/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Mon Oct 18 19:43:56 2004 UTC (20 years, 9 months ago) by molod
Branch: MAIN
Changes since 1.6: +138 -73 lines
File MIME type: application/x-tex
Updating

1 edhill 1.2 \section{Diagnostics--A Flexible Infrastructure}
2     \label{sec:pkg:diagnostics}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_diagnostics: -->
5     \end{rawhtml}
6 molod 1.1
7     \subsection{Introduction}
8    
9 molod 1.7 \noindent
10 molod 1.5 This section of the documentation describes the Diagnostics package available within
11 molod 1.7 the GCM. A large selection of model diagnostics is available for output.
12     In addition to the diagnostic quantities pre-defined in the GCM, there exists
13     the option, in any experiment, to define a new diagnostic quantity and include it
14     as part of the diagnostic output with the addition of a single subroutine call in the
15     routine where the field is computed. As a matter of philosophy, no diagnostic is enabled
16     as default, thus each user must specify the exact diagnostic information required for an
17     experiment. This is accomplished by enabling the specific diagnostic of interest cataloged
18     in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling
19     diagnostic output and defining new diagnostic quantities are found in Section
20     \ref{sec:diagnostics:usersguide} of this document.
21    
22     \noindent
23     The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within
24     the GCM. Once a diagnostic is enabled, the GCM will continually increment an array
25     specifically allocated for that diagnostic whenever the appropriate quantity is computed.
26     A counter is defined which records how many times each diagnostic quantity has been
27     incremented. Several special diagnostics are included in the menu. Quantities refered to
28     as ``Counter Diagnostics'', are defined for selected diagnostics which record the
29     frequency at which a diagnostic is incremented separately for each model grid location.
30     Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate
31     defining new diagnostics for a particular experiment.
32 molod 1.1
33     \subsection{Equations}
34     Not relevant.
35    
36     \subsection{Key Subroutines and Parameters}
37     \label{sec:diagnostics:diagover}
38    
39 molod 1.7 \noindent
40     The diagnostics are computed at various times and places within the GCM. Because the
41     MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,
42     corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,
43     while others are components of vectors. An internal array is defined which contains
44     information concerning various grid attributes of each diagnostic. The GDIAG
45     array (in common block \\diagnostics in file diagnostics.h) is internally defined as a
46     character*8 variable, and is equivalenced to a character*1 "parse" array in output in
47     order to extract the grid-attribute information. The GDIAG array is described in
48     Table \ref{tab:diagnostics:gdiag.tabl}.
49 molod 1.1
50     \begin{table}
51     \caption{Diagnostic Parsing Array}
52     \label{tab:diagnostics:gdiag.tabl}
53     \begin{center}
54     \begin{tabular}{ |c|c|l| }
55     \hline
56     \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57     \hline
58     \hline
59     Array & Value & Description \\
60     \hline
61     parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62     & $\rightarrow$ U & U-vector component Diagnostic \\
63     & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64     parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65     & $\rightarrow$ V & C-Grid V-Point \\
66     & $\rightarrow$ M & C-Grid Mass Point \\
67 molod 1.3 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
68     parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
69 molod 1.1 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
70     parse(5) & $\rightarrow$ C & Counter Diagnostic \\
71     & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
72     parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
73     & & vector or counter component mate \\ \hline
74     \end{tabular}
75     \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
76     \end{center}
77     \end{table}
78    
79 molod 1.7
80     \noindent
81 molod 1.1 As an example, consider a diagnostic whose associated GDIAG parameter is equal
82 molod 1.3 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
83     U-vector component located at the C-grid U-point.
84 molod 1.1 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
85    
86 molod 1.7
87     \noindent
88 molod 1.1 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
89 molod 1.7 C-grid location, etc.) defined internally. The Output routines use this information
90     in order to determine what type of transformations need to be performed. Any
91     interpolations are done at the time of output rather than during each model step.
92     In this way the User has flexibility in determining the type of gridded data which
93     is output.
94    
95 molod 1.1
96 molod 1.7 \noindent
97 molod 1.1 There are several utilities within the GCM available to users to enable, disable,
98 molod 1.5 clear, write and retrieve model diagnostics, and may be called from any routine.
99     The available utilities and the CALL sequences are listed below.
100 molod 1.1
101    
102 molod 1.7 \noindent
103     {\bf fill\_diagnostics}: This routine will increment the specified diagnostic
104     quantity with a field sent through the argument list.
105    
106    
107     \noindent
108     \begin{tabbing}
109     XXXXXXXXX\=XXXXXX\= \kill
110     \> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\
111     bibjflg, bi, bj, arrayin) \\
112     \\
113     where \> myThid \>= Current Process(or) \\
114     \> chardiag \>= Character *8 expression for diag to fill \\
115     \> levflg \>= Integer flag for vertical levels: \\
116     \> \> 0 indicates multiple levels incremented in qdiag \\
117     \> \> non-0 (any integer) - WHICH single level to increment. \\
118     \> \> negative integer - the input data array is single-leveled \\
119     \> \> positive integer - the input data array is multi-leveled \\
120     \> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\
121     \> \> positive: fill in "nlevs" levels in the same order as \\
122     \> \> the input array \\
123     \> \> negative: fill in -nlevs levels in reverse order. \\
124     \> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\
125     \> \> 0 indicates that the bi-bj loop must be done here \\
126     \> \> 1 indicates that the bi-bj loop is done OUTSIDE \\
127     \> \> 2 indicates that the bi-bj loop is done OUTSIDE \\
128     \> \> AND that we have been sent a local array \\
129     \> \> 3 indicates that the bi-bj loop is done OUTSIDE \\
130     \> \> AND that we have been sent a local array \\
131     \> \> AND that the array has the shadow regions \\
132     \> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\
133     \> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\
134     \> arrayin \>= Field to increment diagnostics array \\
135     \end{tabbing}
136    
137    
138     \noindent
139 molod 1.5 {\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning
140     that space is allocated for the diagnostic and the model routines will increment the
141     diagnostic value during execution. This routine is the underlying interface
142 molod 1.1 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
143     number from the menu, and its calling sequence is given by:
144    
145 molod 1.7 \noindent
146 molod 1.1 \begin{tabbing}
147     XXXXXXXXX\=XXXXXX\= \kill
148 molod 1.5 \> call setdiag (num) \\
149 molod 1.1 \\
150 molod 1.5 where \> num \>= Diagnostic number from menu \\
151 molod 1.1 \end{tabbing}
152    
153 molod 1.7 \noindent
154 molod 1.5 {\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine
155     is particulary useful when called from a user output routine, although it can be called
156     from any routine. This routine returns the time-averaged value of the diagnostic by
157     dividing the current accumulated diagnostic value by its corresponding counter. This
158     routine does not change the value of the diagnostic itself, that is, it does not replace
159     the diagnostic with its time-average. The calling sequence for this routine is givin by:
160 molod 1.1
161 molod 1.7 \noindent
162 molod 1.1 \begin{tabbing}
163     XXXXXXXXX\=XXXXXX\= \kill
164 molod 1.5 \> call getdiag (lev,num,qtmp,undef) \\
165 molod 1.1 \\
166 molod 1.5 where \> lev \>= Model Level at which the diagnostic is desired \\
167     \> num \>= Diagnostic number from menu \\
168     \> qtmp \>= Time-Averaged Diagnostic Output \\
169     \> undef \>= Fill value to be used when diagnostic is undefined \\
170 molod 1.1 \end{tabbing}
171    
172 molod 1.7 \noindent
173 molod 1.5 {\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is
174     particularly useful when called from user output routines to re-initialize diagnostics
175     during the run. The calling sequence is:
176 molod 1.1
177 molod 1.7 \noindent
178 molod 1.1 \begin{tabbing}
179     XXXXXXXXX\=XXXXXX\= \kill
180 molod 1.5 \> call clrdiag (num) \\
181 molod 1.1 \\
182 molod 1.5 where \> num \>= Diagnostic number from menu \\
183 molod 1.1 \end{tabbing}
184    
185 molod 1.7 \noindent
186 molod 1.5 {\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning
187     that the diagnostic is no longer available to the user. The memory previously allocated
188     to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by:
189 molod 1.1
190 molod 1.7 \noindent
191 molod 1.1 \begin{tabbing}
192     XXXXXXXXX\=XXXXXX\= \kill
193 molod 1.5 \> call zapdiag (NUM) \\
194 molod 1.1 \\
195 molod 1.5 where \> num \>= Diagnostic number from menu \\
196 molod 1.1 \end{tabbing}
197    
198 molod 1.7
199     \subsection{Usage Notes}
200     \label{sec:diagnostics:usersguide}
201    
202     \noindent
203     We begin this section with a discussion on the manner in which computer
204     memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the
205     single diagnostic array QDIAG which is located in the file \\
206     \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.
207     and has the form:
208 molod 1.1
209 molod 1.3 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
210 molod 1.1
211 molod 1.7 \noindent
212     where numdiags is an Integer variable which should be set equal to the number of
213     enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions
214     of qdiag correspond to the horizontal dimension of a given diagnostic, while the third
215     dimension of qdiag is used to identify diagnostic fields and levels combined. In order
216     to minimize the memory requirement of the model for diagnostics, the default GCM
217     executable is compiled with room for only one horizontal diagnostic array, or with
218     numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic,
219 molod 1.3 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
220 molod 1.1 This can be accomplished by manually changing the parameter numdiags in the
221 molod 1.7 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}.
222     numdiags should be set greater than or equal to the sum of all the diagnostics activated
223     for output each multiplied by the number of levels defined for that diagnostic quantity.
224     This is illustrated in the example below:
225 molod 1.1
226 molod 1.7 \noindent
227 molod 1.3 To use the diagnostics package, other than enabling it in packages.conf
228     and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
229     must be supplied in the run directory called data.diagnostics. The namelist
230     will activate a user-defined list of diagnostics quantities to be computed,
231     specify the frequency of output, the number of levels, and the name of
232     up to 10 separate output files. A sample data.diagnostics namelist file:
233    
234 molod 1.7 \noindent
235     $\#$ Diagnostic Package Choices \\
236     $\&$diagnostics\_list \\
237     frequency(1) = 10, \ \\
238     levels(1,1) = 1.,2.,3.,4.,5., \ \\
239     fields(1,1) = 'UVEL ','VVEL ', \ \\
240     filename(1) = 'diagout1', \ \\
241     frequency(2) = 100, \ \\
242     levels(1,2) = 1.,2.,3.,4.,5., \ \\
243     fields(1,2) = 'THETA ','SALT ', \ \\
244     filename(2) = 'diagout2', \ \\
245     $\&$end \ \\
246 molod 1.3
247 molod 1.7 \noindent
248 molod 1.3 In this example, there are two output files that will be generated
249     for each tile and for each output time. The first set of output files
250 molod 1.7 has the prefix diagout1, does time averaging every 10 time steps
251     (frequency is 10), they will write fields which are multiple-level
252     fields and output levels 1-5. The names of diagnostics quantities are
253     UVEL and VVEL. The second set of output files
254 molod 1.3 has the prefix diagout2, does time averaging every 100 time steps,
255 molod 1.7 they include fields which are multiple-level fields, levels output are 1-5,
256 molod 1.3 and the names of diagnostics quantities are THETA and SALT.
257    
258 molod 1.7 \noindent
259     In order to define and include as part of the diagnostic output any field
260     that is desired for a particular experiment, two steps must be taken. The
261     first is to enable the ``User Diagnostic'' in data.diagnostics. This is
262     accomplished by setting one of the fields slots to either UDIAG1 through
263     UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level
264     fields. These are listed in the diagnostics menu. The second step is to
265     add a call to fill\_diagnostics from the subroutine in which the quantity
266     desired for diagnostic output is computed.
267    
268 molod 1.1 \newpage
269    
270     \subsubsection{GCM Diagnostic Menu}
271     \label{sec:diagnostics:menu}
272    
273     \begin{tabular}{lllll}
274     \hline\hline
275     N & NAME & UNITS & LEVELS & DESCRIPTION \\
276     \hline
277    
278     &\\
279     1 & UFLUX & $Newton/m^2$ & 1
280     &\begin{minipage}[t]{3in}
281     {Surface U-Wind Stress on the atmosphere}
282     \end{minipage}\\
283     2 & VFLUX & $Newton/m^2$ & 1
284     &\begin{minipage}[t]{3in}
285     {Surface V-Wind Stress on the atmosphere}
286     \end{minipage}\\
287     3 & HFLUX & $Watts/m^2$ & 1
288     &\begin{minipage}[t]{3in}
289     {Surface Flux of Sensible Heat}
290     \end{minipage}\\
291     4 & EFLUX & $Watts/m^2$ & 1
292     &\begin{minipage}[t]{3in}
293     {Surface Flux of Latent Heat}
294     \end{minipage}\\
295     5 & QICE & $Watts/m^2$ & 1
296     &\begin{minipage}[t]{3in}
297     {Heat Conduction through Sea-Ice}
298     \end{minipage}\\
299     6 & RADLWG & $Watts/m^2$ & 1
300     &\begin{minipage}[t]{3in}
301     {Net upward LW flux at the ground}
302     \end{minipage}\\
303     7 & RADSWG & $Watts/m^2$ & 1
304     &\begin{minipage}[t]{3in}
305     {Net downward SW flux at the ground}
306     \end{minipage}\\
307     8 & RI & $dimensionless$ & Nrphys
308     &\begin{minipage}[t]{3in}
309     {Richardson Number}
310     \end{minipage}\\
311     9 & CT & $dimensionless$ & 1
312     &\begin{minipage}[t]{3in}
313     {Surface Drag coefficient for T and Q}
314     \end{minipage}\\
315     10 & CU & $dimensionless$ & 1
316     &\begin{minipage}[t]{3in}
317     {Surface Drag coefficient for U and V}
318     \end{minipage}\\
319     11 & ET & $m^2/sec$ & Nrphys
320     &\begin{minipage}[t]{3in}
321     {Diffusivity coefficient for T and Q}
322     \end{minipage}\\
323     12 & EU & $m^2/sec$ & Nrphys
324     &\begin{minipage}[t]{3in}
325     {Diffusivity coefficient for U and V}
326     \end{minipage}\\
327     13 & TURBU & $m/sec/day$ & Nrphys
328     &\begin{minipage}[t]{3in}
329     {U-Momentum Changes due to Turbulence}
330     \end{minipage}\\
331     14 & TURBV & $m/sec/day$ & Nrphys
332     &\begin{minipage}[t]{3in}
333     {V-Momentum Changes due to Turbulence}
334     \end{minipage}\\
335     15 & TURBT & $deg/day$ & Nrphys
336     &\begin{minipage}[t]{3in}
337     {Temperature Changes due to Turbulence}
338     \end{minipage}\\
339     16 & TURBQ & $g/kg/day$ & Nrphys
340     &\begin{minipage}[t]{3in}
341     {Specific Humidity Changes due to Turbulence}
342     \end{minipage}\\
343     17 & MOISTT & $deg/day$ & Nrphys
344     &\begin{minipage}[t]{3in}
345     {Temperature Changes due to Moist Processes}
346     \end{minipage}\\
347     18 & MOISTQ & $g/kg/day$ & Nrphys
348     &\begin{minipage}[t]{3in}
349     {Specific Humidity Changes due to Moist Processes}
350     \end{minipage}\\
351     19 & RADLW & $deg/day$ & Nrphys
352     &\begin{minipage}[t]{3in}
353     {Net Longwave heating rate for each level}
354     \end{minipage}\\
355     20 & RADSW & $deg/day$ & Nrphys
356     &\begin{minipage}[t]{3in}
357     {Net Shortwave heating rate for each level}
358     \end{minipage}\\
359     21 & PREACC & $mm/day$ & 1
360     &\begin{minipage}[t]{3in}
361     {Total Precipitation}
362     \end{minipage}\\
363     22 & PRECON & $mm/day$ & 1
364     &\begin{minipage}[t]{3in}
365     {Convective Precipitation}
366     \end{minipage}\\
367     23 & TUFLUX & $Newton/m^2$ & Nrphys
368     &\begin{minipage}[t]{3in}
369     {Turbulent Flux of U-Momentum}
370     \end{minipage}\\
371     24 & TVFLUX & $Newton/m^2$ & Nrphys
372     &\begin{minipage}[t]{3in}
373     {Turbulent Flux of V-Momentum}
374     \end{minipage}\\
375     25 & TTFLUX & $Watts/m^2$ & Nrphys
376     &\begin{minipage}[t]{3in}
377     {Turbulent Flux of Sensible Heat}
378     \end{minipage}\\
379     26 & TQFLUX & $Watts/m^2$ & Nrphys
380     &\begin{minipage}[t]{3in}
381     {Turbulent Flux of Latent Heat}
382     \end{minipage}\\
383     27 & CN & $dimensionless$ & 1
384     &\begin{minipage}[t]{3in}
385     {Neutral Drag Coefficient}
386     \end{minipage}\\
387     28 & WINDS & $m/sec$ & 1
388     &\begin{minipage}[t]{3in}
389     {Surface Wind Speed}
390     \end{minipage}\\
391     29 & DTSRF & $deg$ & 1
392     &\begin{minipage}[t]{3in}
393     {Air/Surface virtual temperature difference}
394     \end{minipage}\\
395     30 & TG & $deg$ & 1
396     &\begin{minipage}[t]{3in}
397     {Ground temperature}
398     \end{minipage}\\
399     31 & TS & $deg$ & 1
400     &\begin{minipage}[t]{3in}
401     {Surface air temperature (Adiabatic from lowest model layer)}
402     \end{minipage}\\
403     32 & DTG & $deg$ & 1
404     &\begin{minipage}[t]{3in}
405     {Ground temperature adjustment}
406     \end{minipage}\\
407    
408     \end{tabular}
409    
410     \newpage
411     \vspace*{\fill}
412     \begin{tabular}{lllll}
413     \hline\hline
414     N & NAME & UNITS & LEVELS & DESCRIPTION \\
415     \hline
416    
417     &\\
418     33 & QG & $g/kg$ & 1
419     &\begin{minipage}[t]{3in}
420     {Ground specific humidity}
421     \end{minipage}\\
422     34 & QS & $g/kg$ & 1
423     &\begin{minipage}[t]{3in}
424     {Saturation surface specific humidity}
425     \end{minipage}\\
426    
427     &\\
428     35 & TGRLW & $deg$ & 1
429     &\begin{minipage}[t]{3in}
430     {Instantaneous ground temperature used as input to the
431     Longwave radiation subroutine}
432     \end{minipage}\\
433     36 & ST4 & $Watts/m^2$ & 1
434     &\begin{minipage}[t]{3in}
435     {Upward Longwave flux at the ground ($\sigma T^4$)}
436     \end{minipage}\\
437     37 & OLR & $Watts/m^2$ & 1
438     &\begin{minipage}[t]{3in}
439     {Net upward Longwave flux at the top of the model}
440     \end{minipage}\\
441     38 & OLRCLR & $Watts/m^2$ & 1
442     &\begin{minipage}[t]{3in}
443     {Net upward clearsky Longwave flux at the top of the model}
444     \end{minipage}\\
445     39 & LWGCLR & $Watts/m^2$ & 1
446     &\begin{minipage}[t]{3in}
447     {Net upward clearsky Longwave flux at the ground}
448     \end{minipage}\\
449     40 & LWCLR & $deg/day$ & Nrphys
450     &\begin{minipage}[t]{3in}
451     {Net clearsky Longwave heating rate for each level}
452     \end{minipage}\\
453     41 & TLW & $deg$ & Nrphys
454     &\begin{minipage}[t]{3in}
455     {Instantaneous temperature used as input to the Longwave radiation
456     subroutine}
457     \end{minipage}\\
458     42 & SHLW & $g/g$ & Nrphys
459     &\begin{minipage}[t]{3in}
460     {Instantaneous specific humidity used as input to the Longwave radiation
461     subroutine}
462     \end{minipage}\\
463     43 & OZLW & $g/g$ & Nrphys
464     &\begin{minipage}[t]{3in}
465     {Instantaneous ozone used as input to the Longwave radiation
466     subroutine}
467     \end{minipage}\\
468     44 & CLMOLW & $0-1$ & Nrphys
469     &\begin{minipage}[t]{3in}
470     {Maximum overlap cloud fraction used in the Longwave radiation
471     subroutine}
472     \end{minipage}\\
473     45 & CLDTOT & $0-1$ & Nrphys
474     &\begin{minipage}[t]{3in}
475     {Total cloud fraction used in the Longwave and Shortwave radiation
476     subroutines}
477     \end{minipage}\\
478     46 & RADSWT & $Watts/m^2$ & 1
479     &\begin{minipage}[t]{3in}
480     {Incident Shortwave radiation at the top of the atmosphere}
481     \end{minipage}\\
482     47 & CLROSW & $0-1$ & Nrphys
483     &\begin{minipage}[t]{3in}
484     {Random overlap cloud fraction used in the shortwave radiation
485     subroutine}
486     \end{minipage}\\
487     48 & CLMOSW & $0-1$ & Nrphys
488     &\begin{minipage}[t]{3in}
489     {Maximum overlap cloud fraction used in the shortwave radiation
490     subroutine}
491     \end{minipage}\\
492     49 & EVAP & $mm/day$ & 1
493     &\begin{minipage}[t]{3in}
494     {Surface evaporation}
495     \end{minipage}\\
496     \end{tabular}
497     \vfill
498    
499     \newpage
500     \vspace*{\fill}
501     \begin{tabular}{lllll}
502     \hline\hline
503     N & NAME & UNITS & LEVELS & DESCRIPTION \\
504     \hline
505    
506     &\\
507     50 & DUDT & $m/sec/day$ & Nrphys
508     &\begin{minipage}[t]{3in}
509     {Total U-Wind tendency}
510     \end{minipage}\\
511     51 & DVDT & $m/sec/day$ & Nrphys
512     &\begin{minipage}[t]{3in}
513     {Total V-Wind tendency}
514     \end{minipage}\\
515     52 & DTDT & $deg/day$ & Nrphys
516     &\begin{minipage}[t]{3in}
517     {Total Temperature tendency}
518     \end{minipage}\\
519     53 & DQDT & $g/kg/day$ & Nrphys
520     &\begin{minipage}[t]{3in}
521     {Total Specific Humidity tendency}
522     \end{minipage}\\
523     54 & USTAR & $m/sec$ & 1
524     &\begin{minipage}[t]{3in}
525     {Surface USTAR wind}
526     \end{minipage}\\
527     55 & Z0 & $m$ & 1
528     &\begin{minipage}[t]{3in}
529     {Surface roughness}
530     \end{minipage}\\
531     56 & FRQTRB & $0-1$ & Nrphys-1
532     &\begin{minipage}[t]{3in}
533     {Frequency of Turbulence}
534     \end{minipage}\\
535     57 & PBL & $mb$ & 1
536     &\begin{minipage}[t]{3in}
537     {Planetary Boundary Layer depth}
538     \end{minipage}\\
539     58 & SWCLR & $deg/day$ & Nrphys
540     &\begin{minipage}[t]{3in}
541     {Net clearsky Shortwave heating rate for each level}
542     \end{minipage}\\
543     59 & OSR & $Watts/m^2$ & 1
544     &\begin{minipage}[t]{3in}
545     {Net downward Shortwave flux at the top of the model}
546     \end{minipage}\\
547     60 & OSRCLR & $Watts/m^2$ & 1
548     &\begin{minipage}[t]{3in}
549     {Net downward clearsky Shortwave flux at the top of the model}
550     \end{minipage}\\
551     61 & CLDMAS & $kg / m^2$ & Nrphys
552     &\begin{minipage}[t]{3in}
553     {Convective cloud mass flux}
554     \end{minipage}\\
555     62 & UAVE & $m/sec$ & Nrphys
556     &\begin{minipage}[t]{3in}
557     {Time-averaged $u-Wind$}
558     \end{minipage}\\
559     63 & VAVE & $m/sec$ & Nrphys
560     &\begin{minipage}[t]{3in}
561     {Time-averaged $v-Wind$}
562     \end{minipage}\\
563     64 & TAVE & $deg$ & Nrphys
564     &\begin{minipage}[t]{3in}
565     {Time-averaged $Temperature$}
566     \end{minipage}\\
567     65 & QAVE & $g/g$ & Nrphys
568     &\begin{minipage}[t]{3in}
569     {Time-averaged $Specific \, \, Humidity$}
570     \end{minipage}\\
571     66 & PAVE & $mb$ & 1
572     &\begin{minipage}[t]{3in}
573     {Time-averaged $p_{surf} - p_{top}$}
574     \end{minipage}\\
575     67 & QQAVE & $(m/sec)^2$ & Nrphys
576     &\begin{minipage}[t]{3in}
577     {Time-averaged $Turbulent Kinetic Energy$}
578     \end{minipage}\\
579     68 & SWGCLR & $Watts/m^2$ & 1
580     &\begin{minipage}[t]{3in}
581     {Net downward clearsky Shortwave flux at the ground}
582     \end{minipage}\\
583     69 & SDIAG1 & & 1
584     &\begin{minipage}[t]{3in}
585     {User-Defined Surface Diagnostic-1}
586     \end{minipage}\\
587     70 & SDIAG2 & & 1
588     &\begin{minipage}[t]{3in}
589     {User-Defined Surface Diagnostic-2}
590     \end{minipage}\\
591     71 & UDIAG1 & & Nrphys
592     &\begin{minipage}[t]{3in}
593     {User-Defined Upper-Air Diagnostic-1}
594     \end{minipage}\\
595     72 & UDIAG2 & & Nrphys
596     &\begin{minipage}[t]{3in}
597     {User-Defined Upper-Air Diagnostic-2}
598     \end{minipage}\\
599     73 & DIABU & $m/sec/day$ & Nrphys
600     &\begin{minipage}[t]{3in}
601     {Total Diabatic forcing on $u-Wind$}
602     \end{minipage}\\
603     74 & DIABV & $m/sec/day$ & Nrphys
604     &\begin{minipage}[t]{3in}
605     {Total Diabatic forcing on $v-Wind$}
606     \end{minipage}\\
607     75 & DIABT & $deg/day$ & Nrphys
608     &\begin{minipage}[t]{3in}
609     {Total Diabatic forcing on $Temperature$}
610     \end{minipage}\\
611     76 & DIABQ & $g/kg/day$ & Nrphys
612     &\begin{minipage}[t]{3in}
613     {Total Diabatic forcing on $Specific \, \, Humidity$}
614     \end{minipage}\\
615    
616     \end{tabular}
617     \vfill
618    
619     \newpage
620     \vspace*{\fill}
621     \begin{tabular}{lllll}
622     \hline\hline
623     N & NAME & UNITS & LEVELS & DESCRIPTION \\
624     \hline
625    
626     77 & VINTUQ & $m/sec \cdot g/kg$ & 1
627     &\begin{minipage}[t]{3in}
628     {Vertically integrated $u \, q$}
629     \end{minipage}\\
630     78 & VINTVQ & $m/sec \cdot g/kg$ & 1
631     &\begin{minipage}[t]{3in}
632     {Vertically integrated $v \, q$}
633     \end{minipage}\\
634     79 & VINTUT & $m/sec \cdot deg$ & 1
635     &\begin{minipage}[t]{3in}
636     {Vertically integrated $u \, T$}
637     \end{minipage}\\
638     80 & VINTVT & $m/sec \cdot deg$ & 1
639     &\begin{minipage}[t]{3in}
640     {Vertically integrated $v \, T$}
641     \end{minipage}\\
642     81 & CLDFRC & $0-1$ & 1
643     &\begin{minipage}[t]{3in}
644     {Total Cloud Fraction}
645     \end{minipage}\\
646     82 & QINT & $gm/cm^2$ & 1
647     &\begin{minipage}[t]{3in}
648     {Precipitable water}
649     \end{minipage}\\
650     83 & U2M & $m/sec$ & 1
651     &\begin{minipage}[t]{3in}
652     {U-Wind at 2 meters}
653     \end{minipage}\\
654     84 & V2M & $m/sec$ & 1
655     &\begin{minipage}[t]{3in}
656     {V-Wind at 2 meters}
657     \end{minipage}\\
658     85 & T2M & $deg$ & 1
659     &\begin{minipage}[t]{3in}
660     {Temperature at 2 meters}
661     \end{minipage}\\
662     86 & Q2M & $g/kg$ & 1
663     &\begin{minipage}[t]{3in}
664     {Specific Humidity at 2 meters}
665     \end{minipage}\\
666     87 & U10M & $m/sec$ & 1
667     &\begin{minipage}[t]{3in}
668     {U-Wind at 10 meters}
669     \end{minipage}\\
670     88 & V10M & $m/sec$ & 1
671     &\begin{minipage}[t]{3in}
672     {V-Wind at 10 meters}
673     \end{minipage}\\
674     89 & T10M & $deg$ & 1
675     &\begin{minipage}[t]{3in}
676     {Temperature at 10 meters}
677     \end{minipage}\\
678     90 & Q10M & $g/kg$ & 1
679     &\begin{minipage}[t]{3in}
680     {Specific Humidity at 10 meters}
681     \end{minipage}\\
682     91 & DTRAIN & $kg/m^2$ & Nrphys
683     &\begin{minipage}[t]{3in}
684     {Detrainment Cloud Mass Flux}
685     \end{minipage}\\
686     92 & QFILL & $g/kg/day$ & Nrphys
687     &\begin{minipage}[t]{3in}
688     {Filling of negative specific humidity}
689     \end{minipage}\\
690    
691     \end{tabular}
692     \vspace{1.5in}
693     \vfill
694    
695     \newpage
696    
697     \subsubsection{Diagnostic Description}
698    
699     In this section we list and describe the diagnostic quantities available within the
700     GCM. The diagnostics are listed in the order that they appear in the
701     Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
702     In all cases, each diagnostic as currently archived on the output datasets
703     is time-averaged over its diagnostic output frequency:
704    
705     \[
706     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
707     \]
708     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
709 molod 1.5 output frequency of the diagnostic, and $\Delta t$ is
710     the timestep over which the diagnostic is updated.
711 molod 1.1
712     {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
713    
714     The zonal wind stress is the turbulent flux of zonal momentum from
715     the surface. See section 3.3 for a description of the surface layer parameterization.
716     \[
717     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
718     \]
719     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
720     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
721     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
722     the zonal wind in the lowest model layer.
723     \\
724    
725    
726     {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
727    
728     The meridional wind stress is the turbulent flux of meridional momentum from
729     the surface. See section 3.3 for a description of the surface layer parameterization.
730     \[
731     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
732     \]
733     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
734     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
735     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
736     the meridional wind in the lowest model layer.
737     \\
738    
739     {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
740    
741     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
742     gradient of virtual potential temperature and the eddy exchange coefficient:
743     \[
744     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
745     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
746     \]
747     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
748     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
749     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
750     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
751     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
752     at the surface and at the bottom model level.
753     \\
754    
755    
756     {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
757    
758     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
759     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
760     \[
761     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
762     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
763     \]
764     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
765     the potential evapotranspiration actually evaporated, L is the latent
766     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
767     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
768     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
769     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
770     humidity at the surface and at the bottom model level, respectively.
771     \\
772    
773     {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
774    
775     Over sea ice there is an additional source of energy at the surface due to the heat
776     conduction from the relatively warm ocean through the sea ice. The heat conduction
777     through sea ice represents an additional energy source term for the ground temperature equation.
778    
779     \[
780     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
781     \]
782    
783     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
784     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
785     $T_g$ is the temperature of the sea ice.
786    
787     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
788     \\
789    
790    
791     {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
792    
793     \begin{eqnarray*}
794     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
795     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
796     \end{eqnarray*}
797     \\
798     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
799     $F_{LW}^\uparrow$ is
800     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
801     \\
802    
803     {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
804    
805     \begin{eqnarray*}
806     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
807     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
808     \end{eqnarray*}
809     \\
810     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
811     $F_{SW}^\downarrow$ is
812     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
813     \\
814    
815    
816     \noindent
817     {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
818    
819     \noindent
820     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
821     \[
822     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
823     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
824     \]
825     \\
826     where we used the hydrostatic equation:
827     \[
828     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
829     \]
830     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
831     indicate dominantly unstable shear, and large positive values indicate dominantly stable
832     stratification.
833     \\
834    
835     \noindent
836     {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
837    
838     \noindent
839     The surface exchange coefficient is obtained from the similarity functions for the stability
840     dependant flux profile relationships:
841     \[
842     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
843     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
844     { k \over { (\psi_{h} + \psi_{g}) } }
845     \]
846     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
847     viscous sublayer non-dimensional temperature or moisture change:
848     \[
849     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
850     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
851     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
852     \]
853     and:
854     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
855    
856     \noindent
857     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
858     the temperature and moisture gradients, specified differently for stable and unstable
859     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
860     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
861     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
862     (see diagnostic number 67), and the subscript ref refers to a reference value.
863     \\
864    
865     \noindent
866     {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
867    
868     \noindent
869     The surface exchange coefficient is obtained from the similarity functions for the stability
870     dependant flux profile relationships:
871     \[
872     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
873     \]
874     where $\psi_m$ is the surface layer non-dimensional wind shear:
875     \[
876     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
877     \]
878     \noindent
879     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
880     the temperature and moisture gradients, specified differently for stable and unstable layers
881     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
882     non-dimensional stability parameter, $u_*$ is the surface stress velocity
883     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
884     \\
885    
886     \noindent
887     {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
888    
889     \noindent
890     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
891     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
892     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
893     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
894     takes the form:
895     \[
896     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
897     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
898     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
899     \]
900     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
901     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
902     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
903     depth,
904     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
905     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
906     dimensionless buoyancy and wind shear
907     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
908     are functions of the Richardson number.
909    
910     \noindent
911     For the detailed equations and derivations of the modified level 2.5 closure scheme,
912     see Helfand and Labraga, 1988.
913    
914     \noindent
915     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
916     in units of $m/sec$, given by:
917     \[
918     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
919     \]
920     \noindent
921     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
922     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
923     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
924     and $W_s$ is the magnitude of the surface layer wind.
925     \\
926    
927     \noindent
928     {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
929    
930     \noindent
931     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
932     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
933     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
934     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
935     takes the form:
936     \[
937     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
938     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
939     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
940     \]
941     \noindent
942     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
943     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
944     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
945     depth,
946     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
947     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
948     dimensionless buoyancy and wind shear
949     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
950     are functions of the Richardson number.
951    
952     \noindent
953     For the detailed equations and derivations of the modified level 2.5 closure scheme,
954     see Helfand and Labraga, 1988.
955    
956     \noindent
957     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
958     in units of $m/sec$, given by:
959     \[
960     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
961     \]
962     \noindent
963     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
964     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
965     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
966     magnitude of the surface layer wind.
967     \\
968    
969     \noindent
970     {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
971    
972     \noindent
973     The tendency of U-Momentum due to turbulence is written:
974     \[
975     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
976     = {\pp{}{z} }{(K_m \pp{u}{z})}
977     \]
978    
979     \noindent
980     The Helfand and Labraga level 2.5 scheme models the turbulent
981     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
982     equation.
983    
984     \noindent
985     {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
986    
987     \noindent
988     The tendency of V-Momentum due to turbulence is written:
989     \[
990     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
991     = {\pp{}{z} }{(K_m \pp{v}{z})}
992     \]
993    
994     \noindent
995     The Helfand and Labraga level 2.5 scheme models the turbulent
996     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
997     equation.
998     \\
999    
1000     \noindent
1001     {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1002    
1003     \noindent
1004     The tendency of temperature due to turbulence is written:
1005     \[
1006     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1007     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1008     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1009     \]
1010    
1011     \noindent
1012     The Helfand and Labraga level 2.5 scheme models the turbulent
1013     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1014     equation.
1015     \\
1016    
1017     \noindent
1018     {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1019    
1020     \noindent
1021     The tendency of specific humidity due to turbulence is written:
1022     \[
1023     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1024     = {\pp{}{z} }{(K_h \pp{q}{z})}
1025     \]
1026    
1027     \noindent
1028     The Helfand and Labraga level 2.5 scheme models the turbulent
1029     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1030     equation.
1031     \\
1032    
1033     \noindent
1034     {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1035    
1036     \noindent
1037     \[
1038     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1039     \]
1040     where:
1041     \[
1042     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1043     \hspace{.4cm} and
1044     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1045     \]
1046     and
1047     \[
1048     \Gamma_s = g \eta \pp{s}{p}
1049     \]
1050    
1051     \noindent
1052     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1053     precipitation processes, or supersaturation rain.
1054     The summation refers to contributions from each cloud type called by RAS.
1055     The dry static energy is given
1056     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1057     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1058     the description of the convective parameterization. The fractional adjustment, or relaxation
1059     parameter, for each cloud type is given as $\alpha$, while
1060     $R$ is the rain re-evaporation adjustment.
1061     \\
1062    
1063     \noindent
1064     {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1065    
1066     \noindent
1067     \[
1068     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1069     \]
1070     where:
1071     \[
1072     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1073     \hspace{.4cm} and
1074     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1075     \]
1076     and
1077     \[
1078     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1079     \]
1080     \noindent
1081     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1082     precipitation processes, or supersaturation rain.
1083     The summation refers to contributions from each cloud type called by RAS.
1084     The dry static energy is given as $s$,
1085     the moist static energy is given as $h$,
1086     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1087     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1088     the description of the convective parameterization. The fractional adjustment, or relaxation
1089     parameter, for each cloud type is given as $\alpha$, while
1090     $R$ is the rain re-evaporation adjustment.
1091     \\
1092    
1093     \noindent
1094     {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1095    
1096     \noindent
1097     The net longwave heating rate is calculated as the vertical divergence of the
1098     net terrestrial radiative fluxes.
1099     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1100     longwave routine.
1101     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1102     For a given cloud fraction,
1103     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1104     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1105     for the upward and downward radiative fluxes.
1106     (see Section \ref{sec:fizhi:radcloud}).
1107     The cloudy-sky flux is then obtained as:
1108    
1109     \noindent
1110     \[
1111     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1112     \]
1113    
1114     \noindent
1115     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1116     net terrestrial radiative fluxes:
1117     \[
1118     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1119     \]
1120     or
1121     \[
1122     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1123     \]
1124    
1125     \noindent
1126     where $g$ is the accelation due to gravity,
1127     $c_p$ is the heat capacity of air at constant pressure,
1128     and
1129     \[
1130     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1131     \]
1132     \\
1133    
1134    
1135     \noindent
1136     {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1137    
1138     \noindent
1139     The net Shortwave heating rate is calculated as the vertical divergence of the
1140     net solar radiative fluxes.
1141     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1142     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1143     both CLMO (maximum overlap cloud fraction) and
1144     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1145     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1146     true time-averaged cloud fractions CLMO
1147     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1148     input at the top of the atmosphere.
1149    
1150     \noindent
1151     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1152     \[
1153     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1154     \]
1155     or
1156     \[
1157     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1158     \]
1159    
1160     \noindent
1161     where $g$ is the accelation due to gravity,
1162     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1163     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1164     \[
1165     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1166     \]
1167     \\
1168    
1169     \noindent
1170     {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1171    
1172     \noindent
1173     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1174     the vertical integral or total precipitable amount is given by:
1175     \[
1176     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1177     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1178     \]
1179     \\
1180    
1181     \noindent
1182     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1183     time step, scaled to $mm/day$.
1184     \\
1185    
1186     \noindent
1187     {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1188    
1189     \noindent
1190     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1191     the vertical integral or total precipitable amount is given by:
1192     \[
1193     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1194     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1195     \]
1196     \\
1197    
1198     \noindent
1199     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1200     time step, scaled to $mm/day$.
1201     \\
1202    
1203     \noindent
1204     {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1205    
1206     \noindent
1207     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1208     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1209    
1210     \[
1211     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1212     {\rho } {(- K_m \pp{U}{z})}
1213     \]
1214    
1215     \noindent
1216     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1217     \\
1218    
1219     \noindent
1220     {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1221    
1222     \noindent
1223     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1224     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1225    
1226     \[
1227     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1228     {\rho } {(- K_m \pp{V}{z})}
1229     \]
1230    
1231     \noindent
1232     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1233     \\
1234    
1235    
1236     \noindent
1237     {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1238    
1239     \noindent
1240     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1241     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1242    
1243     \noindent
1244     \[
1245     {\bf TTFLUX} = c_p {\rho }
1246     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1247     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1248     \]
1249    
1250     \noindent
1251     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1252     \\
1253    
1254    
1255     \noindent
1256     {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1257    
1258     \noindent
1259     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1260     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1261    
1262     \noindent
1263     \[
1264     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1265     {L {\rho }(- K_h \pp{q}{z})}
1266     \]
1267    
1268     \noindent
1269     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1270     \\
1271    
1272    
1273     \noindent
1274     {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1275    
1276     \noindent
1277     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1278     \[
1279     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1280     \]
1281    
1282     \noindent
1283     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1284     $z_0$ is the surface roughness.
1285    
1286     \noindent
1287     NOTE: CN is not available through model version 5.3, but is available in subsequent
1288     versions.
1289     \\
1290    
1291     \noindent
1292     {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1293    
1294     \noindent
1295     The surface wind speed is calculated for the last internal turbulence time step:
1296     \[
1297     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1298     \]
1299    
1300     \noindent
1301     where the subscript $Nrphys$ refers to the lowest model level.
1302     \\
1303    
1304     \noindent
1305     {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1306    
1307     \noindent
1308     The air/surface virtual temperature difference measures the stability of the surface layer:
1309     \[
1310     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1311     \]
1312     \noindent
1313     where
1314     \[
1315     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1316     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1317     \]
1318    
1319     \noindent
1320     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1321     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1322     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1323     refers to the surface.
1324     \\
1325    
1326    
1327     \noindent
1328     {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1329    
1330     \noindent
1331     The ground temperature equation is solved as part of the turbulence package
1332     using a backward implicit time differencing scheme:
1333     \[
1334     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1335     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1336     \]
1337    
1338     \noindent
1339     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1340     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1341     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1342     flux, and $C_g$ is the total heat capacity of the ground.
1343     $C_g$ is obtained by solving a heat diffusion equation
1344     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1345     \[
1346     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1347     { 86400. \over {2 \pi} } } \, \, .
1348     \]
1349     \noindent
1350     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1351     {cm \over {^oK}}$,
1352     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1353     by $2 \pi$ $radians/
1354     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1355     is a function of the ground wetness, $W$.
1356     \\
1357    
1358     \noindent
1359     {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1360    
1361     \noindent
1362     The surface temperature estimate is made by assuming that the model's lowest
1363     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1364     The surface temperature is therefore:
1365     \[
1366     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1367     \]
1368     \\
1369    
1370     \noindent
1371     {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1372    
1373     \noindent
1374     The change in surface temperature from one turbulence time step to the next, solved
1375     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1376     \[
1377     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1378     \]
1379    
1380     \noindent
1381     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1382     refers to the value at the previous turbulence time level.
1383     \\
1384    
1385     \noindent
1386     {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1387    
1388     \noindent
1389     The ground specific humidity is obtained by interpolating between the specific
1390     humidity at the lowest model level and the specific humidity of a saturated ground.
1391     The interpolation is performed using the potential evapotranspiration function:
1392     \[
1393     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1394     \]
1395    
1396     \noindent
1397     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1398     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1399     pressure.
1400     \\
1401    
1402     \noindent
1403     {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1404    
1405     \noindent
1406     The surface saturation specific humidity is the saturation specific humidity at
1407     the ground temprature and surface pressure:
1408     \[
1409     {\bf QS} = q^*(T_g,P_s)
1410     \]
1411     \\
1412    
1413     \noindent
1414     {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1415     radiation subroutine (deg)}
1416     \[
1417     {\bf TGRLW} = T_g(\lambda , \phi ,n)
1418     \]
1419     \noindent
1420     where $T_g$ is the model ground temperature at the current time step $n$.
1421     \\
1422    
1423    
1424     \noindent
1425     {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1426     \[
1427     {\bf ST4} = \sigma T^4
1428     \]
1429     \noindent
1430     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1431     \\
1432    
1433     \noindent
1434     {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1435     \[
1436     {\bf OLR} = F_{LW,top}^{NET}
1437     \]
1438     \noindent
1439     where top indicates the top of the first model layer.
1440     In the GCM, $p_{top}$ = 0.0 mb.
1441     \\
1442    
1443    
1444     \noindent
1445     {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1446     \[
1447     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1448     \]
1449     \noindent
1450     where top indicates the top of the first model layer.
1451     In the GCM, $p_{top}$ = 0.0 mb.
1452     \\
1453    
1454     \noindent
1455     {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1456    
1457     \noindent
1458     \begin{eqnarray*}
1459     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1460     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1461     \end{eqnarray*}
1462     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1463     $F(clearsky)_{LW}^\uparrow$ is
1464     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1465     \\
1466    
1467     \noindent
1468     {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1469    
1470     \noindent
1471     The net longwave heating rate is calculated as the vertical divergence of the
1472     net terrestrial radiative fluxes.
1473     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1474     longwave routine.
1475     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1476     For a given cloud fraction,
1477     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1478     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1479     for the upward and downward radiative fluxes.
1480     (see Section \ref{sec:fizhi:radcloud}).
1481     The cloudy-sky flux is then obtained as:
1482    
1483     \noindent
1484     \[
1485     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1486     \]
1487    
1488     \noindent
1489     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1490     vertical divergence of the
1491     clear-sky longwave radiative flux:
1492     \[
1493     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1494     \]
1495     or
1496     \[
1497     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1498     \]
1499    
1500     \noindent
1501     where $g$ is the accelation due to gravity,
1502     $c_p$ is the heat capacity of air at constant pressure,
1503     and
1504     \[
1505     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1506     \]
1507     \\
1508    
1509    
1510     \noindent
1511     {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1512     radiation subroutine (deg)}
1513     \[
1514     {\bf TLW} = T(\lambda , \phi ,level, n)
1515     \]
1516     \noindent
1517     where $T$ is the model temperature at the current time step $n$.
1518     \\
1519    
1520    
1521     \noindent
1522     {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1523     the Longwave radiation subroutine (kg/kg)}
1524     \[
1525     {\bf SHLW} = q(\lambda , \phi , level , n)
1526     \]
1527     \noindent
1528     where $q$ is the model specific humidity at the current time step $n$.
1529     \\
1530    
1531    
1532     \noindent
1533     {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1534     the Longwave radiation subroutine (kg/kg)}
1535     \[
1536     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1537     \]
1538     \noindent
1539     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1540     mean zonally averaged ozone data set.
1541     \\
1542    
1543    
1544     \noindent
1545     {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1546    
1547     \noindent
1548     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1549     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1550     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1551     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1552     \[
1553     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1554     \]
1555     \\
1556    
1557    
1558     {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1559    
1560     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1561     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1562     Radiation packages.
1563     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1564     \[
1565     {\bf CLDTOT} = F_{RAS} + F_{LS}
1566     \]
1567     \\
1568     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1569     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1570     \\
1571    
1572    
1573     \noindent
1574     {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1575    
1576     \noindent
1577     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1578     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1579     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1580     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1581     \[
1582     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1583     \]
1584     \\
1585    
1586     \noindent
1587     {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1588    
1589     \noindent
1590     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1591     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1592     Radiation algorithm. These are
1593     convective and large-scale clouds whose radiative characteristics are not
1594     assumed to be correlated in the vertical.
1595     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1596     \[
1597     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1598     \]
1599     \\
1600    
1601     \noindent
1602     {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1603     \[
1604     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1605     \]
1606     \noindent
1607     where $S_0$, is the extra-terrestial solar contant,
1608     $R_a$ is the earth-sun distance in Astronomical Units,
1609     and $cos \phi_z$ is the cosine of the zenith angle.
1610     It should be noted that {\bf RADSWT}, as well as
1611     {\bf OSR} and {\bf OSRCLR},
1612     are calculated at the top of the atmosphere (p=0 mb). However, the
1613     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1614     calculated at $p= p_{top}$ (0.0 mb for the GCM).
1615     \\
1616    
1617     \noindent
1618     {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1619    
1620     \noindent
1621     The surface evaporation is a function of the gradient of moisture, the potential
1622     evapotranspiration fraction and the eddy exchange coefficient:
1623     \[
1624     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1625     \]
1626     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1627     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1628     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1629     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1630     number 34) and at the bottom model level, respectively.
1631     \\
1632    
1633     \noindent
1634     {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1635    
1636     \noindent
1637     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1638     and Analysis forcing.
1639     \[
1640     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1641     \]
1642     \\
1643    
1644     \noindent
1645     {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1646    
1647     \noindent
1648     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1649     and Analysis forcing.
1650     \[
1651     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1652     \]
1653     \\
1654    
1655     \noindent
1656     {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1657    
1658     \noindent
1659     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1660     and Analysis forcing.
1661     \begin{eqnarray*}
1662     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1663     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1664     \end{eqnarray*}
1665     \\
1666    
1667     \noindent
1668     {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1669    
1670     \noindent
1671     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1672     and Analysis forcing.
1673     \[
1674     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1675     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1676     \]
1677     \\
1678    
1679     \noindent
1680     {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1681    
1682     \noindent
1683     The surface stress velocity, or the friction velocity, is the wind speed at
1684     the surface layer top impeded by the surface drag:
1685     \[
1686     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1687     C_u = {k \over {\psi_m} }
1688     \]
1689    
1690     \noindent
1691     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1692     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1693    
1694     \noindent
1695     {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1696    
1697     \noindent
1698     Over the land surface, the surface roughness length is interpolated to the local
1699     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1700     the roughness length is a function of the surface-stress velocity, $u_*$.
1701     \[
1702     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1703     \]
1704    
1705     \noindent
1706     where the constants are chosen to interpolate between the reciprocal relation of
1707     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1708     for moderate to large winds.
1709     \\
1710    
1711     \noindent
1712     {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1713    
1714     \noindent
1715     The fraction of time when turbulence is present is defined as the fraction of
1716     time when the turbulent kinetic energy exceeds some minimum value, defined here
1717     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1718     incremented. The fraction over the averaging interval is reported.
1719     \\
1720    
1721     \noindent
1722     {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1723    
1724     \noindent
1725     The depth of the PBL is defined by the turbulence parameterization to be the
1726     depth at which the turbulent kinetic energy reduces to ten percent of its surface
1727     value.
1728    
1729     \[
1730     {\bf PBL} = P_{PBL} - P_{surface}
1731     \]
1732    
1733     \noindent
1734     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1735     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1736     \\
1737    
1738     \noindent
1739     {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1740    
1741     \noindent
1742     The net Shortwave heating rate is calculated as the vertical divergence of the
1743     net solar radiative fluxes.
1744     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1745     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1746     both CLMO (maximum overlap cloud fraction) and
1747     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1748     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1749     true time-averaged cloud fractions CLMO
1750     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1751     input at the top of the atmosphere.
1752    
1753     \noindent
1754     The heating rate due to Shortwave Radiation under clear skies is defined as:
1755     \[
1756     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1757     \]
1758     or
1759     \[
1760     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1761     \]
1762    
1763     \noindent
1764     where $g$ is the accelation due to gravity,
1765     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1766     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1767     \[
1768     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1769     \]
1770     \\
1771    
1772     \noindent
1773     {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1774     \[
1775     {\bf OSR} = F_{SW,top}^{NET}
1776     \]
1777     \noindent
1778     where top indicates the top of the first model layer used in the shortwave radiation
1779     routine.
1780     In the GCM, $p_{SW_{top}}$ = 0 mb.
1781     \\
1782    
1783     \noindent
1784     {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1785     \[
1786     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1787     \]
1788     \noindent
1789     where top indicates the top of the first model layer used in the shortwave radiation
1790     routine.
1791     In the GCM, $p_{SW_{top}}$ = 0 mb.
1792     \\
1793    
1794    
1795     \noindent
1796     {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1797    
1798     \noindent
1799     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1800     \[
1801     {\bf CLDMAS} = \eta m_B
1802     \]
1803     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1804     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1805     description of the convective parameterization.
1806     \\
1807    
1808    
1809    
1810     \noindent
1811     {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1812    
1813     \noindent
1814     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1815     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1816     Zonal U-Wind which is archived on the Prognostic Output data stream.
1817     \[
1818     {\bf UAVE} = u(\lambda, \phi, level , t)
1819     \]
1820     \\
1821     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1822     \\
1823    
1824     \noindent
1825     {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1826    
1827     \noindent
1828     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1829     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1830     Meridional V-Wind which is archived on the Prognostic Output data stream.
1831     \[
1832     {\bf VAVE} = v(\lambda, \phi, level , t)
1833     \]
1834     \\
1835     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1836     \\
1837    
1838     \noindent
1839     {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1840    
1841     \noindent
1842     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1843     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1844     Temperature which is archived on the Prognostic Output data stream.
1845     \[
1846     {\bf TAVE} = T(\lambda, \phi, level , t)
1847     \]
1848     \\
1849    
1850     \noindent
1851     {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1852    
1853     \noindent
1854     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1855     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1856     Specific Humidity which is archived on the Prognostic Output data stream.
1857     \[
1858     {\bf QAVE} = q(\lambda, \phi, level , t)
1859     \]
1860     \\
1861    
1862     \noindent
1863     {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1864    
1865     \noindent
1866     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1867     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1868     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1869     \begin{eqnarray*}
1870     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1871     & = & p_s(\lambda, \phi, level , t) - p_T
1872     \end{eqnarray*}
1873     \\
1874    
1875    
1876     \noindent
1877     {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1878    
1879     \noindent
1880     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1881     produced by the GCM Turbulence parameterization over
1882     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1883     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1884     \[
1885     {\bf QQAVE} = qq(\lambda, \phi, level , t)
1886     \]
1887     \\
1888     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1889     \\
1890    
1891     \noindent
1892     {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1893    
1894     \noindent
1895     \begin{eqnarray*}
1896     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1897     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1898     \end{eqnarray*}
1899     \noindent
1900     \\
1901     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1902     $F(clearsky){SW}^\downarrow$ is
1903     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1904     the upward clearsky Shortwave flux.
1905     \\
1906    
1907     \noindent
1908     {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1909    
1910     \noindent
1911     The GCM provides Users with a built-in mechanism for archiving user-defined
1912     diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1913     diagnostic counters and pointers located in COMMON /DIAGP/,
1914     must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1915     A convenient method for incorporating all necessary COMMON files is to
1916     include the GCM {\em vstate.com} file in the routine which employs the
1917     user-defined diagnostics.
1918    
1919     \noindent
1920     In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1921     the QDIAG array with the desired quantity within the User's
1922     application program or within modified GCM subroutines, as well as increment
1923     the diagnostic counter at the time when the diagnostic is updated.
1924     The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1925     automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1926     diagnostic has been enabled.
1927     The syntax for its use is given by
1928     \begin{verbatim}
1929     do j=1,jm
1930     do i=1,im
1931     qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1932     enddo
1933     enddo
1934    
1935     NSDIAG1 = NSDIAG1 + 1
1936     \end{verbatim}
1937     The diagnostics defined in this manner will automatically be archived by the output routines.
1938     \\
1939    
1940     \noindent
1941     {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1942    
1943     \noindent
1944     The GCM provides Users with a built-in mechanism for archiving user-defined
1945     diagnostics. For a complete description refer to Diagnostic \#84.
1946     The syntax for using the surface SDIAG2 diagnostic is given by
1947     \begin{verbatim}
1948     do j=1,jm
1949     do i=1,im
1950     qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1951     enddo
1952     enddo
1953    
1954     NSDIAG2 = NSDIAG2 + 1
1955     \end{verbatim}
1956     The diagnostics defined in this manner will automatically be archived by the output routines.
1957     \\
1958    
1959     \noindent
1960     {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1961    
1962     \noindent
1963     The GCM provides Users with a built-in mechanism for archiving user-defined
1964     diagnostics. For a complete description refer to Diagnostic \#84.
1965     The syntax for using the upper-air UDIAG1 diagnostic is given by
1966     \begin{verbatim}
1967     do L=1,Nrphys
1968     do j=1,jm
1969     do i=1,im
1970     qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1971     enddo
1972     enddo
1973     enddo
1974    
1975     NUDIAG1 = NUDIAG1 + 1
1976     \end{verbatim}
1977     The diagnostics defined in this manner will automatically be archived by the
1978     output programs.
1979     \\
1980    
1981     \noindent
1982     {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1983    
1984     \noindent
1985     The GCM provides Users with a built-in mechanism for archiving user-defined
1986     diagnostics. For a complete description refer to Diagnostic \#84.
1987     The syntax for using the upper-air UDIAG2 diagnostic is given by
1988     \begin{verbatim}
1989     do L=1,Nrphys
1990     do j=1,jm
1991     do i=1,im
1992     qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1993     enddo
1994     enddo
1995     enddo
1996    
1997     NUDIAG2 = NUDIAG2 + 1
1998     \end{verbatim}
1999     The diagnostics defined in this manner will automatically be archived by the
2000     output programs.
2001     \\
2002    
2003    
2004     \noindent
2005     {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2006    
2007     \noindent
2008     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2009     and the Analysis forcing.
2010     \[
2011     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2012     \]
2013     \\
2014    
2015     \noindent
2016     {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2017    
2018     \noindent
2019     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2020     and the Analysis forcing.
2021     \[
2022     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2023     \]
2024     \\
2025    
2026     \noindent
2027     {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2028    
2029     \noindent
2030     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2031     and the Analysis forcing.
2032     \begin{eqnarray*}
2033     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2034     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2035     \end{eqnarray*}
2036     \\
2037     If we define the time-tendency of Temperature due to Diabatic processes as
2038     \begin{eqnarray*}
2039     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2040     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2041     \end{eqnarray*}
2042     then, since there are no surface pressure changes due to Diabatic processes, we may write
2043     \[
2044     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2045     \]
2046     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2047     \[
2048     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2049     \]
2050     \\
2051    
2052     \noindent
2053     {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2054    
2055     \noindent
2056     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2057     and the Analysis forcing.
2058     \[
2059     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2060     \]
2061     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2062     \[
2063     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2064     \]
2065     then, since there are no surface pressure changes due to Diabatic processes, we may write
2066     \[
2067     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2068     \]
2069     Thus, {\bf DIABQ} may be written as
2070     \[
2071     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2072     \]
2073     \\
2074    
2075     \noindent
2076     {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2077    
2078     \noindent
2079     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2080     $u q$ over the depth of the atmosphere at each model timestep,
2081     and dividing by the total mass of the column.
2082     \[
2083     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2084     \]
2085     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2086     \[
2087     {\bf VINTUQ} = { \int_0^1 u q dp }
2088     \]
2089     \\
2090    
2091    
2092     \noindent
2093     {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2094    
2095     \noindent
2096     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2097     $v q$ over the depth of the atmosphere at each model timestep,
2098     and dividing by the total mass of the column.
2099     \[
2100     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2101     \]
2102     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2103     \[
2104     {\bf VINTVQ} = { \int_0^1 v q dp }
2105     \]
2106     \\
2107    
2108    
2109     \noindent
2110     {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2111    
2112     \noindent
2113     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2114     $u T$ over the depth of the atmosphere at each model timestep,
2115     and dividing by the total mass of the column.
2116     \[
2117     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2118     \]
2119     Or,
2120     \[
2121     {\bf VINTUT} = { \int_0^1 u T dp }
2122     \]
2123     \\
2124    
2125     \noindent
2126     {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2127    
2128     \noindent
2129     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2130     $v T$ over the depth of the atmosphere at each model timestep,
2131     and dividing by the total mass of the column.
2132     \[
2133     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2134     \]
2135     Using $\rho \delta z = -{\delta p \over g} $, we have
2136     \[
2137     {\bf VINTVT} = { \int_0^1 v T dp }
2138     \]
2139     \\
2140    
2141     \noindent
2142     {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2143    
2144     If we define the
2145     time-averaged random and maximum overlapped cloudiness as CLRO and
2146     CLMO respectively, then the probability of clear sky associated
2147     with random overlapped clouds at any level is (1-CLRO) while the probability of
2148     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2149     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2150     the total cloud fraction at each level may be obtained by
2151     1-(1-CLRO)*(1-CLMO).
2152    
2153     At any given level, we may define the clear line-of-site probability by
2154     appropriately accounting for the maximum and random overlap
2155     cloudiness. The clear line-of-site probability is defined to be
2156     equal to the product of the clear line-of-site probabilities
2157     associated with random and maximum overlap cloudiness. The clear
2158     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2159     from the current pressure $p$
2160     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2161     is simply 1.0 minus the largest maximum overlap cloud value along the
2162     line-of-site, ie.
2163    
2164     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2165    
2166     Thus, even in the time-averaged sense it is assumed that the
2167     maximum overlap clouds are correlated in the vertical. The clear
2168     line-of-site probability associated with random overlap clouds is
2169     defined to be the product of the clear sky probabilities at each
2170     level along the line-of-site, ie.
2171    
2172     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2173    
2174     The total cloud fraction at a given level associated with a line-
2175     of-site calculation is given by
2176    
2177     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2178     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2179    
2180    
2181     \noindent
2182     The 2-dimensional net cloud fraction as seen from the top of the
2183     atmosphere is given by
2184     \[
2185     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2186     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2187     \]
2188     \\
2189     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2190    
2191    
2192     \noindent
2193     {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2194    
2195     \noindent
2196     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2197     given by:
2198     \begin{eqnarray*}
2199     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2200     & = & {\pi \over g} \int_0^1 q dp
2201     \end{eqnarray*}
2202     where we have used the hydrostatic relation
2203     $\rho \delta z = -{\delta p \over g} $.
2204     \\
2205    
2206    
2207     \noindent
2208     {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2209    
2210     \noindent
2211     The u-wind at the 2-meter depth is determined from the similarity theory:
2212     \[
2213     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2214     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2215     \]
2216    
2217     \noindent
2218     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2219     $sl$ refers to the height of the top of the surface layer. If the roughness height
2220     is above two meters, ${\bf U2M}$ is undefined.
2221     \\
2222    
2223     \noindent
2224     {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2225    
2226     \noindent
2227     The v-wind at the 2-meter depth is a determined from the similarity theory:
2228     \[
2229     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2230     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2231     \]
2232    
2233     \noindent
2234     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2235     $sl$ refers to the height of the top of the surface layer. If the roughness height
2236     is above two meters, ${\bf V2M}$ is undefined.
2237     \\
2238    
2239     \noindent
2240     {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2241    
2242     \noindent
2243     The temperature at the 2-meter depth is a determined from the similarity theory:
2244     \[
2245     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2246     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2247     (\theta_{sl} - \theta_{surf}))
2248     \]
2249     where:
2250     \[
2251     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2252     \]
2253    
2254     \noindent
2255     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2256     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2257     $sl$ refers to the height of the top of the surface layer. If the roughness height
2258     is above two meters, ${\bf T2M}$ is undefined.
2259     \\
2260    
2261     \noindent
2262     {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2263    
2264     \noindent
2265     The specific humidity at the 2-meter depth is determined from the similarity theory:
2266     \[
2267     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2268     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2269     (q_{sl} - q_{surf}))
2270     \]
2271     where:
2272     \[
2273     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2274     \]
2275    
2276     \noindent
2277     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2278     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2279     $sl$ refers to the height of the top of the surface layer. If the roughness height
2280     is above two meters, ${\bf Q2M}$ is undefined.
2281     \\
2282    
2283     \noindent
2284     {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2285    
2286     \noindent
2287     The u-wind at the 10-meter depth is an interpolation between the surface wind
2288     and the model lowest level wind using the ratio of the non-dimensional wind shear
2289     at the two levels:
2290     \[
2291     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2292     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2293     \]
2294    
2295     \noindent
2296     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2297     $sl$ refers to the height of the top of the surface layer.
2298     \\
2299    
2300     \noindent
2301     {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2302    
2303     \noindent
2304     The v-wind at the 10-meter depth is an interpolation between the surface wind
2305     and the model lowest level wind using the ratio of the non-dimensional wind shear
2306     at the two levels:
2307     \[
2308     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2309     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2310     \]
2311    
2312     \noindent
2313     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2314     $sl$ refers to the height of the top of the surface layer.
2315     \\
2316    
2317     \noindent
2318     {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2319    
2320     \noindent
2321     The temperature at the 10-meter depth is an interpolation between the surface potential
2322     temperature and the model lowest level potential temperature using the ratio of the
2323     non-dimensional temperature gradient at the two levels:
2324     \[
2325     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2326     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2327     (\theta_{sl} - \theta_{surf}))
2328     \]
2329     where:
2330     \[
2331     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2332     \]
2333    
2334     \noindent
2335     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2336     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2337     $sl$ refers to the height of the top of the surface layer.
2338     \\
2339    
2340     \noindent
2341     {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2342    
2343     \noindent
2344     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2345     humidity and the model lowest level specific humidity using the ratio of the
2346     non-dimensional temperature gradient at the two levels:
2347     \[
2348     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2349     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2350     (q_{sl} - q_{surf}))
2351     \]
2352     where:
2353     \[
2354     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2355     \]
2356    
2357     \noindent
2358     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2359     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2360     $sl$ refers to the height of the top of the surface layer.
2361     \\
2362    
2363     \noindent
2364     {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2365    
2366     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2367     \[
2368     {\bf DTRAIN} = \eta_{r_D}m_B
2369     \]
2370     \noindent
2371     where $r_D$ is the detrainment level,
2372     $m_B$ is the cloud base mass flux, and $\eta$
2373     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2374     \\
2375    
2376     \noindent
2377     {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2378    
2379     \noindent
2380     Due to computational errors associated with the numerical scheme used for
2381     the advection of moisture, negative values of specific humidity may be generated. The
2382     specific humidity is checked for negative values after every dynamics timestep. If negative
2383     values have been produced, a filling algorithm is invoked which redistributes moisture from
2384     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2385     to eliminate negative specific humidity, scaled to a per-day rate:
2386     \[
2387     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2388     \]
2389     where
2390     \[
2391     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2392     \]
2393    
2394     \subsection{Dos and Donts}
2395    
2396     \subsection{Diagnostics Reference}
2397    

  ViewVC Help
Powered by ViewVC 1.1.22