainment Cloud Mass Flux}
628     \end{minipage}\\
629     92 & QFILL & $g/kg/day$ & Nrphys
630     &\begin{minipage}[t]{3in}
631     {Filling of negative specific humidity}
632     \end{minipage}\\
633    
634     \end{tabular}
635     \vspace{1.5in}
636     \vfill
637    
638     \newpage
639    
640     \subsubsection{Diagnostic Description}
641    
642     In this section we list and describe the diagnostic quantities available within the
643     GCM. The diagnostics are listed in the order that they appear in the
644     Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
645     In all cases, each diagnostic as currently archived on the output datasets
646     is time-averaged over its diagnostic output frequency:
647    
648     \[
649     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
650     \]
651     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
652     output frequency of the diagnositc, and $\Delta t$ is
653     the timestep over which the diagnostic is updated. For further information on how
654     to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
655    
656     {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
657    
658     The zonal wind stress is the turbulent flux of zonal momentum from
659     the surface. See section 3.3 for a description of the surface layer parameterization.
660     \[
661     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
662     \]
663     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
664     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
665     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
666     the zonal wind in the lowest model layer.
667     \\
668    
669    
670     {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
671    
672     The meridional wind stress is the turbulent flux of meridional momentum from
673     the surface. See section 3.3 for a description of the surface layer parameterization.
674     \[
675     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
676     \]
677     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
678     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
679     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
680     the meridional wind in the lowest model layer.
681     \\
682    
683     {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
684    
685     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
686     gradient of virtual potential temperature and the eddy exchange coefficient:
687     \[
688     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
689     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
690     \]
691     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
692     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
693     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
694     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
695     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
696     at the surface and at the bottom model level.
697     \\
698    
699    
700     {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
701    
702     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
703     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
704     \[
705     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
706     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
707     \]
708     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
709     the potential evapotranspiration actually evaporated, L is the latent
710     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
711     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
712     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
713     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
714     humidity at the surface and at the bottom model level, respectively.
715     \\
716    
717     {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
718    
719     Over sea ice there is an additional source of energy at the surface due to the heat
720     conduction from the relatively warm ocean through the sea ice. The heat conduction
721     through sea ice represents an additional energy source term for the ground temperature equation.
722    
723     \[
724     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
725     \]
726    
727     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
728     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
729     $T_g$ is the temperature of the sea ice.
730    
731     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
732     \\
733    
734    
735     {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
736    
737     \begin{eqnarray*}
738     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
739     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
740     \end{eqnarray*}
741     \\
742     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
743     $F_{LW}^\uparrow$ is
744     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
745     \\
746    
747     {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
748    
749     \begin{eqnarray*}
750     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
751     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
752     \end{eqnarray*}
753     \\
754     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
755     $F_{SW}^\downarrow$ is
756     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
757     \\
758    
759    
760     \noindent
761     {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
762    
763     \noindent
764     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
765     \[
766     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
767     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
768     \]
769     \\
770     where we used the hydrostatic equation:
771     \[
772     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
773     \]
774     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
775     indicate dominantly unstable shear, and large positive values indicate dominantly stable
776     stratification.
777     \\
778    
779     \noindent
780     {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
781    
782     \noindent
783     The surface exchange coefficient is obtained from the similarity functions for the stability
784     dependant flux profile relationships:
785     \[
786     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
787     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
788     { k \over { (\psi_{h} + \psi_{g}) } }
789     \]
790     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
791     viscous sublayer non-dimensional temperature or moisture change:
792     \[
793     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
794     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
795     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
796     \]
797     and:
798     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
799    
800     \noindent
801     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
802     the temperature and moisture gradients, specified differently for stable and unstable
803     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
804     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
805     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
806     (see diagnostic number 67), and the subscript ref refers to a reference value.
807     \\
808    
809     \noindent
810     {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
811    
812     \noindent
813     The surface exchange coefficient is obtained from the similarity functions for the stability
814     dependant flux profile relationships:
815     \[
816     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
817     \]
818     where $\psi_m$ is the surface layer non-dimensional wind shear:
819     \[
820     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
821     \]
822     \noindent
823     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
824     the temperature and moisture gradients, specified differently for stable and unstable layers
825     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
826     non-dimensional stability parameter, $u_*$ is the surface stress velocity
827     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
828     \\
829    
830     \noindent
831     {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
832    
833     \noindent
834     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
835     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
836     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
837     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
838     takes the form:
839     \[
840     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
841     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
842     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
843     \]
844     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
845     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
846     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
847     depth,
848     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
849     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
850     dimensionless buoyancy and wind shear
851     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
852     are functions of the Richardson number.
853    
854     \noindent
855     For the detailed equations and derivations of the modified level 2.5 closure scheme,
856     see Helfand and Labraga, 1988.
857    
858     \noindent
859     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
860     in units of $m/sec$, given by:
861     \[
862     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
863     \]
864     \noindent
865     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
866     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
867     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
868     and $W_s$ is the magnitude of the surface layer wind.
869     \\
870    
871     \noindent
872     {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
873    
874     \noindent
875     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
876     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
877     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
878     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
879     takes the form:
880     \[
881     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
882     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
883     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
884     \]
885     \noindent
886     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
887     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
888     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
889     depth,
890     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
891     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
892     dimensionless buoyancy and wind shear
893     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
894     are functions of the Richardson number.
895    
896     \noindent
897     For the detailed equations and derivations of the modified level 2.5 closure scheme,
898     see Helfand and Labraga, 1988.
899    
900     \noindent
901     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
902     in units of $m/sec$, given by:
903     \[
904     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
905     \]
906     \noindent
907     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
908     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
909     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
910     magnitude of the surface layer wind.
911     \\
912    
913     \noindent
914     {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
915    
916     \noindent
917     The tendency of U-Momentum due to turbulence is written:
918     \[
919     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
920     = {\pp{}{z} }{(K_m \pp{u}{z})}
921     \]
922    
923     \noindent
924     The Helfand and Labraga level 2.5 scheme models the turbulent
925     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
926     equation.
927    
928     \noindent
929     {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
930    
931     \noindent
932     The tendency of V-Momentum due to turbulence is written:
933     \[
934     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
935     = {\pp{}{z} }{(K_m \pp{v}{z})}
936     \]
937    
938     \noindent
939     The Helfand and Labraga level 2.5 scheme models the turbulent
940     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
941     equation.
942     \\
943    
944     \noindent
945     {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
946    
947     \noindent
948     The tendency of temperature due to turbulence is written:
949     \[
950     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
951     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
952     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
953     \]
954    
955     \noindent
956     The Helfand and Labraga level 2.5 scheme models the turbulent
957     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
958     equation.
959     \\
960    
961     \noindent
962     {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
963    
964     \noindent
965     The tendency of specific humidity due to turbulence is written:
966     \[
967     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
968     = {\pp{}{z} }{(K_h \pp{q}{z})}
969     \]
970    
971     \noindent
972     The Helfand and Labraga level 2.5 scheme models the turbulent
973     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
974     equation.
975     \\
976    
977     \noindent
978     {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
979    
980     \noindent
981     \[
982     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
983     \]
984     where:
985     \[
986     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
987     \hspace{.4cm} and
988     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
989     \]
990     and
991     \[
992     \Gamma_s = g \eta \pp{s}{p}
993     \]
994    
995     \noindent
996     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
997     precipitation processes, or supersaturation rain.
998     The summation refers to contributions from each cloud type called by RAS.
999     The dry static energy is given
1000     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1001     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1002     the description of the convective parameterization. The fractional adjustment, or relaxation
1003     parameter, for each cloud type is given as $\alpha$, while
1004     $R$ is the rain re-evaporation adjustment.
1005     \\
1006    
1007     \noindent
1008     {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1009    
1010     \noindent
1011     \[
1012     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1013     \]
1014     where:
1015     \[
1016     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1017     \hspace{.4cm} and
1018     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1019     \]
1020     and
1021     \[
1022     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1023     \]
1024     \noindent
1025     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1026     precipitation processes, or supersaturation rain.
1027     The summation refers to contributions from each cloud type called by RAS.
1028     The dry static energy is given as $s$,
1029     the moist static energy is given as $h$,
1030     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1031     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1032     the description of the convective parameterization. The fractional adjustment, or relaxation
1033     parameter, for each cloud type is given as $\alpha$, while
1034     $R$ is the rain re-evaporation adjustment.
1035     \\
1036    
1037     \noindent
1038     {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1039    
1040     \noindent
1041     The net longwave heating rate is calculated as the vertical divergence of the
1042     net terrestrial radiative fluxes.
1043     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1044     longwave routine.
1045     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1046     For a given cloud fraction,
1047     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1048     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1049     for the upward and downward radiative fluxes.
1050     (see Section \ref{sec:fizhi:radcloud}).
1051     The cloudy-sky flux is then obtained as:
1052    
1053     \noindent
1054     \[
1055     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1056     \]
1057    
1058     \noindent
1059     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1060     net terrestrial radiative fluxes:
1061     \[
1062     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1063     \]
1064     or
1065     \[
1066     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1067     \]
1068    
1069     \noindent
1070     where $g$ is the accelation due to gravity,
1071     $c_p$ is the heat capacity of air at constant pressure,
1072     and
1073     \[
1074     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1075     \]
1076     \\
1077    
1078    
1079     \noindent
1080     {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1081    
1082     \noindent
1083     The net Shortwave heating rate is calculated as the vertical divergence of the
1084     net solar radiative fluxes.
1085     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1086     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1087     both CLMO (maximum overlap cloud fraction) and
1088     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1089     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1090     true time-averaged cloud fractions CLMO
1091     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1092     input at the top of the atmosphere.
1093    
1094     \noindent
1095     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1096     \[
1097     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1098     \]
1099     or
1100     \[
1101     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1102     \]
1103    
1104     \noindent
1105     where $g$ is the accelation due to gravity,
1106     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1107     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1108     \[
1109     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1110     \]
1111     \\
1112    
1113     \noindent
1114     {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1115    
1116     \noindent
1117     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1118     the vertical integral or total precipitable amount is given by:
1119     \[
1120     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1121     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1122     \]
1123     \\
1124    
1125     \noindent
1126     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1127     time step, scaled to $mm/day$.
1128     \\
1129    
1130     \noindent
1131     {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1132    
1133     \noindent
1134     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1135     the vertical integral or total precipitable amount is given by:
1136     \[
1137     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1138     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1139     \]
1140     \\
1141    
1142     \noindent
1143     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1144     time step, scaled to $mm/day$.
1145     \\
1146    
1147     \noindent
1148     {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1149    
1150     \noindent
1151     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1152     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1153    
1154     \[
1155     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1156     {\rho } {(- K_m \pp{U}{z})}
1157     \]
1158    
1159     \noindent
1160     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1161     \\
1162    
1163     \noindent
1164     {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1165    
1166     \noindent
1167     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1168     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1169    
1170     \[
1171     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1172     {\rho } {(- K_m \pp{V}{z})}
1173     \]
1174    
1175     \noindent
1176     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1177     \\
1178    
1179    
1180     \noindent
1181     {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1182    
1183     \noindent
1184     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1185     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1186    
1187     \noindent
1188     \[
1189     {\bf TTFLUX} = c_p {\rho }
1190     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1191     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1192     \]
1193    
1194     \noindent
1195     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1196     \\
1197    
1198    
1199     \noindent
1200     {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1201    
1202     \noindent
1203     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1204     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1205    
1206     \noindent
1207     \[
1208     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1209     {L {\rho }(- K_h \pp{q}{z})}
1210     \]
1211    
1212     \noindent
1213     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1214     \\
1215    
1216    
1217     \noindent
1218     {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1219    
1220     \noindent
1221     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1222     \[
1223     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1224     \]
1225    
1226     \noindent
1227     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1228     $z_0$ is the surface roughness.
1229    
1230     \noindent
1231     NOTE: CN is not available through model version 5.3, but is available in subsequent
1232     versions.
1233     \\
1234    
1235     \noindent
1236     {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1237    
1238     \noindent
1239     The surface wind speed is calculated for the last internal turbulence time step:
1240     \[
1241     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1242     \]
1243    
1244     \noindent
1245     where the subscript $Nrphys$ refers to the lowest model level.
1246     \\
1247    
1248     \noindent
1249     {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1250    
1251     \noindent
1252     The air/surface virtual temperature difference measures the stability of the surface layer:
1253     \[
1254     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1255     \]
1256     \noindent
1257     where
1258     \[
1259     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1260     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1261     \]
1262    
1263     \noindent
1264     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1265     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1266     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1267     refers to the surface.
1268     \\
1269    
1270    
1271     \noindent
1272     {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1273    
1274     \noindent
1275     The ground temperature equation is solved as part of the turbulence package
1276     using a backward implicit time differencing scheme:
1277     \[
1278     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1279     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1280     \]
1281    
1282     \noindent
1283     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1284     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1285     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1286     flux, and $C_g$ is the total heat capacity of the ground.
1287     $C_g$ is obtained by solving a heat diffusion equation
1288     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1289     \[
1290     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1291     { 86400. \over {2 \pi} } } \, \, .
1292     \]
1293     \noindent
1294     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1295     {cm \over {^oK}}$,
1296     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1297     by $2 \pi$ $radians/
1298     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1299     is a function of the ground wetness, $W$.
1300     \\
1301    
1302     \noindent
1303     {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1304    
1305     \noindent
1306     The surface temperature estimate is made by assuming that the model's lowest
1307     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1308     The surface temperature is therefore:
1309     \[
1310     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1311     \]
1312     \\
1313    
1314     \noindent
1315     {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1316    
1317     \noindent
1318     The change in surface temperature from one turbulence time step to the next, solved
1319     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1320     \[
1321     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1322     \]
1323    
1324     \noindent
1325     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1326     refers to the value at the previous turbulence time level.
1327     \\
1328    
1329     \noindent
1330     {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1331    
1332     \noindent
1333     The ground specific humidity is obtained by interpolating between the specific
1334     humidity at the lowest model level and the specific humidity of a saturated ground.
1335     The interpolation is performed using the potential evapotranspiration function:
1336     \[
1337     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1338     \]
1339    
1340     \noindent
1341     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1342     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1343     pressure.
1344     \\
1345    
1346     \noindent
1347     {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1348    
1349     \noindent
1350     The surface saturation specific humidity is the saturation specific humidity at
1351     the ground temprature and surface pressure:
1352     \[
1353     {\bf QS} = q^*(T_g,P_s)
1354     \]
1355     \\
1356    
1357     \noindent
1358     {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1359     radiation subroutine (deg)}
1360     \[
1361     {\bf TGRLW} = T_g(\lambda , \phi ,n)
1362     \]
1363     \noindent
1364     where $T_g$ is the model ground temperature at the current time step $n$.
1365     \\
1366    
1367    
1368     \noindent
1369     {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1370     \[
1371     {\bf ST4} = \sigma T^4
1372     \]
1373     \noindent
1374     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1375     \\
1376    
1377     \noindent
1378     {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1379     \[
1380     {\bf OLR} = F_{LW,top}^{NET}
1381     \]
1382     \noindent
1383     where top indicates the top of the first model layer.
1384     In the GCM, $p_{top}$ = 0.0 mb.
1385     \\
1386    
1387    
1388     \noindent
1389     {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1390     \[
1391     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1392     \]
1393     \noindent
1394     where top indicates the top of the first model layer.
1395     In the GCM, $p_{top}$ = 0.0 mb.
1396     \\
1397    
1398     \noindent
1399     {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1400    
1401     \noindent
1402     \begin{eqnarray*}
1403     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1404     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1405     \end{eqnarray*}
1406     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1407     $F(clearsky)_{LW}^\uparrow$ is
1408     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1409     \\
1410    
1411     \noindent
1412     {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1413    
1414     \noindent
1415     The net longwave heating rate is calculated as the vertical divergence of the
1416     net terrestrial radiative fluxes.
1417     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1418     longwave routine.
1419     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1420     For a given cloud fraction,
1421     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1422     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1423     for the upward and downward radiative fluxes.
1424     (see Section \ref{sec:fizhi:radcloud}).
1425     The cloudy-sky flux is then obtained as:
1426    
1427     \noindent
1428     \[
1429     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1430     \]
1431    
1432     \noindent
1433     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1434     vertical divergence of the
1435     clear-sky longwave radiative flux:
1436     \[
1437     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1438     \]
1439     or
1440     \[
1441     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1442     \]
1443    
1444     \noindent
1445     where $g$ is the accelation due to gravity,
1446     $c_p$ is the heat capacity of air at constant pressure,
1447     and
1448     \[
1449     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1450     \]
1451     \\
1452    
1453    
1454     \noindent
1455     {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1456     radiation subroutine (deg)}
1457     \[
1458     {\bf TLW} = T(\lambda , \phi ,level, n)
1459     \]
1460     \noindent
1461     where $T$ is the model temperature at the current time step $n$.
1462     \\
1463    
1464    
1465     \noindent
1466     {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1467     the Longwave radiation subroutine (kg/kg)}
1468     \[
1469     {\bf SHLW} = q(\lambda , \phi , level , n)
1470     \]
1471     \noindent
1472     where $q$ is the model specific humidity at the current time step $n$.
1473     \\
1474    
1475    
1476     \noindent
1477     {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1478     the Longwave radiation subroutine (kg/kg)}
1479     \[
1480     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1481     \]
1482     \noindent
1483     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1484     mean zonally averaged ozone data set.
1485     \\
1486    
1487    
1488     \noindent
1489     {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1490    
1491     \noindent
1492     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1493     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1494     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1495     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1496     \[
1497     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1498     \]
1499     \\
1500    
1501    
1502     {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1503    
1504     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1505     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1506     Radiation packages.
1507     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1508     \[
1509     {\bf CLDTOT} = F_{RAS} + F_{LS}
1510     \]
1511     \\
1512     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1513     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1514     \\
1515    
1516    
1517     \noindent
1518     {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1519    
1520     \noindent
1521     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1522     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1523     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1524     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1525     \[
1526     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1527     \]
1528     \\
1529    
1530     \noindent
1531     {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1532    
1533     \noindent
1534     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1535     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1536     Radiation algorithm. These are
1537     convective and large-scale clouds whose radiative characteristics are not
1538     assumed to be correlated in the vertical.
1539     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1540     \[
1541     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1542     \]
1543     \\
1544    
1545     \noindent
1546     {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1547     \[
1548     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1549     \]
1550     \noindent
1551     where $S_0$, is the extra-terrestial solar contant,
1552     $R_a$ is the earth-sun distance in Astronomical Units,
1553     and $cos \phi_z$ is the cosine of the zenith angle.
1554     It should be noted that {\bf RADSWT}, as well as
1555     {\bf OSR} and {\bf OSRCLR},
1556     are calculated at the top of the atmosphere (p=0 mb). However, the
1557     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1558     calculated at $p= p_{top}$ (0.0 mb for the GCM).
1559     \\
1560    
1561     \noindent
1562     {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1563    
1564     \noindent
1565     The surface evaporation is a function of the gradient of moisture, the potential
1566     evapotranspiration fraction and the eddy exchange coefficient:
1567     \[
1568     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1569     \]
1570     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1571     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1572     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1573     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1574     number 34) and at the bottom model level, respectively.
1575     \\
1576    
1577     \noindent
1578     {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1579    
1580     \noindent
1581     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1582     and Analysis forcing.
1583     \[
1584     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1585     \]
1586     \\
1587    
1588     \noindent
1589     {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1590    
1591     \noindent
1592     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1593     and Analysis forcing.
1594     \[
1595     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1596     \]
1597     \\
1598    
1599     \noindent
1600     {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1601    
1602     \noindent
1603     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1604     and Analysis forcing.
1605     \begin{eqnarray*}
1606     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1607     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1608     \end{eqnarray*}
1609     \\
1610    
1611     \noindent
1612     {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1613    
1614     \noindent
1615     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1616     and Analysis forcing.
1617     \[
1618     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1619     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1620     \]
1621     \\
1622    
1623     \noindent
1624     {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1625    
1626     \noindent
1627     The surface stress velocity, or the friction velocity, is the wind speed at
1628     the surface layer top impeded by the surface drag:
1629     \[
1630     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1631     C_u = {k \over {\psi_m} }
1632     \]
1633    
1634     \noindent
1635     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1636     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1637    
1638     \noindent
1639     {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1640    
1641     \noindent
1642     Over the land surface, the surface roughness length is interpolated to the local
1643     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1644     the roughness length is a function of the surface-stress velocity, $u_*$.
1645     \[
1646     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1647     \]
1648    
1649     \noindent
1650     where the constants are chosen to interpolate between the reciprocal relation of
1651     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1652     for moderate to large winds.
1653     \\
1654    
1655     \noindent
1656     {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1657    
1658     \noindent
1659     The fraction of time when turbulence is present is defined as the fraction of
1660     time when the turbulent kinetic energy exceeds some minimum value, defined here
1661     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1662     incremented. The fraction over the averaging interval is reported.
1663     \\
1664    
1665     \noindent
1666     {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1667    
1668     \noindent
1669     The depth of the PBL is defined by the turbulence parameterization to be the
1670     depth at which the turbulent kinetic energy reduces to ten percent of its surface
1671     value.
1672    
1673     \[
1674     {\bf PBL} = P_{PBL} - P_{surface}
1675     \]
1676    
1677     \noindent
1678     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1679     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1680     \\
1681    
1682     \noindent
1683     {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1684    
1685     \noindent
1686     The net Shortwave heating rate is calculated as the vertical divergence of the
1687     net solar radiative fluxes.
1688     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1689     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1690     both CLMO (maximum overlap cloud fraction) and
1691     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1692     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1693     true time-averaged cloud fractions CLMO
1694     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1695     input at the top of the atmosphere.
1696    
1697     \noindent
1698     The heating rate due to Shortwave Radiation under clear skies is defined as:
1699     \[
1700     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1701     \]
1702     or
1703     \[
1704     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1705     \]
1706    
1707     \noindent
1708     where $g$ is the accelation due to gravity,
1709     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1710     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1711     \[
1712     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1713     \]
1714     \\
1715    
1716     \noindent
1717     {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1718     \[
1719     {\bf OSR} = F_{SW,top}^{NET}
1720     \]
1721     \noindent
1722     where top indicates the top of the first model layer used in the shortwave radiation
1723     routine.
1724     In the GCM, $p_{SW_{top}}$ = 0 mb.
1725     \\
1726    
1727     \noindent
1728     {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1729     \[
1730     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1731     \]
1732     \noindent
1733     where top indicates the top of the first model layer used in the shortwave radiation
1734     routine.
1735     In the GCM, $p_{SW_{top}}$ = 0 mb.
1736     \\
1737    
1738    
1739     \noindent
1740     {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1741    
1742     \noindent
1743     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1744     \[
1745     {\bf CLDMAS} = \eta m_B
1746     \]
1747     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1748     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1749     description of the convective parameterization.
1750     \\
1751    
1752    
1753    
1754     \noindent
1755     {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1756    
1757     \noindent
1758     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1759     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1760     Zonal U-Wind which is archived on the Prognostic Output data stream.
1761     \[
1762     {\bf UAVE} = u(\lambda, \phi, level , t)
1763     \]
1764     \\
1765     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1766     \\
1767    
1768     \noindent
1769     {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1770    
1771     \noindent
1772     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1773     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1774     Meridional V-Wind which is archived on the Prognostic Output data stream.
1775     \[
1776     {\bf VAVE} = v(\lambda, \phi, level , t)
1777     \]
1778     \\
1779     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1780     \\
1781    
1782     \noindent
1783     {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1784    
1785     \noindent
1786     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1787     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1788     Temperature which is archived on the Prognostic Output data stream.
1789     \[
1790     {\bf TAVE} = T(\lambda, \phi, level , t)
1791     \]
1792     \\
1793    
1794     \noindent
1795     {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1796    
1797     \noindent
1798     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1799     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1800     Specific Humidity which is archived on the Prognostic Output data stream.
1801     \[
1802     {\bf QAVE} = q(\lambda, \phi, level , t)
1803     \]
1804     \\
1805    
1806     \noindent
1807     {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1808    
1809     \noindent
1810     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1811     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1812     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1813     \begin{eqnarray*}
1814     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1815     & = & p_s(\lambda, \phi, level , t) - p_T
1816     \end{eqnarray*}
1817     \\
1818    
1819    
1820     \noindent
1821     {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1822    
1823     \noindent
1824     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1825     produced by the GCM Turbulence parameterization over
1826     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1827     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1828     \[
1829     {\bf QQAVE} = qq(\lambda, \phi, level , t)
1830     \]
1831     \\
1832     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1833     \\
1834    
1835     \noindent
1836     {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1837    
1838     \noindent
1839     \begin{eqnarray*}
1840     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1841     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1842     \end{eqnarray*}
1843     \noindent
1844     \\
1845     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1846     $F(clearsky){SW}^\downarrow$ is
1847     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1848     the upward clearsky Shortwave flux.
1849     \\
1850    
1851     \noindent
1852     {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1853    
1854     \noindent
1855     The GCM provides Users with a built-in mechanism for archiving user-defined
1856     diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1857     diagnostic counters and pointers located in COMMON /DIAGP/,
1858     must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1859     A convenient method for incorporating all necessary COMMON files is to
1860     include the GCM {\em vstate.com} file in the routine which employs the
1861     user-defined diagnostics.
1862    
1863     \noindent
1864     In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1865     the QDIAG array with the desired quantity within the User's
1866     application program or within modified GCM subroutines, as well as increment
1867     the diagnostic counter at the time when the diagnostic is updated.
1868     The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1869     automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1870     diagnostic has been enabled.
1871     The syntax for its use is given by
1872     \begin{verbatim}
1873     do j=1,jm
1874     do i=1,im
1875     qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1876     enddo
1877     enddo
1878    
1879     NSDIAG1 = NSDIAG1 + 1
1880     \end{verbatim}
1881     The diagnostics defined in this manner will automatically be archived by the output routines.
1882     \\
1883    
1884     \noindent
1885     {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1886    
1887     \noindent
1888     The GCM provides Users with a built-in mechanism for archiving user-defined
1889     diagnostics. For a complete description refer to Diagnostic \#84.
1890     The syntax for using the surface SDIAG2 diagnostic is given by
1891     \begin{verbatim}
1892     do j=1,jm
1893     do i=1,im
1894     qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1895     enddo
1896     enddo
1897    
1898     NSDIAG2 = NSDIAG2 + 1
1899     \end{verbatim}
1900     The diagnostics defined in this manner will automatically be archived by the output routines.
1901     \\
1902    
1903     \noindent
1904     {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1905    
1906     \noindent
1907     The GCM provides Users with a built-in mechanism for archiving user-defined
1908     diagnostics. For a complete description refer to Diagnostic \#84.
1909     The syntax for using the upper-air UDIAG1 diagnostic is given by
1910     \begin{verbatim}
1911     do L=1,Nrphys
1912     do j=1,jm
1913     do i=1,im
1914     qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1915     enddo
1916     enddo
1917     enddo
1918    
1919     NUDIAG1 = NUDIAG1 + 1
1920     \end{verbatim}
1921     The diagnostics defined in this manner will automatically be archived by the
1922     output programs.
1923     \\
1924    
1925     \noindent
1926     {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1927    
1928     \noindent
1929     The GCM provides Users with a built-in mechanism for archiving user-defined
1930     diagnostics. For a complete description refer to Diagnostic \#84.
1931     The syntax for using the upper-air UDIAG2 diagnostic is given by
1932     \begin{verbatim}
1933     do L=1,Nrphys
1934     do j=1,jm
1935     do i=1,im
1936     qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1937     enddo
1938     enddo
1939     enddo
1940    
1941     NUDIAG2 = NUDIAG2 + 1
1942     \end{verbatim}
1943     The diagnostics defined in this manner will automatically be archived by the
1944     output programs.
1945     \\
1946    
1947    
1948     \noindent
1949     {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1950    
1951     \noindent
1952     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1953     and the Analysis forcing.
1954     \[
1955     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1956     \]
1957     \\
1958    
1959     \noindent
1960     {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1961    
1962     \noindent
1963     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1964     and the Analysis forcing.
1965     \[
1966     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1967     \]
1968     \\
1969    
1970     \noindent
1971     {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1972    
1973     \noindent
1974     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1975     and the Analysis forcing.
1976     \begin{eqnarray*}
1977     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1978     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1979     \end{eqnarray*}
1980     \\
1981     If we define the time-tendency of Temperature due to Diabatic processes as
1982     \begin{eqnarray*}
1983     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1984     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1985     \end{eqnarray*}
1986     then, since there are no surface pressure changes due to Diabatic processes, we may write
1987     \[
1988     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1989     \]
1990     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1991     \[
1992     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1993     \]
1994     \\
1995    
1996     \noindent
1997     {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1998    
1999     \noindent
2000     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2001     and the Analysis forcing.
2002     \[
2003     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2004     \]
2005     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2006     \[
2007     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2008     \]
2009     then, since there are no surface pressure changes due to Diabatic processes, we may write
2010     \[
2011     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2012     \]
2013     Thus, {\bf DIABQ} may be written as
2014     \[
2015     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2016     \]
2017     \\
2018    
2019     \noindent
2020     {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2021    
2022     \noindent
2023     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2024     $u q$ over the depth of the atmosphere at each model timestep,
2025     and dividing by the total mass of the column.
2026     \[
2027     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2028     \]
2029     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2030     \[
2031     {\bf VINTUQ} = { \int_0^1 u q dp }
2032     \]
2033     \\
2034    
2035    
2036     \noindent
2037     {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2038    
2039     \noindent
2040     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2041     $v q$ over the depth of the atmosphere at each model timestep,
2042     and dividing by the total mass of the column.
2043     \[
2044     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2045     \]
2046     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2047     \[
2048     {\bf VINTVQ} = { \int_0^1 v q dp }
2049     \]
2050     \\
2051    
2052    
2053     \noindent
2054     {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2055    
2056     \noindent
2057     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2058     $u T$ over the depth of the atmosphere at each model timestep,
2059     and dividing by the total mass of the column.
2060     \[
2061     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2062     \]
2063     Or,
2064     \[
2065     {\bf VINTUT} = { \int_0^1 u T dp }
2066     \]
2067     \\
2068    
2069     \noindent
2070     {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2071    
2072     \noindent
2073     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2074     $v T$ over the depth of the atmosphere at each model timestep,
2075     and dividing by the total mass of the column.
2076     \[
2077     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2078     \]
2079     Using $\rho \delta z = -{\delta p \over g} $, we have
2080     \[
2081     {\bf VINTVT} = { \int_0^1 v T dp }
2082     \]
2083     \\
2084    
2085     \noindent
2086     {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2087    
2088     If we define the
2089     time-averaged random and maximum overlapped cloudiness as CLRO and
2090     CLMO respectively, then the probability of clear sky associated
2091     with random overlapped clouds at any level is (1-CLRO) while the probability of
2092     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2093     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2094     the total cloud fraction at each level may be obtained by
2095     1-(1-CLRO)*(1-CLMO).
2096    
2097     At any given level, we may define the clear line-of-site probability by
2098     appropriately accounting for the maximum and random overlap
2099     cloudiness. The clear line-of-site probability is defined to be
2100     equal to the product of the clear line-of-site probabilities
2101     associated with random and maximum overlap cloudiness. The clear
2102     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2103     from the current pressure $p$
2104     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2105     is simply 1.0 minus the largest maximum overlap cloud value along the
2106     line-of-site, ie.
2107    
2108     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2109    
2110     Thus, even in the time-averaged sense it is assumed that the
2111     maximum overlap clouds are correlated in the vertical. The clear
2112     line-of-site probability associated with random overlap clouds is
2113     defined to be the product of the clear sky probabilities at each
2114     level along the line-of-site, ie.
2115    
2116     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2117    
2118     The total cloud fraction at a given level associated with a line-
2119     of-site calculation is given by
2120    
2121     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2122     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2123    
2124    
2125     \noindent
2126     The 2-dimensional net cloud fraction as seen from the top of the
2127     atmosphere is given by
2128     \[
2129     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2130     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2131     \]
2132     \\
2133     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2134    
2135    
2136     \noindent
2137     {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2138    
2139     \noindent
2140     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2141     given by:
2142     \begin{eqnarray*}
2143     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2144     & = & {\pi \over g} \int_0^1 q dp
2145     \end{eqnarray*}
2146     where we have used the hydrostatic relation
2147     $\rho \delta z = -{\delta p \over g} $.
2148     \\
2149    
2150    
2151     \noindent
2152     {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2153    
2154     \noindent
2155     The u-wind at the 2-meter depth is determined from the similarity theory:
2156     \[
2157     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2158     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2159     \]
2160    
2161     \noindent
2162     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2163     $sl$ refers to the height of the top of the surface layer. If the roughness height
2164     is above two meters, ${\bf U2M}$ is undefined.
2165     \\
2166    
2167     \noindent
2168     {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2169    
2170     \noindent
2171     The v-wind at the 2-meter depth is a determined from the similarity theory:
2172     \[
2173     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2174     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2175     \]
2176    
2177     \noindent
2178     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2179     $sl$ refers to the height of the top of the surface layer. If the roughness height
2180     is above two meters, ${\bf V2M}$ is undefined.
2181     \\
2182    
2183     \noindent
2184     {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2185    
2186     \noindent
2187     The temperature at the 2-meter depth is a determined from the similarity theory:
2188     \[
2189     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2190     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2191     (\theta_{sl} - \theta_{surf}))
2192     \]
2193     where:
2194     \[
2195     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2196     \]
2197    
2198     \noindent
2199     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2200     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2201     $sl$ refers to the height of the top of the surface layer. If the roughness height
2202     is above two meters, ${\bf T2M}$ is undefined.
2203     \\
2204    
2205     \noindent
2206     {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2207    
2208     \noindent
2209     The specific humidity at the 2-meter depth is determined from the similarity theory:
2210     \[
2211     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2212     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2213     (q_{sl} - q_{surf}))
2214     \]
2215     where:
2216     \[
2217     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2218     \]
2219    
2220     \noindent
2221     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2222     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2223     $sl$ refers to the height of the top of the surface layer. If the roughness height
2224     is above two meters, ${\bf Q2M}$ is undefined.
2225     \\
2226    
2227     \noindent
2228     {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2229    
2230     \noindent
2231     The u-wind at the 10-meter depth is an interpolation between the surface wind
2232     and the model lowest level wind using the ratio of the non-dimensional wind shear
2233     at the two levels:
2234     \[
2235     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2236     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2237     \]
2238    
2239     \noindent
2240     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2241     $sl$ refers to the height of the top of the surface layer.
2242     \\
2243    
2244     \noindent
2245     {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2246    
2247     \noindent
2248     The v-wind at the 10-meter depth is an interpolation between the surface wind
2249     and the model lowest level wind using the ratio of the non-dimensional wind shear
2250     at the two levels:
2251     \[
2252     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2253     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2254     \]
2255    
2256     \noindent
2257     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2258     $sl$ refers to the height of the top of the surface layer.
2259     \\
2260    
2261     \noindent
2262     {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2263    
2264     \noindent
2265     The temperature at the 10-meter depth is an interpolation between the surface potential
2266     temperature and the model lowest level potential temperature using the ratio of the
2267     non-dimensional temperature gradient at the two levels:
2268     \[
2269     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2270     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2271     (\theta_{sl} - \theta_{surf}))
2272     \]
2273     where:
2274     \[
2275     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2276     \]
2277    
2278     \noindent
2279     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2280     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2281     $sl$ refers to the height of the top of the surface layer.
2282     \\
2283    
2284     \noindent
2285     {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2286    
2287     \noindent
2288     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2289     humidity and the model lowest level specific humidity using the ratio of the
2290     non-dimensional temperature gradient at the two levels:
2291     \[
2292     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2293     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2294     (q_{sl} - q_{surf}))
2295     \]
2296     where:
2297     \[
2298     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2299     \]
2300    
2301     \noindent
2302     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2303     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2304     $sl$ refers to the height of the top of the surface layer.
2305     \\
2306    
2307     \noindent
2308     {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2309    
2310     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2311     \[
2312     {\bf DTRAIN} = \eta_{r_D}m_B
2313     \]
2314     \noindent
2315     where $r_D$ is the detrainment level,
2316     $m_B$ is the cloud base mass flux, and $\eta$
2317     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2318     \\
2319    
2320     \noindent
2321     {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2322    
2323     \noindent
2324     Due to computational errors associated with the numerical scheme used for
2325     the advection of moisture, negative values of specific humidity may be generated. The
2326     specific humidity is checked for negative values after every dynamics timestep. If negative
2327     values have been produced, a filling algorithm is invoked which redistributes moisture from
2328     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2329     to eliminate negative specific humidity, scaled to a per-day rate:
2330     \[
2331     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2332     \]
2333     where
2334     \[
2335     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2336     \]
2337    
2338     \subsection{Dos and Donts}
2339    
2340     \subsection{Diagnostics Reference}
2341    

  ViewVC Help
Powered by ViewVC 1.1.22