/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Thu Oct 14 18:06:06 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
Changes since 1.3: +2 -0 lines
File MIME type: application/x-tex
 o very small change to get the manual to build

1 edhill 1.2 \section{Diagnostics--A Flexible Infrastructure}
2     \label{sec:pkg:diagnostics}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_diagnostics: -->
5     \end{rawhtml}
6 molod 1.1
7     \subsection{Introduction}
8    
9 molod 1.3 This section of the documentation describes the Diagnostics Utilities available within
10     the GCM. In addition to a description on how to set and extract diagnostic quantities,
11     this document also provides a comprehensive list of all available diagnostic quantities
12     and a short description of how they are computed. It should be noted that this document
13     is not intended to be a complete documentation of the various packages used in the GCM,
14     and the reader should refer to original publications and the appropriate sections of this
15     documentation for further insight.
16 molod 1.1
17     \subsection{Equations}
18     Not relevant.
19    
20     \subsection{Key Subroutines and Parameters}
21     \label{sec:diagnostics:diagover}
22    
23     A large selection of model diagnostics is available in the GCM. At the time of
24 molod 1.3 this writing there are 280 different diagnostic quantities which can be enabled for an
25 molod 1.1 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
26     specify the exact diagnostic information required for an experiment. This is accomplished by
27     enabling the specific diagnostic of interest cataloged in the
28     Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
29     The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
30     GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
31     Menu. Once a diagnostic is enabled, the GCM will continually increment an array
32     specifically allocated for that diagnostic whenever the associated process for the diagnostic is
33     computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
34     which records how many times each diagnostic quantity has been computed. In addition
35     special diagnostics, called
36     ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
37     model grid location.
38    
39     The diagnostics are computed at various times and places within the GCM.
40     Some diagnostics are computed on the geophysical A-grid (such as
41     those within the Physics routines), while others are computed on the C-grid
42     (those computed during the dynamics time-stepping). Some diagnostics are
43     scalars, while others are vectors. Each of these possibilities requires
44     separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
45     to this complexity, and since the specific diagnostics enabled are User determined at the
46     time of the run,
47     a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
48     which contains information concerning various grid attributes of each diagnostic. The GDIAG
49     array is internally defined as a character*8 variable, and is equivalenced to
50     a character*1 "parse" array in output in order to extract the grid-attribute information.
51     The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
52    
53     \begin{table}
54     \caption{Diagnostic Parsing Array}
55     \label{tab:diagnostics:gdiag.tabl}
56     \begin{center}
57     \begin{tabular}{ |c|c|l| }
58     \hline
59     \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
60     \hline
61     \hline
62     Array & Value & Description \\
63     \hline
64     parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
65     & $\rightarrow$ U & U-vector component Diagnostic \\
66     & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
67     parse(2) & $\rightarrow$ U & C-Grid U-Point \\
68     & $\rightarrow$ V & C-Grid V-Point \\
69     & $\rightarrow$ M & C-Grid Mass Point \\
70 molod 1.3 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
71     parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
72 molod 1.1 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
73     parse(5) & $\rightarrow$ C & Counter Diagnostic \\
74     & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
75     parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
76     & & vector or counter component mate \\ \hline
77     \end{tabular}
78     \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
79     \end{center}
80     \end{table}
81    
82     As an example, consider a diagnostic whose associated GDIAG parameter is equal
83 molod 1.3 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
84     U-vector component located at the C-grid U-point.
85 molod 1.1 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
86    
87     In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
88 molod 1.3 A-Grid or C-grid, etc.) defined internally. The Output routines
89 molod 1.1 use this information in order to determine
90 molod 1.3 what type of transformations need to be performed. Thus, all Diagnostic
91 molod 1.1 interpolations are done at the time of output rather than during each model dynamic step.
92     In this way the User now has more flexibility
93     in determining the type of gridded data which is output.
94    
95     There are several utilities within the GCM available to users to enable, disable,
96     clear, and retrieve model diagnostics, and may be called from any user-supplied application
97     and/or output routine. The available utilities and the CALL sequences are listed below.
98    
99    
100     {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
101     space is allocated for the diagnostic and the
102     model routines will increment the diagnostic value during execution. This routine is useful when
103     called from either user application routines or user output routines, and is the underlying interface
104     between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
105     number from the menu, and its calling sequence is given by:
106    
107     \begin{tabbing}
108     XXXXXXXXX\=XXXXXX\= \kill
109     \> CALL SETDIAG (NUM) \\
110     \\
111     where \> NUM \>= Diagnostic number from menu \\
112     \end{tabbing}
113    
114    
115     {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
116     particulary useful when called from a user output routine, although it can be called from an
117     application routine as well. This routine returns the time-averaged value of the diagnostic by
118     dividing the current accumulated diagnostic value by its corresponding counter. This routine does
119     not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
120     time-average. The calling sequence for this routine is givin by:
121    
122     \begin{tabbing}
123     XXXXXXXXX\=XXXXXX\= \kill
124     \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
125     \\
126     where \> LEV \>= Model Level at which the diagnostic is desired \\
127     \> NUM \>= Diagnostic number from menu \\
128     \> QTMP \>= Time-Averaged Diagnostic Output \\
129     \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
130     \end{tabbing}
131    
132     {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
133     particularly useful when called from user output routines to re-initialize diagnostics during the
134     run. The calling sequence is:
135    
136    
137     \begin{tabbing}
138     XXXXXXXXX\=XXXXXX\= \kill
139     \> CALL CLRDIAG (NUM) \\
140     \\
141     where \> NUM \>= Diagnostic number from menu \\
142     \end{tabbing}
143    
144    
145    
146     {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
147     diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
148     is released when ZAPDIAG is invoked. The calling sequence is given by:
149    
150    
151     \begin{tabbing}
152     XXXXXXXXX\=XXXXXX\= \kill
153     \> CALL ZAPDIAG (NUM) \\
154     \\
155     where \> NUM \>= Diagnostic number from menu \\
156     \end{tabbing}
157    
158     {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
159     is allocated for diagnostics.
160     All GCM diagnostic quantities are stored in the single
161 molod 1.3 diagnostic array QDIAG which is located in diagnostics.h, and has the form:
162 molod 1.1
163 molod 1.3 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
164 molod 1.1
165 molod 1.3 where numdiags is an Integer variable which should be
166 molod 1.1 set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
167     array. The first two-dimensions of QDIAG correspond to the horizontal dimension
168     of a given diagnostic, while the third dimension of QDIAG is used to identify
169     specific diagnostic types.
170 molod 1.3 In order to minimize the memory requirement of the model for diagnostics,
171 molod 1.1 the default GCM executable is compiled with room for only one horizontal
172     diagnostic array, as shown in the above example.
173     In order for the User to enable more than 1 two-dimensional diagnostic,
174 molod 1.3 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
175 molod 1.1 This can be accomplished by manually changing the parameter numdiags in the
176 molod 1.3 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
177 molod 1.1 shell script (???????) to make this
178     change based on the choice of diagnostic output made in the namelist.
179    
180 molod 1.3 \subsection{Usage Notes}
181     \label{sec:diagnostics:usersguide}
182     To use the diagnostics package, other than enabling it in packages.conf
183     and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
184     must be supplied in the run directory called data.diagnostics. The namelist
185     will activate a user-defined list of diagnostics quantities to be computed,
186     specify the frequency of output, the number of levels, and the name of
187     up to 10 separate output files. A sample data.diagnostics namelist file:
188    
189 edhill 1.4 \begin{verbatim}
190 molod 1.3 \# Diagnostic Package Choices
191     \&diagnostics_list
192     frequency(1) = 10, \
193     levels(1,1) = 1.,2.,3.,4.,5., \
194     fields(1,1) = 'UVEL ','VVEL ', \
195     filename(1) = 'diagout1', \
196     frequency(2) = 100, \
197     levels(1,2) = 1.,2.,3.,4.,5., \
198     fields(1,2) = 'THETA ','SALT ', \
199     filename(2) = 'diagout2', \
200     \&end \
201 edhill 1.4 \end{verbatim}
202 molod 1.3
203     In this example, there are two output files that will be generated
204     for each tile and for each output time. The first set of output files
205     has the prefix diagout1, does time averaging every 10 time steps,
206     for fields which are multiple-level fields the levels output are 1-5,
207     and the names of diagnostics quantities are UVEL and VVEL.
208     The second set of output files
209     has the prefix diagout2, does time averaging every 100 time steps,
210     for fields which are multiple-level fields the levels output are 1-5,
211     and the names of diagnostics quantities are THETA and SALT.
212    
213 molod 1.1 \newpage
214    
215     \subsubsection{GCM Diagnostic Menu}
216     \label{sec:diagnostics:menu}
217    
218     \begin{tabular}{lllll}
219     \hline\hline
220     N & NAME & UNITS & LEVELS & DESCRIPTION \\
221     \hline
222    
223     &\\
224     1 & UFLUX & $Newton/m^2$ & 1
225     &\begin{minipage}[t]{3in}
226     {Surface U-Wind Stress on the atmosphere}
227     \end{minipage}\\
228     2 & VFLUX & $Newton/m^2$ & 1
229     &\begin{minipage}[t]{3in}
230     {Surface V-Wind Stress on the atmosphere}
231     \end{minipage}\\
232     3 & HFLUX & $Watts/m^2$ & 1
233     &\begin{minipage}[t]{3in}
234     {Surface Flux of Sensible Heat}
235     \end{minipage}\\
236     4 & EFLUX & $Watts/m^2$ & 1
237     &\begin{minipage}[t]{3in}
238     {Surface Flux of Latent Heat}
239     \end{minipage}\\
240     5 & QICE & $Watts/m^2$ & 1
241     &\begin{minipage}[t]{3in}
242     {Heat Conduction through Sea-Ice}
243     \end{minipage}\\
244     6 & RADLWG & $Watts/m^2$ & 1
245     &\begin{minipage}[t]{3in}
246     {Net upward LW flux at the ground}
247     \end{minipage}\\
248     7 & RADSWG & $Watts/m^2$ & 1
249     &\begin{minipage}[t]{3in}
250     {Net downward SW flux at the ground}
251     \end{minipage}\\
252     8 & RI & $dimensionless$ & Nrphys
253     &\begin{minipage}[t]{3in}
254     {Richardson Number}
255     \end{minipage}\\
256     9 & CT & $dimensionless$ & 1
257     &\begin{minipage}[t]{3in}
258     {Surface Drag coefficient for T and Q}
259     \end{minipage}\\
260     10 & CU & $dimensionless$ & 1
261     &\begin{minipage}[t]{3in}
262     {Surface Drag coefficient for U and V}
263     \end{minipage}\\
264     11 & ET & $m^2/sec$ & Nrphys
265     &\begin{minipage}[t]{3in}
266     {Diffusivity coefficient for T and Q}
267     \end{minipage}\\
268     12 & EU & $m^2/sec$ & Nrphys
269     &\begin{minipage}[t]{3in}
270     {Diffusivity coefficient for U and V}
271     \end{minipage}\\
272     13 & TURBU & $m/sec/day$ & Nrphys
273     &\begin{minipage}[t]{3in}
274     {U-Momentum Changes due to Turbulence}
275     \end{minipage}\\
276     14 & TURBV & $m/sec/day$ & Nrphys
277     &\begin{minipage}[t]{3in}
278     {V-Momentum Changes due to Turbulence}
279     \end{minipage}\\
280     15 & TURBT & $deg/day$ & Nrphys
281     &\begin{minipage}[t]{3in}
282     {Temperature Changes due to Turbulence}
283     \end{minipage}\\
284     16 & TURBQ & $g/kg/day$ & Nrphys
285     &\begin{minipage}[t]{3in}
286     {Specific Humidity Changes due to Turbulence}
287     \end{minipage}\\
288     17 & MOISTT & $deg/day$ & Nrphys
289     &\begin{minipage}[t]{3in}
290     {Temperature Changes due to Moist Processes}
291     \end{minipage}\\
292     18 & MOISTQ & $g/kg/day$ & Nrphys
293     &\begin{minipage}[t]{3in}
294     {Specific Humidity Changes due to Moist Processes}
295     \end{minipage}\\
296     19 & RADLW & $deg/day$ & Nrphys
297     &\begin{minipage}[t]{3in}
298     {Net Longwave heating rate for each level}
299     \end{minipage}\\
300     20 & RADSW & $deg/day$ & Nrphys
301     &\begin{minipage}[t]{3in}
302     {Net Shortwave heating rate for each level}
303     \end{minipage}\\
304     21 & PREACC & $mm/day$ & 1
305     &\begin{minipage}[t]{3in}
306     {Total Precipitation}
307     \end{minipage}\\
308     22 & PRECON & $mm/day$ & 1
309     &\begin{minipage}[t]{3in}
310     {Convective Precipitation}
311     \end{minipage}\\
312     23 & TUFLUX & $Newton/m^2$ & Nrphys
313     &\begin{minipage}[t]{3in}
314     {Turbulent Flux of U-Momentum}
315     \end{minipage}\\
316     24 & TVFLUX & $Newton/m^2$ & Nrphys
317     &\begin{minipage}[t]{3in}
318     {Turbulent Flux of V-Momentum}
319     \end{minipage}\\
320     25 & TTFLUX & $Watts/m^2$ & Nrphys
321     &\begin{minipage}[t]{3in}
322     {Turbulent Flux of Sensible Heat}
323     \end{minipage}\\
324     26 & TQFLUX & $Watts/m^2$ & Nrphys
325     &\begin{minipage}[t]{3in}
326     {Turbulent Flux of Latent Heat}
327     \end{minipage}\\
328     27 & CN & $dimensionless$ & 1
329     &\begin{minipage}[t]{3in}
330     {Neutral Drag Coefficient}
331     \end{minipage}\\
332     28 & WINDS & $m/sec$ & 1
333     &\begin{minipage}[t]{3in}
334     {Surface Wind Speed}
335     \end{minipage}\\
336     29 & DTSRF & $deg$ & 1
337     &\begin{minipage}[t]{3in}
338     {Air/Surface virtual temperature difference}
339     \end{minipage}\\
340     30 & TG & $deg$ & 1
341     &\begin{minipage}[t]{3in}
342     {Ground temperature}
343     \end{minipage}\\
344     31 & TS & $deg$ & 1
345     &\begin{minipage}[t]{3in}
346     {Surface air temperature (Adiabatic from lowest model layer)}
347     \end{minipage}\\
348     32 & DTG & $deg$ & 1
349     &\begin{minipage}[t]{3in}
350     {Ground temperature adjustment}
351     \end{minipage}\\
352    
353     \end{tabular}
354    
355     \newpage
356     \vspace*{\fill}
357     \begin{tabular}{lllll}
358     \hline\hline
359     N & NAME & UNITS & LEVELS & DESCRIPTION \\
360     \hline
361    
362     &\\
363     33 & QG & $g/kg$ & 1
364     &\begin{minipage}[t]{3in}
365     {Ground specific humidity}
366     \end{minipage}\\
367     34 & QS & $g/kg$ & 1
368     &\begin{minipage}[t]{3in}
369     {Saturation surface specific humidity}
370     \end{minipage}\\
371    
372     &\\
373     35 & TGRLW & $deg$ & 1
374     &\begin{minipage}[t]{3in}
375     {Instantaneous ground temperature used as input to the
376     Longwave radiation subroutine}
377     \end{minipage}\\
378     36 & ST4 & $Watts/m^2$ & 1
379     &\begin{minipage}[t]{3in}
380     {Upward Longwave flux at the ground ($\sigma T^4$)}
381     \end{minipage}\\
382     37 & OLR & $Watts/m^2$ & 1
383     &\begin{minipage}[t]{3in}
384     {Net upward Longwave flux at the top of the model}
385     \end{minipage}\\
386     38 & OLRCLR & $Watts/m^2$ & 1
387     &\begin{minipage}[t]{3in}
388     {Net upward clearsky Longwave flux at the top of the model}
389     \end{minipage}\\
390     39 & LWGCLR & $Watts/m^2$ & 1
391     &\begin{minipage}[t]{3in}
392     {Net upward clearsky Longwave flux at the ground}
393     \end{minipage}\\
394     40 & LWCLR & $deg/day$ & Nrphys
395     &\begin{minipage}[t]{3in}
396     {Net clearsky Longwave heating rate for each level}
397     \end{minipage}\\
398     41 & TLW & $deg$ & Nrphys
399     &\begin{minipage}[t]{3in}
400     {Instantaneous temperature used as input to the Longwave radiation
401     subroutine}
402     \end{minipage}\\
403     42 & SHLW & $g/g$ & Nrphys
404     &\begin{minipage}[t]{3in}
405     {Instantaneous specific humidity used as input to the Longwave radiation
406     subroutine}
407     \end{minipage}\\
408     43 & OZLW & $g/g$ & Nrphys
409     &\begin{minipage}[t]{3in}
410     {Instantaneous ozone used as input to the Longwave radiation
411     subroutine}
412     \end{minipage}\\
413     44 & CLMOLW & $0-1$ & Nrphys
414     &\begin{minipage}[t]{3in}
415     {Maximum overlap cloud fraction used in the Longwave radiation
416     subroutine}
417     \end{minipage}\\
418     45 & CLDTOT & $0-1$ & Nrphys
419     &\begin{minipage}[t]{3in}
420     {Total cloud fraction used in the Longwave and Shortwave radiation
421     subroutines}
422     \end{minipage}\\
423     46 & RADSWT & $Watts/m^2$ & 1
424     &\begin{minipage}[t]{3in}
425     {Incident Shortwave radiation at the top of the atmosphere}
426     \end{minipage}\\
427     47 & CLROSW & $0-1$ & Nrphys
428     &\begin{minipage}[t]{3in}
429     {Random overlap cloud fraction used in the shortwave radiation
430     subroutine}
431     \end{minipage}\\
432     48 & CLMOSW & $0-1$ & Nrphys
433     &\begin{minipage}[t]{3in}
434     {Maximum overlap cloud fraction used in the shortwave radiation
435     subroutine}
436     \end{minipage}\\
437     49 & EVAP & $mm/day$ & 1
438     &\begin{minipage}[t]{3in}
439     {Surface evaporation}
440     \end{minipage}\\
441     \end{tabular}
442     \vfill
443    
444     \newpage
445     \vspace*{\fill}
446     \begin{tabular}{lllll}
447     \hline\hline
448     N & NAME & UNITS & LEVELS & DESCRIPTION \\
449     \hline
450    
451     &\\
452     50 & DUDT & $m/sec/day$ & Nrphys
453     &\begin{minipage}[t]{3in}
454     {Total U-Wind tendency}
455     \end{minipage}\\
456     51 & DVDT & $m/sec/day$ & Nrphys
457     &\begin{minipage}[t]{3in}
458     {Total V-Wind tendency}
459     \end{minipage}\\
460     52 & DTDT & $deg/day$ & Nrphys
461     &\begin{minipage}[t]{3in}
462     {Total Temperature tendency}
463     \end{minipage}\\
464     53 & DQDT & $g/kg/day$ & Nrphys
465     &\begin{minipage}[t]{3in}
466     {Total Specific Humidity tendency}
467     \end{minipage}\\
468     54 & USTAR & $m/sec$ & 1
469     &\begin{minipage}[t]{3in}
470     {Surface USTAR wind}
471     \end{minipage}\\
472     55 & Z0 & $m$ & 1
473     &\begin{minipage}[t]{3in}
474     {Surface roughness}
475     \end{minipage}\\
476     56 & FRQTRB & $0-1$ & Nrphys-1
477     &\begin{minipage}[t]{3in}
478     {Frequency of Turbulence}
479     \end{minipage}\\
480     57 & PBL & $mb$ & 1
481     &\begin{minipage}[t]{3in}
482     {Planetary Boundary Layer depth}
483     \end{minipage}\\
484     58 & SWCLR & $deg/day$ & Nrphys
485     &\begin{minipage}[t]{3in}
486     {Net clearsky Shortwave heating rate for each level}
487     \end{minipage}\\
488     59 & OSR & $Watts/m^2$ & 1
489     &\begin{minipage}[t]{3in}
490     {Net downward Shortwave flux at the top of the model}
491     \end{minipage}\\
492     60 & OSRCLR & $Watts/m^2$ & 1
493     &\begin{minipage}[t]{3in}
494     {Net downward clearsky Shortwave flux at the top of the model}
495     \end{minipage}\\
496     61 & CLDMAS & $kg / m^2$ & Nrphys
497     &\begin{minipage}[t]{3in}
498     {Convective cloud mass flux}
499     \end{minipage}\\
500     62 & UAVE & $m/sec$ & Nrphys
501     &\begin{minipage}[t]{3in}
502     {Time-averaged $u-Wind$}
503     \end{minipage}\\
504     63 & VAVE & $m/sec$ & Nrphys
505     &\begin{minipage}[t]{3in}
506     {Time-averaged $v-Wind$}
507     \end{minipage}\\
508     64 & TAVE & $deg$ & Nrphys
509     &\begin{minipage}[t]{3in}
510     {Time-averaged $Temperature$}
511     \end{minipage}\\
512     65 & QAVE & $g/g$ & Nrphys
513     &\begin{minipage}[t]{3in}
514     {Time-averaged $Specific \, \, Humidity$}
515     \end{minipage}\\
516     66 & PAVE & $mb$ & 1
517     &\begin{minipage}[t]{3in}
518     {Time-averaged $p_{surf} - p_{top}$}
519     \end{minipage}\\
520     67 & QQAVE & $(m/sec)^2$ & Nrphys
521     &\begin{minipage}[t]{3in}
522     {Time-averaged $Turbulent Kinetic Energy$}
523     \end{minipage}\\
524     68 & SWGCLR & $Watts/m^2$ & 1
525     &\begin{minipage}[t]{3in}
526     {Net downward clearsky Shortwave flux at the ground}
527     \end{minipage}\\
528     69 & SDIAG1 & & 1
529     &\begin{minipage}[t]{3in}
530     {User-Defined Surface Diagnostic-1}
531     \end{minipage}\\
532     70 & SDIAG2 & & 1
533     &\begin{minipage}[t]{3in}
534     {User-Defined Surface Diagnostic-2}
535     \end{minipage}\\
536     71 & UDIAG1 & & Nrphys
537     &\begin{minipage}[t]{3in}
538     {User-Defined Upper-Air Diagnostic-1}
539     \end{minipage}\\
540     72 & UDIAG2 & & Nrphys
541     &\begin{minipage}[t]{3in}
542     {User-Defined Upper-Air Diagnostic-2}
543     \end{minipage}\\
544     73 & DIABU & $m/sec/day$ & Nrphys
545     &\begin{minipage}[t]{3in}
546     {Total Diabatic forcing on $u-Wind$}
547     \end{minipage}\\
548     74 & DIABV & $m/sec/day$ & Nrphys
549     &\begin{minipage}[t]{3in}
550     {Total Diabatic forcing on $v-Wind$}
551     \end{minipage}\\
552     75 & DIABT & $deg/day$ & Nrphys
553     &\begin{minipage}[t]{3in}
554     {Total Diabatic forcing on $Temperature$}
555     \end{minipage}\\
556     76 & DIABQ & $g/kg/day$ & Nrphys
557     &\begin{minipage}[t]{3in}
558     {Total Diabatic forcing on $Specific \, \, Humidity$}
559     \end{minipage}\\
560    
561     \end{tabular}
562     \vfill
563    
564     \newpage
565     \vspace*{\fill}
566     \begin{tabular}{lllll}
567     \hline\hline
568     N & NAME & UNITS & LEVELS & DESCRIPTION \\
569     \hline
570    
571     77 & VINTUQ & $m/sec \cdot g/kg$ & 1
572     &\begin{minipage}[t]{3in}
573     {Vertically integrated $u \, q$}
574     \end{minipage}\\
575     78 & VINTVQ & $m/sec \cdot g/kg$ & 1
576     &\begin{minipage}[t]{3in}
577     {Vertically integrated $v \, q$}
578     \end{minipage}\\
579     79 & VINTUT & $m/sec \cdot deg$ & 1
580     &\begin{minipage}[t]{3in}
581     {Vertically integrated $u \, T$}
582     \end{minipage}\\
583     80 & VINTVT & $m/sec \cdot deg$ & 1
584     &\begin{minipage}[t]{3in}
585     {Vertically integrated $v \, T$}
586     \end{minipage}\\
587     81 & CLDFRC & $0-1$ & 1
588     &\begin{minipage}[t]{3in}
589     {Total Cloud Fraction}
590     \end{minipage}\\
591     82 & QINT & $gm/cm^2$ & 1
592     &\begin{minipage}[t]{3in}
593     {Precipitable water}
594     \end{minipage}\\
595     83 & U2M & $m/sec$ & 1
596     &\begin{minipage}[t]{3in}
597     {U-Wind at 2 meters}
598     \end{minipage}\\
599     84 & V2M & $m/sec$ & 1
600     &\begin{minipage}[t]{3in}
601     {V-Wind at 2 meters}
602     \end{minipage}\\
603     85 & T2M & $deg$ & 1
604     &\begin{minipage}[t]{3in}
605     {Temperature at 2 meters}
606     \end{minipage}\\
607     86 & Q2M & $g/kg$ & 1
608     &\begin{minipage}[t]{3in}
609     {Specific Humidity at 2 meters}
610     \end{minipage}\\
611     87 & U10M & $m/sec$ & 1
612     &\begin{minipage}[t]{3in}
613     {U-Wind at 10 meters}
614     \end{minipage}\\
615     88 & V10M & $m/sec$ & 1
616     &\begin{minipage}[t]{3in}
617     {V-Wind at 10 meters}
618     \end{minipage}\\
619     89 & T10M & $deg$ & 1
620     &\begin{minipage}[t]{3in}
621     {Temperature at 10 meters}
622     \end{minipage}\\
623     90 & Q10M & $g/kg$ & 1
624     &\begin{minipage}[t]{3in}
625     {Specific Humidity at 10 meters}
626     \end{minipage}\\
627     91 & DTRAIN & $kg/m^2$ & Nrphys
628     &\begin{minipage}[t]{3in}
629     {Detrainment Cloud Mass Flux}
630     \end{minipage}\\
631     92 & QFILL & $g/kg/day$ & Nrphys
632     &\begin{minipage}[t]{3in}
633     {Filling of negative specific humidity}
634     \end{minipage}\\
635    
636     \end{tabular}
637     \vspace{1.5in}
638     \vfill
639    
640     \newpage
641    
642     \subsubsection{Diagnostic Description}
643    
644     In this section we list and describe the diagnostic quantities available within the
645     GCM. The diagnostics are listed in the order that they appear in the
646     Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
647     In all cases, each diagnostic as currently archived on the output datasets
648     is time-averaged over its diagnostic output frequency:
649    
650     \[
651     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
652     \]
653     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
654     output frequency of the diagnositc, and $\Delta t$ is
655     the timestep over which the diagnostic is updated. For further information on how
656     to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
657    
658     {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
659    
660     The zonal wind stress is the turbulent flux of zonal momentum from
661     the surface. See section 3.3 for a description of the surface layer parameterization.
662     \[
663     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
664     \]
665     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
666     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
667     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
668     the zonal wind in the lowest model layer.
669     \\
670    
671    
672     {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
673    
674     The meridional wind stress is the turbulent flux of meridional momentum from
675     the surface. See section 3.3 for a description of the surface layer parameterization.
676     \[
677     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
678     \]
679     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
680     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
681     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
682     the meridional wind in the lowest model layer.
683     \\
684    
685     {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
686    
687     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
688     gradient of virtual potential temperature and the eddy exchange coefficient:
689     \[
690     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
691     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
692     \]
693     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
694     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
695     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
696     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
697     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
698     at the surface and at the bottom model level.
699     \\
700    
701    
702     {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
703    
704     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
705     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
706     \[
707     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
708     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
709     \]
710     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
711     the potential evapotranspiration actually evaporated, L is the latent
712     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
713     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
714     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
715     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
716     humidity at the surface and at the bottom model level, respectively.
717     \\
718    
719     {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
720    
721     Over sea ice there is an additional source of energy at the surface due to the heat
722     conduction from the relatively warm ocean through the sea ice. The heat conduction
723     through sea ice represents an additional energy source term for the ground temperature equation.
724    
725     \[
726     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
727     \]
728    
729     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
730     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
731     $T_g$ is the temperature of the sea ice.
732    
733     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
734     \\
735    
736    
737     {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
738    
739     \begin{eqnarray*}
740     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
741     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
742     \end{eqnarray*}
743     \\
744     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
745     $F_{LW}^\uparrow$ is
746     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
747     \\
748    
749     {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
750    
751     \begin{eqnarray*}
752     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
753     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
754     \end{eqnarray*}
755     \\
756     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
757     $F_{SW}^\downarrow$ is
758     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
759     \\
760    
761    
762     \noindent
763     {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
764    
765     \noindent
766     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
767     \[
768     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
769     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
770     \]
771     \\
772     where we used the hydrostatic equation:
773     \[
774     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
775     \]
776     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
777     indicate dominantly unstable shear, and large positive values indicate dominantly stable
778     stratification.
779     \\
780    
781     \noindent
782     {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
783    
784     \noindent
785     The surface exchange coefficient is obtained from the similarity functions for the stability
786     dependant flux profile relationships:
787     \[
788     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
789     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
790     { k \over { (\psi_{h} + \psi_{g}) } }
791     \]
792     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
793     viscous sublayer non-dimensional temperature or moisture change:
794     \[
795     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
796     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
797     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
798     \]
799     and:
800     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
801    
802     \noindent
803     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
804     the temperature and moisture gradients, specified differently for stable and unstable
805     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
806     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
807     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
808     (see diagnostic number 67), and the subscript ref refers to a reference value.
809     \\
810    
811     \noindent
812     {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
813    
814     \noindent
815     The surface exchange coefficient is obtained from the similarity functions for the stability
816     dependant flux profile relationships:
817     \[
818     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
819     \]
820     where $\psi_m$ is the surface layer non-dimensional wind shear:
821     \[
822     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
823     \]
824     \noindent
825     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
826     the temperature and moisture gradients, specified differently for stable and unstable layers
827     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
828     non-dimensional stability parameter, $u_*$ is the surface stress velocity
829     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
830     \\
831    
832     \noindent
833     {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
834    
835     \noindent
836     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
837     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
838     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
839     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
840     takes the form:
841     \[
842     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
843     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
844     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
845     \]
846     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
847     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
848     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
849     depth,
850     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
851     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
852     dimensionless buoyancy and wind shear
853     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
854     are functions of the Richardson number.
855    
856     \noindent
857     For the detailed equations and derivations of the modified level 2.5 closure scheme,
858     see Helfand and Labraga, 1988.
859    
860     \noindent
861     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
862     in units of $m/sec$, given by:
863     \[
864     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
865     \]
866     \noindent
867     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
868     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
869     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
870     and $W_s$ is the magnitude of the surface layer wind.
871     \\
872    
873     \noindent
874     {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
875    
876     \noindent
877     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
878     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
879     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
880     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
881     takes the form:
882     \[
883     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
884     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
885     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
886     \]
887     \noindent
888     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
889     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
890     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
891     depth,
892     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
893     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
894     dimensionless buoyancy and wind shear
895     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
896     are functions of the Richardson number.
897    
898     \noindent
899     For the detailed equations and derivations of the modified level 2.5 closure scheme,
900     see Helfand and Labraga, 1988.
901    
902     \noindent
903     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
904     in units of $m/sec$, given by:
905     \[
906     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
907     \]
908     \noindent
909     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
910     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
911     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
912     magnitude of the surface layer wind.
913     \\
914    
915     \noindent
916     {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
917    
918     \noindent
919     The tendency of U-Momentum due to turbulence is written:
920     \[
921     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
922     = {\pp{}{z} }{(K_m \pp{u}{z})}
923     \]
924    
925     \noindent
926     The Helfand and Labraga level 2.5 scheme models the turbulent
927     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
928     equation.
929    
930     \noindent
931     {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
932    
933     \noindent
934     The tendency of V-Momentum due to turbulence is written:
935     \[
936     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
937     = {\pp{}{z} }{(K_m \pp{v}{z})}
938     \]
939    
940     \noindent
941     The Helfand and Labraga level 2.5 scheme models the turbulent
942     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
943     equation.
944     \\
945    
946     \noindent
947     {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
948    
949     \noindent
950     The tendency of temperature due to turbulence is written:
951     \[
952     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
953     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
954     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
955     \]
956    
957     \noindent
958     The Helfand and Labraga level 2.5 scheme models the turbulent
959     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
960     equation.
961     \\
962    
963     \noindent
964     {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
965    
966     \noindent
967     The tendency of specific humidity due to turbulence is written:
968     \[
969     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
970     = {\pp{}{z} }{(K_h \pp{q}{z})}
971     \]
972    
973     \noindent
974     The Helfand and Labraga level 2.5 scheme models the turbulent
975     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
976     equation.
977     \\
978    
979     \noindent
980     {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
981    
982     \noindent
983     \[
984     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
985     \]
986     where:
987     \[
988     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
989     \hspace{.4cm} and
990     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
991     \]
992     and
993     \[
994     \Gamma_s = g \eta \pp{s}{p}
995     \]
996    
997     \noindent
998     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
999     precipitation processes, or supersaturation rain.
1000     The summation refers to contributions from each cloud type called by RAS.
1001     The dry static energy is given
1002     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1003     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1004     the description of the convective parameterization. The fractional adjustment, or relaxation
1005     parameter, for each cloud type is given as $\alpha$, while
1006     $R$ is the rain re-evaporation adjustment.
1007     \\
1008    
1009     \noindent
1010     {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1011    
1012     \noindent
1013     \[
1014     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1015     \]
1016     where:
1017     \[
1018     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1019     \hspace{.4cm} and
1020     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1021     \]
1022     and
1023     \[
1024     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1025     \]
1026     \noindent
1027     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1028     precipitation processes, or supersaturation rain.
1029     The summation refers to contributions from each cloud type called by RAS.
1030     The dry static energy is given as $s$,
1031     the moist static energy is given as $h$,
1032     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1033     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1034     the description of the convective parameterization. The fractional adjustment, or relaxation
1035     parameter, for each cloud type is given as $\alpha$, while
1036     $R$ is the rain re-evaporation adjustment.
1037     \\
1038    
1039     \noindent
1040     {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1041    
1042     \noindent
1043     The net longwave heating rate is calculated as the vertical divergence of the
1044     net terrestrial radiative fluxes.
1045     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1046     longwave routine.
1047     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1048     For a given cloud fraction,
1049     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1050     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1051     for the upward and downward radiative fluxes.
1052     (see Section \ref{sec:fizhi:radcloud}).
1053     The cloudy-sky flux is then obtained as:
1054    
1055     \noindent
1056     \[
1057     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1058     \]
1059    
1060     \noindent
1061     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1062     net terrestrial radiative fluxes:
1063     \[
1064     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1065     \]
1066     or
1067     \[
1068     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1069     \]
1070    
1071     \noindent
1072     where $g$ is the accelation due to gravity,
1073     $c_p$ is the heat capacity of air at constant pressure,
1074     and
1075     \[
1076     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1077     \]
1078     \\
1079    
1080    
1081     \noindent
1082     {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1083    
1084     \noindent
1085     The net Shortwave heating rate is calculated as the vertical divergence of the
1086     net solar radiative fluxes.
1087     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1088     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1089     both CLMO (maximum overlap cloud fraction) and
1090     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1091     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1092     true time-averaged cloud fractions CLMO
1093     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1094     input at the top of the atmosphere.
1095    
1096     \noindent
1097     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1098     \[
1099     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1100     \]
1101     or
1102     \[
1103     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1104     \]
1105    
1106     \noindent
1107     where $g$ is the accelation due to gravity,
1108     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1109     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1110     \[
1111     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1112     \]
1113     \\
1114    
1115     \noindent
1116     {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1117    
1118     \noindent
1119     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1120     the vertical integral or total precipitable amount is given by:
1121     \[
1122     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1123     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1124     \]
1125     \\
1126    
1127     \noindent
1128     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1129     time step, scaled to $mm/day$.
1130     \\
1131    
1132     \noindent
1133     {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1134    
1135     \noindent
1136     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1137     the vertical integral or total precipitable amount is given by:
1138     \[
1139     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1140     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1141     \]
1142     \\
1143    
1144     \noindent
1145     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1146     time step, scaled to $mm/day$.
1147     \\
1148    
1149     \noindent
1150     {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1151    
1152     \noindent
1153     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1154     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1155    
1156     \[
1157     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1158     {\rho } {(- K_m \pp{U}{z})}
1159     \]
1160    
1161     \noindent
1162     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1163     \\
1164    
1165     \noindent
1166     {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1167    
1168     \noindent
1169     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1170     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1171    
1172     \[
1173     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1174     {\rho } {(- K_m \pp{V}{z})}
1175     \]
1176    
1177     \noindent
1178     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1179     \\
1180    
1181    
1182     \noindent
1183     {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1184    
1185     \noindent
1186     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1187     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1188    
1189     \noindent
1190     \[
1191     {\bf TTFLUX} = c_p {\rho }
1192     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1193     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1194     \]
1195    
1196     \noindent
1197     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1198     \\
1199    
1200    
1201     \noindent
1202     {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1203    
1204     \noindent
1205     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1206     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1207    
1208     \noindent
1209     \[
1210     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1211     {L {\rho }(- K_h \pp{q}{z})}
1212     \]
1213    
1214     \noindent
1215     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1216     \\
1217    
1218    
1219     \noindent
1220     {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1221    
1222     \noindent
1223     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1224     \[
1225     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1226     \]
1227    
1228     \noindent
1229     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1230     $z_0$ is the surface roughness.
1231    
1232     \noindent
1233     NOTE: CN is not available through model version 5.3, but is available in subsequent
1234     versions.
1235     \\
1236    
1237     \noindent
1238     {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1239    
1240     \noindent
1241     The surface wind speed is calculated for the last internal turbulence time step:
1242     \[
1243     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1244     \]
1245    
1246     \noindent
1247     where the subscript $Nrphys$ refers to the lowest model level.
1248     \\
1249    
1250     \noindent
1251     {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1252    
1253     \noindent
1254     The air/surface virtual temperature difference measures the stability of the surface layer:
1255     \[
1256     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1257     \]
1258     \noindent
1259     where
1260     \[
1261     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1262     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1263     \]
1264    
1265     \noindent
1266     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1267     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1268     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1269     refers to the surface.
1270     \\
1271    
1272    
1273     \noindent
1274     {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1275    
1276     \noindent
1277     The ground temperature equation is solved as part of the turbulence package
1278     using a backward implicit time differencing scheme:
1279     \[
1280     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1281     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1282     \]
1283    
1284     \noindent
1285     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1286     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1287     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1288     flux, and $C_g$ is the total heat capacity of the ground.
1289     $C_g$ is obtained by solving a heat diffusion equation
1290     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1291     \[
1292     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1293     { 86400. \over {2 \pi} } } \, \, .
1294     \]
1295     \noindent
1296     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1297     {cm \over {^oK}}$,
1298     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1299     by $2 \pi$ $radians/
1300     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1301     is a function of the ground wetness, $W$.
1302     \\
1303    
1304     \noindent
1305     {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1306    
1307     \noindent
1308     The surface temperature estimate is made by assuming that the model's lowest
1309     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1310     The surface temperature is therefore:
1311     \[
1312     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1313     \]
1314     \\
1315    
1316     \noindent
1317     {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1318    
1319     \noindent
1320     The change in surface temperature from one turbulence time step to the next, solved
1321     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1322     \[
1323     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1324     \]
1325    
1326     \noindent
1327     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1328     refers to the value at the previous turbulence time level.
1329     \\
1330    
1331     \noindent
1332     {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1333    
1334     \noindent
1335     The ground specific humidity is obtained by interpolating between the specific
1336     humidity at the lowest model level and the specific humidity of a saturated ground.
1337     The interpolation is performed using the potential evapotranspiration function:
1338     \[
1339     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1340     \]
1341    
1342     \noindent
1343     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1344     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1345     pressure.
1346     \\
1347    
1348     \noindent
1349     {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1350    
1351     \noindent
1352     The surface saturation specific humidity is the saturation specific humidity at
1353     the ground temprature and surface pressure:
1354     \[
1355     {\bf QS} = q^*(T_g,P_s)
1356     \]
1357     \\
1358    
1359     \noindent
1360     {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1361     radiation subroutine (deg)}
1362     \[
1363     {\bf TGRLW} = T_g(\lambda , \phi ,n)
1364     \]
1365     \noindent
1366     where $T_g$ is the model ground temperature at the current time step $n$.
1367     \\
1368    
1369    
1370     \noindent
1371     {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1372     \[
1373     {\bf ST4} = \sigma T^4
1374     \]
1375     \noindent
1376     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1377     \\
1378    
1379     \noindent
1380     {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1381     \[
1382     {\bf OLR} = F_{LW,top}^{NET}
1383     \]
1384     \noindent
1385     where top indicates the top of the first model layer.
1386     In the GCM, $p_{top}$ = 0.0 mb.
1387     \\
1388    
1389    
1390     \noindent
1391     {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1392     \[
1393     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1394     \]
1395     \noindent
1396     where top indicates the top of the first model layer.
1397     In the GCM, $p_{top}$ = 0.0 mb.
1398     \\
1399    
1400     \noindent
1401     {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1402    
1403     \noindent
1404     \begin{eqnarray*}
1405     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1406     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1407     \end{eqnarray*}
1408     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1409     $F(clearsky)_{LW}^\uparrow$ is
1410     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1411     \\
1412    
1413     \noindent
1414     {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1415    
1416     \noindent
1417     The net longwave heating rate is calculated as the vertical divergence of the
1418     net terrestrial radiative fluxes.
1419     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1420     longwave routine.
1421     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1422     For a given cloud fraction,
1423     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1424     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1425     for the upward and downward radiative fluxes.
1426     (see Section \ref{sec:fizhi:radcloud}).
1427     The cloudy-sky flux is then obtained as:
1428    
1429     \noindent
1430     \[
1431     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1432     \]
1433    
1434     \noindent
1435     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1436     vertical divergence of the
1437     clear-sky longwave radiative flux:
1438     \[
1439     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1440     \]
1441     or
1442     \[
1443     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1444     \]
1445    
1446     \noindent
1447     where $g$ is the accelation due to gravity,
1448     $c_p$ is the heat capacity of air at constant pressure,
1449     and
1450     \[
1451     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1452     \]
1453     \\
1454    
1455    
1456     \noindent
1457     {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1458     radiation subroutine (deg)}
1459     \[
1460     {\bf TLW} = T(\lambda , \phi ,level, n)
1461     \]
1462     \noindent
1463     where $T$ is the model temperature at the current time step $n$.
1464     \\
1465    
1466    
1467     \noindent
1468     {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1469     the Longwave radiation subroutine (kg/kg)}
1470     \[
1471     {\bf SHLW} = q(\lambda , \phi , level , n)
1472     \]
1473     \noindent
1474     where $q$ is the model specific humidity at the current time step $n$.
1475     \\
1476    
1477    
1478     \noindent
1479     {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1480     the Longwave radiation subroutine (kg/kg)}
1481     \[
1482     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1483     \]
1484     \noindent
1485     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1486     mean zonally averaged ozone data set.
1487     \\
1488    
1489    
1490     \noindent
1491     {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1492    
1493     \noindent
1494     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1495     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1496     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1497     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1498     \[
1499     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1500     \]
1501     \\
1502    
1503    
1504     {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1505    
1506     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1507     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1508     Radiation packages.
1509     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1510     \[
1511     {\bf CLDTOT} = F_{RAS} + F_{LS}
1512     \]
1513     \\
1514     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1515     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1516     \\
1517    
1518    
1519     \noindent
1520     {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1521    
1522     \noindent
1523     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1524     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1525     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1526     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1527     \[
1528     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1529     \]
1530     \\
1531    
1532     \noindent
1533     {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1534    
1535     \noindent
1536     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1537     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1538     Radiation algorithm. These are
1539     convective and large-scale clouds whose radiative characteristics are not
1540     assumed to be correlated in the vertical.
1541     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1542     \[
1543     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1544     \]
1545     \\
1546    
1547     \noindent
1548     {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1549     \[
1550     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1551     \]
1552     \noindent
1553     where $S_0$, is the extra-terrestial solar contant,
1554     $R_a$ is the earth-sun distance in Astronomical Units,
1555     and $cos \phi_z$ is the cosine of the zenith angle.
1556     It should be noted that {\bf RADSWT}, as well as
1557     {\bf OSR} and {\bf OSRCLR},
1558     are calculated at the top of the atmosphere (p=0 mb). However, the
1559     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1560     calculated at $p= p_{top}$ (0.0 mb for the GCM).
1561     \\
1562    
1563     \noindent
1564     {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1565    
1566     \noindent
1567     The surface evaporation is a function of the gradient of moisture, the potential
1568     evapotranspiration fraction and the eddy exchange coefficient:
1569     \[
1570     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1571     \]
1572     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1573     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1574     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1575     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1576     number 34) and at the bottom model level, respectively.
1577     \\
1578    
1579     \noindent
1580     {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1581    
1582     \noindent
1583     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1584     and Analysis forcing.
1585     \[
1586     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1587     \]
1588     \\
1589    
1590     \noindent
1591     {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1592    
1593     \noindent
1594     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1595     and Analysis forcing.
1596     \[
1597     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1598     \]
1599     \\
1600    
1601     \noindent
1602     {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1603    
1604     \noindent
1605     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1606     and Analysis forcing.
1607     \begin{eqnarray*}
1608     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1609     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1610     \end{eqnarray*}
1611     \\
1612    
1613     \noindent
1614     {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1615    
1616     \noindent
1617     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1618     and Analysis forcing.
1619     \[
1620     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1621     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1622     \]
1623     \\
1624    
1625     \noindent
1626     {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1627    
1628     \noindent
1629     The surface stress velocity, or the friction velocity, is the wind speed at
1630     the surface layer top impeded by the surface drag:
1631     \[
1632     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1633     C_u = {k \over {\psi_m} }
1634     \]
1635    
1636     \noindent
1637     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1638     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1639    
1640     \noindent
1641     {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1642    
1643     \noindent
1644     Over the land surface, the surface roughness length is interpolated to the local
1645     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1646     the roughness length is a function of the surface-stress velocity, $u_*$.
1647     \[
1648     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1649     \]
1650    
1651     \noindent
1652     where the constants are chosen to interpolate between the reciprocal relation of
1653     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1654     for moderate to large winds.
1655     \\
1656    
1657     \noindent
1658     {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1659    
1660     \noindent
1661     The fraction of time when turbulence is present is defined as the fraction of
1662     time when the turbulent kinetic energy exceeds some minimum value, defined here
1663     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1664     incremented. The fraction over the averaging interval is reported.
1665     \\
1666    
1667     \noindent
1668     {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1669    
1670     \noindent
1671     The depth of the PBL is defined by the turbulence parameterization to be the
1672     depth at which the turbulent kinetic energy reduces to ten percent of its surface
1673     value.
1674    
1675     \[
1676     {\bf PBL} = P_{PBL} - P_{surface}
1677     \]
1678    
1679     \noindent
1680     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1681     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1682     \\
1683    
1684     \noindent
1685     {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1686    
1687     \noindent
1688     The net Shortwave heating rate is calculated as the vertical divergence of the
1689     net solar radiative fluxes.
1690     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1691     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1692     both CLMO (maximum overlap cloud fraction) and
1693     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1694     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1695     true time-averaged cloud fractions CLMO
1696     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1697     input at the top of the atmosphere.
1698    
1699     \noindent
1700     The heating rate due to Shortwave Radiation under clear skies is defined as:
1701     \[
1702     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1703     \]
1704     or
1705     \[
1706     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1707     \]
1708    
1709     \noindent
1710     where $g$ is the accelation due to gravity,
1711     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1712     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1713     \[
1714     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1715     \]
1716     \\
1717    
1718     \noindent
1719     {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1720     \[
1721     {\bf OSR} = F_{SW,top}^{NET}
1722     \]
1723     \noindent
1724     where top indicates the top of the first model layer used in the shortwave radiation
1725     routine.
1726     In the GCM, $p_{SW_{top}}$ = 0 mb.
1727     \\
1728    
1729     \noindent
1730     {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1731     \[
1732     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1733     \]
1734     \noindent
1735     where top indicates the top of the first model layer used in the shortwave radiation
1736     routine.
1737     In the GCM, $p_{SW_{top}}$ = 0 mb.
1738     \\
1739    
1740    
1741     \noindent
1742     {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1743    
1744     \noindent
1745     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1746     \[
1747     {\bf CLDMAS} = \eta m_B
1748     \]
1749     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1750     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1751     description of the convective parameterization.
1752     \\
1753    
1754    
1755    
1756     \noindent
1757     {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1758    
1759     \noindent
1760     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1761     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1762     Zonal U-Wind which is archived on the Prognostic Output data stream.
1763     \[
1764     {\bf UAVE} = u(\lambda, \phi, level , t)
1765     \]
1766     \\
1767     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1768     \\
1769    
1770     \noindent
1771     {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1772    
1773     \noindent
1774     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1775     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1776     Meridional V-Wind which is archived on the Prognostic Output data stream.
1777     \[
1778     {\bf VAVE} = v(\lambda, \phi, level , t)
1779     \]
1780     \\
1781     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1782     \\
1783    
1784     \noindent
1785     {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1786    
1787     \noindent
1788     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1789     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1790     Temperature which is archived on the Prognostic Output data stream.
1791     \[
1792     {\bf TAVE} = T(\lambda, \phi, level , t)
1793     \]
1794     \\
1795    
1796     \noindent
1797     {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1798    
1799     \noindent
1800     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1801     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1802     Specific Humidity which is archived on the Prognostic Output data stream.
1803     \[
1804     {\bf QAVE} = q(\lambda, \phi, level , t)
1805     \]
1806     \\
1807    
1808     \noindent
1809     {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1810    
1811     \noindent
1812     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1813     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1814     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1815     \begin{eqnarray*}
1816     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1817     & = & p_s(\lambda, \phi, level , t) - p_T
1818     \end{eqnarray*}
1819     \\
1820    
1821    
1822     \noindent
1823     {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1824    
1825     \noindent
1826     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1827     produced by the GCM Turbulence parameterization over
1828     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1829     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1830     \[
1831     {\bf QQAVE} = qq(\lambda, \phi, level , t)
1832     \]
1833     \\
1834     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1835     \\
1836    
1837     \noindent
1838     {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1839    
1840     \noindent
1841     \begin{eqnarray*}
1842     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1843     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1844     \end{eqnarray*}
1845     \noindent
1846     \\
1847     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1848     $F(clearsky){SW}^\downarrow$ is
1849     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1850     the upward clearsky Shortwave flux.
1851     \\
1852    
1853     \noindent
1854     {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1855    
1856     \noindent
1857     The GCM provides Users with a built-in mechanism for archiving user-defined
1858     diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1859     diagnostic counters and pointers located in COMMON /DIAGP/,
1860     must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1861     A convenient method for incorporating all necessary COMMON files is to
1862     include the GCM {\em vstate.com} file in the routine which employs the
1863     user-defined diagnostics.
1864    
1865     \noindent
1866     In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1867     the QDIAG array with the desired quantity within the User's
1868     application program or within modified GCM subroutines, as well as increment
1869     the diagnostic counter at the time when the diagnostic is updated.
1870     The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1871     automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1872     diagnostic has been enabled.
1873     The syntax for its use is given by
1874     \begin{verbatim}
1875     do j=1,jm
1876     do i=1,im
1877     qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1878     enddo
1879     enddo
1880    
1881     NSDIAG1 = NSDIAG1 + 1
1882     \end{verbatim}
1883     The diagnostics defined in this manner will automatically be archived by the output routines.
1884     \\
1885    
1886     \noindent
1887     {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1888    
1889     \noindent
1890     The GCM provides Users with a built-in mechanism for archiving user-defined
1891     diagnostics. For a complete description refer to Diagnostic \#84.
1892     The syntax for using the surface SDIAG2 diagnostic is given by
1893     \begin{verbatim}
1894     do j=1,jm
1895     do i=1,im
1896     qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1897     enddo
1898     enddo
1899    
1900     NSDIAG2 = NSDIAG2 + 1
1901     \end{verbatim}
1902     The diagnostics defined in this manner will automatically be archived by the output routines.
1903     \\
1904    
1905     \noindent
1906     {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1907    
1908     \noindent
1909     The GCM provides Users with a built-in mechanism for archiving user-defined
1910     diagnostics. For a complete description refer to Diagnostic \#84.
1911     The syntax for using the upper-air UDIAG1 diagnostic is given by
1912     \begin{verbatim}
1913     do L=1,Nrphys
1914     do j=1,jm
1915     do i=1,im
1916     qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1917     enddo
1918     enddo
1919     enddo
1920    
1921     NUDIAG1 = NUDIAG1 + 1
1922     \end{verbatim}
1923     The diagnostics defined in this manner will automatically be archived by the
1924     output programs.
1925     \\
1926    
1927     \noindent
1928     {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1929    
1930     \noindent
1931     The GCM provides Users with a built-in mechanism for archiving user-defined
1932     diagnostics. For a complete description refer to Diagnostic \#84.
1933     The syntax for using the upper-air UDIAG2 diagnostic is given by
1934     \begin{verbatim}
1935     do L=1,Nrphys
1936     do j=1,jm
1937     do i=1,im
1938     qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1939     enddo
1940     enddo
1941     enddo
1942    
1943     NUDIAG2 = NUDIAG2 + 1
1944     \end{verbatim}
1945     The diagnostics defined in this manner will automatically be archived by the
1946     output programs.
1947     \\
1948    
1949    
1950     \noindent
1951     {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1952    
1953     \noindent
1954     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1955     and the Analysis forcing.
1956     \[
1957     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1958     \]
1959     \\
1960    
1961     \noindent
1962     {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1963    
1964     \noindent
1965     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1966     and the Analysis forcing.
1967     \[
1968     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1969     \]
1970     \\
1971    
1972     \noindent
1973     {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1974    
1975     \noindent
1976     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1977     and the Analysis forcing.
1978     \begin{eqnarray*}
1979     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1980     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1981     \end{eqnarray*}
1982     \\
1983     If we define the time-tendency of Temperature due to Diabatic processes as
1984     \begin{eqnarray*}
1985     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1986     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1987     \end{eqnarray*}
1988     then, since there are no surface pressure changes due to Diabatic processes, we may write
1989     \[
1990     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1991     \]
1992     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1993     \[
1994     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1995     \]
1996     \\
1997    
1998     \noindent
1999     {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2000    
2001     \noindent
2002     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2003     and the Analysis forcing.
2004     \[
2005     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2006     \]
2007     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2008     \[
2009     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2010     \]
2011     then, since there are no surface pressure changes due to Diabatic processes, we may write
2012     \[
2013     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2014     \]
2015     Thus, {\bf DIABQ} may be written as
2016     \[
2017     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2018     \]
2019     \\
2020    
2021     \noindent
2022     {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2023    
2024     \noindent
2025     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2026     $u q$ over the depth of the atmosphere at each model timestep,
2027     and dividing by the total mass of the column.
2028     \[
2029     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2030     \]
2031     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2032     \[
2033     {\bf VINTUQ} = { \int_0^1 u q dp }
2034     \]
2035     \\
2036    
2037    
2038     \noindent
2039     {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2040    
2041     \noindent
2042     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2043     $v q$ over the depth of the atmosphere at each model timestep,
2044     and dividing by the total mass of the column.
2045     \[
2046     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2047     \]
2048     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2049     \[
2050     {\bf VINTVQ} = { \int_0^1 v q dp }
2051     \]
2052     \\
2053    
2054    
2055     \noindent
2056     {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2057    
2058     \noindent
2059     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2060     $u T$ over the depth of the atmosphere at each model timestep,
2061     and dividing by the total mass of the column.
2062     \[
2063     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2064     \]
2065     Or,
2066     \[
2067     {\bf VINTUT} = { \int_0^1 u T dp }
2068     \]
2069     \\
2070    
2071     \noindent
2072     {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2073    
2074     \noindent
2075     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2076     $v T$ over the depth of the atmosphere at each model timestep,
2077     and dividing by the total mass of the column.
2078     \[
2079     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2080     \]
2081     Using $\rho \delta z = -{\delta p \over g} $, we have
2082     \[
2083     {\bf VINTVT} = { \int_0^1 v T dp }
2084     \]
2085     \\
2086    
2087     \noindent
2088     {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2089    
2090     If we define the
2091     time-averaged random and maximum overlapped cloudiness as CLRO and
2092     CLMO respectively, then the probability of clear sky associated
2093     with random overlapped clouds at any level is (1-CLRO) while the probability of
2094     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2095     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2096     the total cloud fraction at each level may be obtained by
2097     1-(1-CLRO)*(1-CLMO).
2098    
2099     At any given level, we may define the clear line-of-site probability by
2100     appropriately accounting for the maximum and random overlap
2101     cloudiness. The clear line-of-site probability is defined to be
2102     equal to the product of the clear line-of-site probabilities
2103     associated with random and maximum overlap cloudiness. The clear
2104     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2105     from the current pressure $p$
2106     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2107     is simply 1.0 minus the largest maximum overlap cloud value along the
2108     line-of-site, ie.
2109    
2110     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2111    
2112     Thus, even in the time-averaged sense it is assumed that the
2113     maximum overlap clouds are correlated in the vertical. The clear
2114     line-of-site probability associated with random overlap clouds is
2115     defined to be the product of the clear sky probabilities at each
2116     level along the line-of-site, ie.
2117    
2118     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2119    
2120     The total cloud fraction at a given level associated with a line-
2121     of-site calculation is given by
2122    
2123     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2124     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2125    
2126    
2127     \noindent
2128     The 2-dimensional net cloud fraction as seen from the top of the
2129     atmosphere is given by
2130     \[
2131     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2132     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2133     \]
2134     \\
2135     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2136    
2137    
2138     \noindent
2139     {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2140    
2141     \noindent
2142     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2143     given by:
2144     \begin{eqnarray*}
2145     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2146     & = & {\pi \over g} \int_0^1 q dp
2147     \end{eqnarray*}
2148     where we have used the hydrostatic relation
2149     $\rho \delta z = -{\delta p \over g} $.
2150     \\
2151    
2152    
2153     \noindent
2154     {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2155    
2156     \noindent
2157     The u-wind at the 2-meter depth is determined from the similarity theory:
2158     \[
2159     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2160     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2161     \]
2162    
2163     \noindent
2164     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2165     $sl$ refers to the height of the top of the surface layer. If the roughness height
2166     is above two meters, ${\bf U2M}$ is undefined.
2167     \\
2168    
2169     \noindent
2170     {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2171    
2172     \noindent
2173     The v-wind at the 2-meter depth is a determined from the similarity theory:
2174     \[
2175     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2176     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2177     \]
2178    
2179     \noindent
2180     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2181     $sl$ refers to the height of the top of the surface layer. If the roughness height
2182     is above two meters, ${\bf V2M}$ is undefined.
2183     \\
2184    
2185     \noindent
2186     {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2187    
2188     \noindent
2189     The temperature at the 2-meter depth is a determined from the similarity theory:
2190     \[
2191     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2192     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2193     (\theta_{sl} - \theta_{surf}))
2194     \]
2195     where:
2196     \[
2197     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2198     \]
2199    
2200     \noindent
2201     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2202     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2203     $sl$ refers to the height of the top of the surface layer. If the roughness height
2204     is above two meters, ${\bf T2M}$ is undefined.
2205     \\
2206    
2207     \noindent
2208     {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2209    
2210     \noindent
2211     The specific humidity at the 2-meter depth is determined from the similarity theory:
2212     \[
2213     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2214     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2215     (q_{sl} - q_{surf}))
2216     \]
2217     where:
2218     \[
2219     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2220     \]
2221    
2222     \noindent
2223     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2224     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2225     $sl$ refers to the height of the top of the surface layer. If the roughness height
2226     is above two meters, ${\bf Q2M}$ is undefined.
2227     \\
2228    
2229     \noindent
2230     {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2231    
2232     \noindent
2233     The u-wind at the 10-meter depth is an interpolation between the surface wind
2234     and the model lowest level wind using the ratio of the non-dimensional wind shear
2235     at the two levels:
2236     \[
2237     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2238     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2239     \]
2240    
2241     \noindent
2242     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2243     $sl$ refers to the height of the top of the surface layer.
2244     \\
2245    
2246     \noindent
2247     {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2248    
2249     \noindent
2250     The v-wind at the 10-meter depth is an interpolation between the surface wind
2251     and the model lowest level wind using the ratio of the non-dimensional wind shear
2252     at the two levels:
2253     \[
2254     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2255     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2256     \]
2257    
2258     \noindent
2259     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2260     $sl$ refers to the height of the top of the surface layer.
2261     \\
2262    
2263     \noindent
2264     {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2265    
2266     \noindent
2267     The temperature at the 10-meter depth is an interpolation between the surface potential
2268     temperature and the model lowest level potential temperature using the ratio of the
2269     non-dimensional temperature gradient at the two levels:
2270     \[
2271     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2272     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2273     (\theta_{sl} - \theta_{surf}))
2274     \]
2275     where:
2276     \[
2277     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2278     \]
2279    
2280     \noindent
2281     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2282     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2283     $sl$ refers to the height of the top of the surface layer.
2284     \\
2285    
2286     \noindent
2287     {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2288    
2289     \noindent
2290     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2291     humidity and the model lowest level specific humidity using the ratio of the
2292     non-dimensional temperature gradient at the two levels:
2293     \[
2294     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2295     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2296     (q_{sl} - q_{surf}))
2297     \]
2298     where:
2299     \[
2300     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2301     \]
2302    
2303     \noindent
2304     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2305     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2306     $sl$ refers to the height of the top of the surface layer.
2307     \\
2308    
2309     \noindent
2310     {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2311    
2312     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2313     \[
2314     {\bf DTRAIN} = \eta_{r_D}m_B
2315     \]
2316     \noindent
2317     where $r_D$ is the detrainment level,
2318     $m_B$ is the cloud base mass flux, and $\eta$
2319     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2320     \\
2321    
2322     \noindent
2323     {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2324    
2325     \noindent
2326     Due to computational errors associated with the numerical scheme used for
2327     the advection of moisture, negative values of specific humidity may be generated. The
2328     specific humidity is checked for negative values after every dynamics timestep. If negative
2329     values have been produced, a filling algorithm is invoked which redistributes moisture from
2330     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2331     to eliminate negative specific humidity, scaled to a per-day rate:
2332     \[
2333     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2334     \]
2335     where
2336     \[
2337     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2338     \]
2339    
2340     \subsection{Dos and Donts}
2341    
2342     \subsection{Diagnostics Reference}
2343    

  ViewVC Help
Powered by ViewVC 1.1.22