/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Thu Oct 28 22:41:16 2004 UTC (20 years, 8 months ago) by molod
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.7: +585 -71 lines
File MIME type: application/x-tex
Completed Diagnostics Menu Entries

1 edhill 1.2 \section{Diagnostics--A Flexible Infrastructure}
2     \label{sec:pkg:diagnostics}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_diagnostics: -->
5     \end{rawhtml}
6 molod 1.1
7     \subsection{Introduction}
8    
9 molod 1.7 \noindent
10 molod 1.5 This section of the documentation describes the Diagnostics package available within
11 molod 1.7 the GCM. A large selection of model diagnostics is available for output.
12     In addition to the diagnostic quantities pre-defined in the GCM, there exists
13     the option, in any experiment, to define a new diagnostic quantity and include it
14     as part of the diagnostic output with the addition of a single subroutine call in the
15     routine where the field is computed. As a matter of philosophy, no diagnostic is enabled
16     as default, thus each user must specify the exact diagnostic information required for an
17     experiment. This is accomplished by enabling the specific diagnostic of interest cataloged
18     in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling
19     diagnostic output and defining new diagnostic quantities are found in Section
20     \ref{sec:diagnostics:usersguide} of this document.
21    
22     \noindent
23     The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within
24     the GCM. Once a diagnostic is enabled, the GCM will continually increment an array
25     specifically allocated for that diagnostic whenever the appropriate quantity is computed.
26     A counter is defined which records how many times each diagnostic quantity has been
27     incremented. Several special diagnostics are included in the menu. Quantities refered to
28     as ``Counter Diagnostics'', are defined for selected diagnostics which record the
29     frequency at which a diagnostic is incremented separately for each model grid location.
30     Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate
31     defining new diagnostics for a particular experiment.
32 molod 1.1
33     \subsection{Equations}
34     Not relevant.
35    
36     \subsection{Key Subroutines and Parameters}
37     \label{sec:diagnostics:diagover}
38    
39 molod 1.7 \noindent
40     The diagnostics are computed at various times and places within the GCM. Because the
41     MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,
42     corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,
43     while others are components of vectors. An internal array is defined which contains
44     information concerning various grid attributes of each diagnostic. The GDIAG
45     array (in common block \\diagnostics in file diagnostics.h) is internally defined as a
46     character*8 variable, and is equivalenced to a character*1 "parse" array in output in
47     order to extract the grid-attribute information. The GDIAG array is described in
48     Table \ref{tab:diagnostics:gdiag.tabl}.
49 molod 1.1
50     \begin{table}
51     \caption{Diagnostic Parsing Array}
52     \label{tab:diagnostics:gdiag.tabl}
53     \begin{center}
54     \begin{tabular}{ |c|c|l| }
55     \hline
56     \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57     \hline
58     \hline
59     Array & Value & Description \\
60     \hline
61     parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62     & $\rightarrow$ U & U-vector component Diagnostic \\
63     & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64     parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65     & $\rightarrow$ V & C-Grid V-Point \\
66     & $\rightarrow$ M & C-Grid Mass Point \\
67 molod 1.3 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
68     parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
69 molod 1.1 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
70     parse(5) & $\rightarrow$ C & Counter Diagnostic \\
71     & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
72     parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
73     & & vector or counter component mate \\ \hline
74     \end{tabular}
75     \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
76     \end{center}
77     \end{table}
78    
79 molod 1.7
80     \noindent
81 molod 1.1 As an example, consider a diagnostic whose associated GDIAG parameter is equal
82 molod 1.3 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
83     U-vector component located at the C-grid U-point.
84 molod 1.1 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
85    
86 molod 1.7
87     \noindent
88 molod 1.1 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
89 molod 1.7 C-grid location, etc.) defined internally. The Output routines use this information
90     in order to determine what type of transformations need to be performed. Any
91     interpolations are done at the time of output rather than during each model step.
92     In this way the User has flexibility in determining the type of gridded data which
93     is output.
94    
95 molod 1.1
96 molod 1.7 \noindent
97 molod 1.1 There are several utilities within the GCM available to users to enable, disable,
98 molod 1.5 clear, write and retrieve model diagnostics, and may be called from any routine.
99     The available utilities and the CALL sequences are listed below.
100 molod 1.1
101    
102 molod 1.7 \noindent
103     {\bf fill\_diagnostics}: This routine will increment the specified diagnostic
104     quantity with a field sent through the argument list.
105    
106    
107     \noindent
108     \begin{tabbing}
109     XXXXXXXXX\=XXXXXX\= \kill
110     \> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\
111     bibjflg, bi, bj, arrayin) \\
112     \\
113     where \> myThid \>= Current Process(or) \\
114     \> chardiag \>= Character *8 expression for diag to fill \\
115     \> levflg \>= Integer flag for vertical levels: \\
116     \> \> 0 indicates multiple levels incremented in qdiag \\
117     \> \> non-0 (any integer) - WHICH single level to increment. \\
118     \> \> negative integer - the input data array is single-leveled \\
119     \> \> positive integer - the input data array is multi-leveled \\
120     \> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\
121     \> \> positive: fill in "nlevs" levels in the same order as \\
122     \> \> the input array \\
123     \> \> negative: fill in -nlevs levels in reverse order. \\
124     \> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\
125     \> \> 0 indicates that the bi-bj loop must be done here \\
126     \> \> 1 indicates that the bi-bj loop is done OUTSIDE \\
127     \> \> 2 indicates that the bi-bj loop is done OUTSIDE \\
128     \> \> AND that we have been sent a local array \\
129     \> \> 3 indicates that the bi-bj loop is done OUTSIDE \\
130     \> \> AND that we have been sent a local array \\
131     \> \> AND that the array has the shadow regions \\
132     \> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\
133     \> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\
134     \> arrayin \>= Field to increment diagnostics array \\
135     \end{tabbing}
136    
137    
138     \noindent
139 molod 1.5 {\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning
140     that space is allocated for the diagnostic and the model routines will increment the
141     diagnostic value during execution. This routine is the underlying interface
142 molod 1.1 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
143     number from the menu, and its calling sequence is given by:
144    
145 molod 1.7 \noindent
146 molod 1.1 \begin{tabbing}
147     XXXXXXXXX\=XXXXXX\= \kill
148 molod 1.5 \> call setdiag (num) \\
149 molod 1.1 \\
150 molod 1.5 where \> num \>= Diagnostic number from menu \\
151 molod 1.1 \end{tabbing}
152    
153 molod 1.7 \noindent
154 molod 1.5 {\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine
155     is particulary useful when called from a user output routine, although it can be called
156     from any routine. This routine returns the time-averaged value of the diagnostic by
157     dividing the current accumulated diagnostic value by its corresponding counter. This
158     routine does not change the value of the diagnostic itself, that is, it does not replace
159     the diagnostic with its time-average. The calling sequence for this routine is givin by:
160 molod 1.1
161 molod 1.7 \noindent
162 molod 1.1 \begin{tabbing}
163     XXXXXXXXX\=XXXXXX\= \kill
164 molod 1.5 \> call getdiag (lev,num,qtmp,undef) \\
165 molod 1.1 \\
166 molod 1.5 where \> lev \>= Model Level at which the diagnostic is desired \\
167     \> num \>= Diagnostic number from menu \\
168     \> qtmp \>= Time-Averaged Diagnostic Output \\
169     \> undef \>= Fill value to be used when diagnostic is undefined \\
170 molod 1.1 \end{tabbing}
171    
172 molod 1.7 \noindent
173 molod 1.5 {\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is
174     particularly useful when called from user output routines to re-initialize diagnostics
175     during the run. The calling sequence is:
176 molod 1.1
177 molod 1.7 \noindent
178 molod 1.1 \begin{tabbing}
179     XXXXXXXXX\=XXXXXX\= \kill
180 molod 1.5 \> call clrdiag (num) \\
181 molod 1.1 \\
182 molod 1.5 where \> num \>= Diagnostic number from menu \\
183 molod 1.1 \end{tabbing}
184    
185 molod 1.7 \noindent
186 molod 1.5 {\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning
187     that the diagnostic is no longer available to the user. The memory previously allocated
188     to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by:
189 molod 1.1
190 molod 1.7 \noindent
191 molod 1.1 \begin{tabbing}
192     XXXXXXXXX\=XXXXXX\= \kill
193 molod 1.5 \> call zapdiag (NUM) \\
194 molod 1.1 \\
195 molod 1.5 where \> num \>= Diagnostic number from menu \\
196 molod 1.1 \end{tabbing}
197    
198 molod 1.7
199     \subsection{Usage Notes}
200     \label{sec:diagnostics:usersguide}
201    
202     \noindent
203     We begin this section with a discussion on the manner in which computer
204     memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the
205     single diagnostic array QDIAG which is located in the file \\
206     \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.
207     and has the form:
208 molod 1.1
209 molod 1.3 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
210 molod 1.1
211 molod 1.7 \noindent
212     where numdiags is an Integer variable which should be set equal to the number of
213     enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions
214     of qdiag correspond to the horizontal dimension of a given diagnostic, while the third
215     dimension of qdiag is used to identify diagnostic fields and levels combined. In order
216     to minimize the memory requirement of the model for diagnostics, the default GCM
217     executable is compiled with room for only one horizontal diagnostic array, or with
218     numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic,
219 molod 1.3 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
220 molod 1.1 This can be accomplished by manually changing the parameter numdiags in the
221 molod 1.7 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}.
222     numdiags should be set greater than or equal to the sum of all the diagnostics activated
223     for output each multiplied by the number of levels defined for that diagnostic quantity.
224     This is illustrated in the example below:
225 molod 1.1
226 molod 1.7 \noindent
227 molod 1.3 To use the diagnostics package, other than enabling it in packages.conf
228     and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
229     must be supplied in the run directory called data.diagnostics. The namelist
230     will activate a user-defined list of diagnostics quantities to be computed,
231     specify the frequency of output, the number of levels, and the name of
232     up to 10 separate output files. A sample data.diagnostics namelist file:
233    
234 molod 1.7 \noindent
235     $\#$ Diagnostic Package Choices \\
236     $\&$diagnostics\_list \\
237     frequency(1) = 10, \ \\
238     levels(1,1) = 1.,2.,3.,4.,5., \ \\
239     fields(1,1) = 'UVEL ','VVEL ', \ \\
240     filename(1) = 'diagout1', \ \\
241     frequency(2) = 100, \ \\
242     levels(1,2) = 1.,2.,3.,4.,5., \ \\
243     fields(1,2) = 'THETA ','SALT ', \ \\
244     filename(2) = 'diagout2', \ \\
245     $\&$end \ \\
246 molod 1.3
247 molod 1.7 \noindent
248 molod 1.3 In this example, there are two output files that will be generated
249     for each tile and for each output time. The first set of output files
250 molod 1.7 has the prefix diagout1, does time averaging every 10 time steps
251     (frequency is 10), they will write fields which are multiple-level
252     fields and output levels 1-5. The names of diagnostics quantities are
253     UVEL and VVEL. The second set of output files
254 molod 1.3 has the prefix diagout2, does time averaging every 100 time steps,
255 molod 1.7 they include fields which are multiple-level fields, levels output are 1-5,
256 molod 1.3 and the names of diagnostics quantities are THETA and SALT.
257    
258 molod 1.7 \noindent
259     In order to define and include as part of the diagnostic output any field
260     that is desired for a particular experiment, two steps must be taken. The
261     first is to enable the ``User Diagnostic'' in data.diagnostics. This is
262     accomplished by setting one of the fields slots to either UDIAG1 through
263     UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level
264     fields. These are listed in the diagnostics menu. The second step is to
265     add a call to fill\_diagnostics from the subroutine in which the quantity
266     desired for diagnostic output is computed.
267    
268 molod 1.1 \newpage
269    
270     \subsubsection{GCM Diagnostic Menu}
271     \label{sec:diagnostics:menu}
272    
273     \begin{tabular}{lllll}
274     \hline\hline
275     N & NAME & UNITS & LEVELS & DESCRIPTION \\
276     \hline
277    
278     &\\
279     1 & UFLUX & $Newton/m^2$ & 1
280     &\begin{minipage}[t]{3in}
281     {Surface U-Wind Stress on the atmosphere}
282     \end{minipage}\\
283     2 & VFLUX & $Newton/m^2$ & 1
284     &\begin{minipage}[t]{3in}
285     {Surface V-Wind Stress on the atmosphere}
286     \end{minipage}\\
287     3 & HFLUX & $Watts/m^2$ & 1
288     &\begin{minipage}[t]{3in}
289     {Surface Flux of Sensible Heat}
290     \end{minipage}\\
291     4 & EFLUX & $Watts/m^2$ & 1
292     &\begin{minipage}[t]{3in}
293     {Surface Flux of Latent Heat}
294     \end{minipage}\\
295     5 & QICE & $Watts/m^2$ & 1
296     &\begin{minipage}[t]{3in}
297     {Heat Conduction through Sea-Ice}
298     \end{minipage}\\
299     6 & RADLWG & $Watts/m^2$ & 1
300     &\begin{minipage}[t]{3in}
301     {Net upward LW flux at the ground}
302     \end{minipage}\\
303     7 & RADSWG & $Watts/m^2$ & 1
304     &\begin{minipage}[t]{3in}
305     {Net downward SW flux at the ground}
306     \end{minipage}\\
307     8 & RI & $dimensionless$ & Nrphys
308     &\begin{minipage}[t]{3in}
309     {Richardson Number}
310     \end{minipage}\\
311     9 & CT & $dimensionless$ & 1
312     &\begin{minipage}[t]{3in}
313     {Surface Drag coefficient for T and Q}
314     \end{minipage}\\
315     10 & CU & $dimensionless$ & 1
316     &\begin{minipage}[t]{3in}
317     {Surface Drag coefficient for U and V}
318     \end{minipage}\\
319     11 & ET & $m^2/sec$ & Nrphys
320     &\begin{minipage}[t]{3in}
321     {Diffusivity coefficient for T and Q}
322     \end{minipage}\\
323     12 & EU & $m^2/sec$ & Nrphys
324     &\begin{minipage}[t]{3in}
325     {Diffusivity coefficient for U and V}
326     \end{minipage}\\
327     13 & TURBU & $m/sec/day$ & Nrphys
328     &\begin{minipage}[t]{3in}
329     {U-Momentum Changes due to Turbulence}
330     \end{minipage}\\
331     14 & TURBV & $m/sec/day$ & Nrphys
332     &\begin{minipage}[t]{3in}
333     {V-Momentum Changes due to Turbulence}
334     \end{minipage}\\
335     15 & TURBT & $deg/day$ & Nrphys
336     &\begin{minipage}[t]{3in}
337     {Temperature Changes due to Turbulence}
338     \end{minipage}\\
339     16 & TURBQ & $g/kg/day$ & Nrphys
340     &\begin{minipage}[t]{3in}
341     {Specific Humidity Changes due to Turbulence}
342     \end{minipage}\\
343     17 & MOISTT & $deg/day$ & Nrphys
344     &\begin{minipage}[t]{3in}
345     {Temperature Changes due to Moist Processes}
346     \end{minipage}\\
347     18 & MOISTQ & $g/kg/day$ & Nrphys
348     &\begin{minipage}[t]{3in}
349     {Specific Humidity Changes due to Moist Processes}
350     \end{minipage}\\
351     19 & RADLW & $deg/day$ & Nrphys
352     &\begin{minipage}[t]{3in}
353     {Net Longwave heating rate for each level}
354     \end{minipage}\\
355     20 & RADSW & $deg/day$ & Nrphys
356     &\begin{minipage}[t]{3in}
357     {Net Shortwave heating rate for each level}
358     \end{minipage}\\
359     21 & PREACC & $mm/day$ & 1
360     &\begin{minipage}[t]{3in}
361     {Total Precipitation}
362     \end{minipage}\\
363     22 & PRECON & $mm/day$ & 1
364     &\begin{minipage}[t]{3in}
365     {Convective Precipitation}
366     \end{minipage}\\
367     23 & TUFLUX & $Newton/m^2$ & Nrphys
368     &\begin{minipage}[t]{3in}
369     {Turbulent Flux of U-Momentum}
370     \end{minipage}\\
371     24 & TVFLUX & $Newton/m^2$ & Nrphys
372     &\begin{minipage}[t]{3in}
373     {Turbulent Flux of V-Momentum}
374     \end{minipage}\\
375     25 & TTFLUX & $Watts/m^2$ & Nrphys
376     &\begin{minipage}[t]{3in}
377     {Turbulent Flux of Sensible Heat}
378     \end{minipage}\\
379 molod 1.8 \end{tabular}
380    
381     \newpage
382     \vspace*{\fill}
383     \begin{tabular}{lllll}
384     \hline\hline
385     N & NAME & UNITS & LEVELS & DESCRIPTION \\
386     \hline
387    
388     &\\
389 molod 1.1 26 & TQFLUX & $Watts/m^2$ & Nrphys
390     &\begin{minipage}[t]{3in}
391     {Turbulent Flux of Latent Heat}
392     \end{minipage}\\
393     27 & CN & $dimensionless$ & 1
394     &\begin{minipage}[t]{3in}
395     {Neutral Drag Coefficient}
396     \end{minipage}\\
397     28 & WINDS & $m/sec$ & 1
398     &\begin{minipage}[t]{3in}
399     {Surface Wind Speed}
400     \end{minipage}\\
401     29 & DTSRF & $deg$ & 1
402     &\begin{minipage}[t]{3in}
403     {Air/Surface virtual temperature difference}
404     \end{minipage}\\
405     30 & TG & $deg$ & 1
406     &\begin{minipage}[t]{3in}
407     {Ground temperature}
408     \end{minipage}\\
409     31 & TS & $deg$ & 1
410     &\begin{minipage}[t]{3in}
411     {Surface air temperature (Adiabatic from lowest model layer)}
412     \end{minipage}\\
413     32 & DTG & $deg$ & 1
414     &\begin{minipage}[t]{3in}
415     {Ground temperature adjustment}
416     \end{minipage}\\
417    
418     33 & QG & $g/kg$ & 1
419     &\begin{minipage}[t]{3in}
420     {Ground specific humidity}
421     \end{minipage}\\
422     34 & QS & $g/kg$ & 1
423     &\begin{minipage}[t]{3in}
424     {Saturation surface specific humidity}
425     \end{minipage}\\
426     35 & TGRLW & $deg$ & 1
427     &\begin{minipage}[t]{3in}
428     {Instantaneous ground temperature used as input to the
429     Longwave radiation subroutine}
430     \end{minipage}\\
431     36 & ST4 & $Watts/m^2$ & 1
432     &\begin{minipage}[t]{3in}
433     {Upward Longwave flux at the ground ($\sigma T^4$)}
434     \end{minipage}\\
435     37 & OLR & $Watts/m^2$ & 1
436     &\begin{minipage}[t]{3in}
437     {Net upward Longwave flux at the top of the model}
438     \end{minipage}\\
439     38 & OLRCLR & $Watts/m^2$ & 1
440     &\begin{minipage}[t]{3in}
441     {Net upward clearsky Longwave flux at the top of the model}
442     \end{minipage}\\
443     39 & LWGCLR & $Watts/m^2$ & 1
444     &\begin{minipage}[t]{3in}
445     {Net upward clearsky Longwave flux at the ground}
446     \end{minipage}\\
447     40 & LWCLR & $deg/day$ & Nrphys
448     &\begin{minipage}[t]{3in}
449     {Net clearsky Longwave heating rate for each level}
450     \end{minipage}\\
451     41 & TLW & $deg$ & Nrphys
452     &\begin{minipage}[t]{3in}
453     {Instantaneous temperature used as input to the Longwave radiation
454     subroutine}
455     \end{minipage}\\
456     42 & SHLW & $g/g$ & Nrphys
457     &\begin{minipage}[t]{3in}
458     {Instantaneous specific humidity used as input to the Longwave radiation
459     subroutine}
460     \end{minipage}\\
461     43 & OZLW & $g/g$ & Nrphys
462     &\begin{minipage}[t]{3in}
463     {Instantaneous ozone used as input to the Longwave radiation
464     subroutine}
465     \end{minipage}\\
466     44 & CLMOLW & $0-1$ & Nrphys
467     &\begin{minipage}[t]{3in}
468     {Maximum overlap cloud fraction used in the Longwave radiation
469     subroutine}
470     \end{minipage}\\
471     45 & CLDTOT & $0-1$ & Nrphys
472     &\begin{minipage}[t]{3in}
473     {Total cloud fraction used in the Longwave and Shortwave radiation
474     subroutines}
475     \end{minipage}\\
476 molod 1.8 46 & LWGDOWN & $Watts/m^2$ & 1
477     &\begin{minipage}[t]{3in}
478     {Downwelling Longwave radiation at the ground}
479     \end{minipage}\\
480     47 & GWDT & $deg/day$ & Nrphys
481 molod 1.1 &\begin{minipage}[t]{3in}
482 molod 1.8 {Temperature tendency due to Gravity Wave Drag}
483 molod 1.1 \end{minipage}\\
484 molod 1.8 48 & RADSWT & $Watts/m^2$ & 1
485 molod 1.1 &\begin{minipage}[t]{3in}
486 molod 1.8 {Incident Shortwave radiation at the top of the atmosphere}
487 molod 1.1 \end{minipage}\\
488 molod 1.8 49 & TAUCLD & $per 100 mb$ & Nrphys
489 molod 1.1 &\begin{minipage}[t]{3in}
490 molod 1.8 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
491 molod 1.1 \end{minipage}\\
492 molod 1.8 50 & TAUCLDC & $Number$ & Nrphys
493 molod 1.1 &\begin{minipage}[t]{3in}
494 molod 1.8 {Cloud Optical Depth Counter}
495 molod 1.1 \end{minipage}\\
496     \end{tabular}
497     \vfill
498    
499     \newpage
500     \vspace*{\fill}
501     \begin{tabular}{lllll}
502     \hline\hline
503     N & NAME & UNITS & LEVELS & DESCRIPTION \\
504     \hline
505    
506     &\\
507 molod 1.8 51 & CLDLOW & $0-1$ & Nrphys
508     &\begin{minipage}[t]{3in}
509     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
510     \end{minipage}\\
511     52 & EVAP & $mm/day$ & 1
512     &\begin{minipage}[t]{3in}
513     {Surface evaporation}
514     \end{minipage}\\
515     53 & DPDT & $hPa/day$ & 1
516     &\begin{minipage}[t]{3in}
517     {Surface Pressure tendency}
518     \end{minipage}\\
519     54 & UAVE & $m/sec$ & Nrphys
520     &\begin{minipage}[t]{3in}
521     {Average U-Wind}
522     \end{minipage}\\
523     55 & VAVE & $m/sec$ & Nrphys
524     &\begin{minipage}[t]{3in}
525     {Average V-Wind}
526     \end{minipage}\\
527     56 & TAVE & $deg$ & Nrphys
528     &\begin{minipage}[t]{3in}
529     {Average Temperature}
530     \end{minipage}\\
531     57 & QAVE & $g/kg$ & Nrphys
532     &\begin{minipage}[t]{3in}
533     {Average Specific Humidity}
534     \end{minipage}\\
535     58 & OMEGA & $hPa/day$ & Nrphys
536     &\begin{minipage}[t]{3in}
537     {Vertical Velocity}
538     \end{minipage}\\
539     59 & DUDT & $m/sec/day$ & Nrphys
540 molod 1.1 &\begin{minipage}[t]{3in}
541     {Total U-Wind tendency}
542     \end{minipage}\\
543 molod 1.8 60 & DVDT & $m/sec/day$ & Nrphys
544 molod 1.1 &\begin{minipage}[t]{3in}
545     {Total V-Wind tendency}
546     \end{minipage}\\
547 molod 1.8 61 & DTDT & $deg/day$ & Nrphys
548 molod 1.1 &\begin{minipage}[t]{3in}
549     {Total Temperature tendency}
550     \end{minipage}\\
551 molod 1.8 62 & DQDT & $g/kg/day$ & Nrphys
552 molod 1.1 &\begin{minipage}[t]{3in}
553     {Total Specific Humidity tendency}
554     \end{minipage}\\
555 molod 1.8 63 & VORT & $10^{-4}/sec$ & Nrphys
556     &\begin{minipage}[t]{3in}
557     {Relative Vorticity}
558     \end{minipage}\\
559     64 & NOT USED & $$ &
560     &\begin{minipage}[t]{3in}
561     {}
562     \end{minipage}\\
563     65 & DTLS & $deg/day$ & Nrphys
564     &\begin{minipage}[t]{3in}
565     {Temperature tendency due to Stratiform Cloud Formation}
566     \end{minipage}\\
567     66 & DQLS & $g/kg/day$ & Nrphys
568     &\begin{minipage}[t]{3in}
569     {Specific Humidity tendency due to Stratiform Cloud Formation}
570     \end{minipage}\\
571     67 & USTAR & $m/sec$ & 1
572 molod 1.1 &\begin{minipage}[t]{3in}
573     {Surface USTAR wind}
574     \end{minipage}\\
575 molod 1.8 68 & Z0 & $m$ & 1
576 molod 1.1 &\begin{minipage}[t]{3in}
577     {Surface roughness}
578     \end{minipage}\\
579 molod 1.8 69 & FRQTRB & $0-1$ & Nrphys-1
580 molod 1.1 &\begin{minipage}[t]{3in}
581     {Frequency of Turbulence}
582     \end{minipage}\\
583 molod 1.8 70 & PBL & $mb$ & 1
584 molod 1.1 &\begin{minipage}[t]{3in}
585     {Planetary Boundary Layer depth}
586     \end{minipage}\\
587 molod 1.8 71 & SWCLR & $deg/day$ & Nrphys
588 molod 1.1 &\begin{minipage}[t]{3in}
589     {Net clearsky Shortwave heating rate for each level}
590     \end{minipage}\\
591 molod 1.8 72 & OSR & $Watts/m^2$ & 1
592 molod 1.1 &\begin{minipage}[t]{3in}
593     {Net downward Shortwave flux at the top of the model}
594     \end{minipage}\\
595 molod 1.8 73 & OSRCLR & $Watts/m^2$ & 1
596 molod 1.1 &\begin{minipage}[t]{3in}
597     {Net downward clearsky Shortwave flux at the top of the model}
598     \end{minipage}\\
599 molod 1.8 74 & CLDMAS & $kg / m^2$ & Nrphys
600 molod 1.1 &\begin{minipage}[t]{3in}
601     {Convective cloud mass flux}
602     \end{minipage}\\
603 molod 1.8 75 & UAVE & $m/sec$ & Nrphys
604 molod 1.1 &\begin{minipage}[t]{3in}
605     {Time-averaged $u-Wind$}
606     \end{minipage}\\
607 molod 1.8 \end{tabular}
608     \vfill
609    
610     \newpage
611     \vspace*{\fill}
612     \begin{tabular}{lllll}
613     \hline\hline
614     N & NAME & UNITS & LEVELS & DESCRIPTION \\
615     \hline
616    
617     &\\
618     76 & VAVE & $m/sec$ & Nrphys
619 molod 1.1 &\begin{minipage}[t]{3in}
620     {Time-averaged $v-Wind$}
621     \end{minipage}\\
622 molod 1.8 77 & TAVE & $deg$ & Nrphys
623 molod 1.1 &\begin{minipage}[t]{3in}
624     {Time-averaged $Temperature$}
625     \end{minipage}\\
626 molod 1.8 78 & QAVE & $g/g$ & Nrphys
627 molod 1.1 &\begin{minipage}[t]{3in}
628     {Time-averaged $Specific \, \, Humidity$}
629     \end{minipage}\\
630 molod 1.8 79 & RFT & $deg/day$ & Nrphys
631     &\begin{minipage}[t]{3in}
632     {Temperature tendency due Rayleigh Friction}
633     \end{minipage}\\
634     80 & PS & $mb$ & 1
635 molod 1.1 &\begin{minipage}[t]{3in}
636 molod 1.8 {Surface Pressure}
637 molod 1.1 \end{minipage}\\
638 molod 1.8 81 & QQAVE & $(m/sec)^2$ & Nrphys
639 molod 1.1 &\begin{minipage}[t]{3in}
640     {Time-averaged $Turbulent Kinetic Energy$}
641     \end{minipage}\\
642 molod 1.8 82 & SWGCLR & $Watts/m^2$ & 1
643 molod 1.1 &\begin{minipage}[t]{3in}
644     {Net downward clearsky Shortwave flux at the ground}
645     \end{minipage}\\
646 molod 1.8 83 & PAVE & $mb$ & 1
647     &\begin{minipage}[t]{3in}
648     {Time-averaged Surface Pressure}
649     \end{minipage}\\
650     84 & SDIAG1 & & 1
651 molod 1.1 &\begin{minipage}[t]{3in}
652     {User-Defined Surface Diagnostic-1}
653     \end{minipage}\\
654 molod 1.8 85 & SDIAG2 & & 1
655 molod 1.1 &\begin{minipage}[t]{3in}
656     {User-Defined Surface Diagnostic-2}
657     \end{minipage}\\
658 molod 1.8 86 & UDIAG1 & & Nrphys
659 molod 1.1 &\begin{minipage}[t]{3in}
660     {User-Defined Upper-Air Diagnostic-1}
661     \end{minipage}\\
662 molod 1.8 87 & UDIAG2 & & Nrphys
663 molod 1.1 &\begin{minipage}[t]{3in}
664     {User-Defined Upper-Air Diagnostic-2}
665     \end{minipage}\\
666 molod 1.8 88 & DIABU & $m/sec/day$ & Nrphys
667 molod 1.1 &\begin{minipage}[t]{3in}
668     {Total Diabatic forcing on $u-Wind$}
669     \end{minipage}\\
670 molod 1.8 89 & DIABV & $m/sec/day$ & Nrphys
671 molod 1.1 &\begin{minipage}[t]{3in}
672     {Total Diabatic forcing on $v-Wind$}
673     \end{minipage}\\
674 molod 1.8 90 & DIABT & $deg/day$ & Nrphys
675 molod 1.1 &\begin{minipage}[t]{3in}
676     {Total Diabatic forcing on $Temperature$}
677     \end{minipage}\\
678 molod 1.8 91 & DIABQ & $g/kg/day$ & Nrphys
679 molod 1.1 &\begin{minipage}[t]{3in}
680     {Total Diabatic forcing on $Specific \, \, Humidity$}
681     \end{minipage}\\
682 molod 1.8 92 & RFU & $m/sec/day$ & Nrphys
683     &\begin{minipage}[t]{3in}
684     {U-Wind tendency due to Rayleigh Friction}
685     \end{minipage}\\
686     93 & RFV & $m/sec/day$ & Nrphys
687     &\begin{minipage}[t]{3in}
688     {V-Wind tendency due to Rayleigh Friction}
689     \end{minipage}\\
690     94 & GWDU & $m/sec/day$ & Nrphys
691     &\begin{minipage}[t]{3in}
692     {U-Wind tendency due to Gravity Wave Drag}
693     \end{minipage}\\
694     95 & GWDU & $m/sec/day$ & Nrphys
695     &\begin{minipage}[t]{3in}
696     {V-Wind tendency due to Gravity Wave Drag}
697     \end{minipage}\\
698     96 & GWDUS & $N/m^2$ & 1
699     &\begin{minipage}[t]{3in}
700     {U-Wind Gravity Wave Drag Stress at Surface}
701     \end{minipage}\\
702     97 & GWDVS & $N/m^2$ & 1
703     &\begin{minipage}[t]{3in}
704     {V-Wind Gravity Wave Drag Stress at Surface}
705     \end{minipage}\\
706     98 & GWDUT & $N/m^2$ & 1
707     &\begin{minipage}[t]{3in}
708     {U-Wind Gravity Wave Drag Stress at Top}
709     \end{minipage}\\
710     99 & GWDVT & $N/m^2$ & 1
711     &\begin{minipage}[t]{3in}
712     {V-Wind Gravity Wave Drag Stress at Top}
713     \end{minipage}\\
714     100& LZRAD & $mg/kg$ & Nrphys
715     &\begin{minipage}[t]{3in}
716     {Estimated Cloud Liquid Water used in Radiation}
717     \end{minipage}\\
718 molod 1.1 \end{tabular}
719     \vfill
720    
721     \newpage
722     \vspace*{\fill}
723     \begin{tabular}{lllll}
724     \hline\hline
725     N & NAME & UNITS & LEVELS & DESCRIPTION \\
726     \hline
727    
728 molod 1.8 &\\
729     101& SLP & $mb$ & 1
730 molod 1.1 &\begin{minipage}[t]{3in}
731 molod 1.8 {Time-averaged Sea-level Pressure}
732 molod 1.1 \end{minipage}\\
733 molod 1.8 102& NOT USED & $$ &
734 molod 1.1 &\begin{minipage}[t]{3in}
735 molod 1.8 {}
736 molod 1.1 \end{minipage}\\
737 molod 1.8 103& NOT USED & $$ &
738 molod 1.1 &\begin{minipage}[t]{3in}
739 molod 1.8 {}
740 molod 1.1 \end{minipage}\\
741 molod 1.8 104& NOT USED & $$ &
742 molod 1.1 &\begin{minipage}[t]{3in}
743 molod 1.8 {}
744 molod 1.1 \end{minipage}\\
745 molod 1.8 105& NOT USED & $$ &
746     &\begin{minipage}[t]{3in}
747     {}
748     \end{minipage}\\
749     106& CLDFRC & $0-1$ & 1
750 molod 1.1 &\begin{minipage}[t]{3in}
751     {Total Cloud Fraction}
752     \end{minipage}\\
753 molod 1.8 107& TPW & $gm/cm^2$ & 1
754 molod 1.1 &\begin{minipage}[t]{3in}
755     {Precipitable water}
756     \end{minipage}\\
757 molod 1.8 108& U2M & $m/sec$ & 1
758 molod 1.1 &\begin{minipage}[t]{3in}
759     {U-Wind at 2 meters}
760     \end{minipage}\\
761 molod 1.8 109& V2M & $m/sec$ & 1
762 molod 1.1 &\begin{minipage}[t]{3in}
763     {V-Wind at 2 meters}
764     \end{minipage}\\
765 molod 1.8 110& T2M & $deg$ & 1
766 molod 1.1 &\begin{minipage}[t]{3in}
767     {Temperature at 2 meters}
768     \end{minipage}\\
769 molod 1.8 111& Q2M & $g/kg$ & 1
770 molod 1.1 &\begin{minipage}[t]{3in}
771     {Specific Humidity at 2 meters}
772     \end{minipage}\\
773 molod 1.8 112& U10M & $m/sec$ & 1
774 molod 1.1 &\begin{minipage}[t]{3in}
775     {U-Wind at 10 meters}
776     \end{minipage}\\
777 molod 1.8 113& V10M & $m/sec$ & 1
778 molod 1.1 &\begin{minipage}[t]{3in}
779     {V-Wind at 10 meters}
780     \end{minipage}\\
781 molod 1.8 114& T10M & $deg$ & 1
782 molod 1.1 &\begin{minipage}[t]{3in}
783     {Temperature at 10 meters}
784     \end{minipage}\\
785 molod 1.8 115& Q10M & $g/kg$ & 1
786 molod 1.1 &\begin{minipage}[t]{3in}
787     {Specific Humidity at 10 meters}
788     \end{minipage}\\
789 molod 1.8 116& DTRAIN & $kg/m^2$ & Nrphys
790 molod 1.1 &\begin{minipage}[t]{3in}
791     {Detrainment Cloud Mass Flux}
792     \end{minipage}\\
793 molod 1.8 117& QFILL & $g/kg/day$ & Nrphys
794 molod 1.1 &\begin{minipage}[t]{3in}
795     {Filling of negative specific humidity}
796     \end{minipage}\\
797 molod 1.8 118& NOT USED & $$ &
798     &\begin{minipage}[t]{3in}
799     {}
800     \end{minipage}\\
801     119& NOT USED & $$ &
802     &\begin{minipage}[t]{3in}
803     {}
804     \end{minipage}\\
805     120& SHAPU & $m/sec/day$ & Nrphys
806     &\begin{minipage}[t]{3in}
807     {U-Wind tendency due to Shapiro Filter}
808     \end{minipage}\\
809     121& SHAPV & $m/sec/day$ & Nrphys
810     &\begin{minipage}[t]{3in}
811     {V-Wind tendency due to Shapiro Filter}
812     \end{minipage}\\
813     122& SHAPT & $deg/day$ & Nrphys
814     &\begin{minipage}[t]{3in}
815     {Temperature tendency due Shapiro Filter}
816     \end{minipage}\\
817     123& SHAPQ & $g/kg/day$ & Nrphys
818     &\begin{minipage}[t]{3in}
819     {Specific Humidity tendency due to Shapiro Filter}
820     \end{minipage}\\
821     124& SDIAG3 & & 1
822     &\begin{minipage}[t]{3in}
823     {User-Defined Surface Diagnostic-3}
824     \end{minipage}\\
825     125& SDIAG4 & & 1
826     &\begin{minipage}[t]{3in}
827     {User-Defined Surface Diagnostic-4}
828     \end{minipage}\\
829     \end{tabular}
830     \vspace{1.5in}
831     \vfill
832    
833     \newpage
834     \vspace*{\fill}
835     \begin{tabular}{lllll}
836     \hline\hline
837     N & NAME & UNITS & LEVELS & DESCRIPTION \\
838     \hline
839    
840     &\\
841     126& SDIAG5 & & 1
842     &\begin{minipage}[t]{3in}
843     {User-Defined Surface Diagnostic-5}
844     \end{minipage}\\
845     127& SDIAG6 & & 1
846     &\begin{minipage}[t]{3in}
847     {User-Defined Surface Diagnostic-6}
848     \end{minipage}\\
849     128& SDIAG7 & & 1
850     &\begin{minipage}[t]{3in}
851     {User-Defined Surface Diagnostic-7}
852     \end{minipage}\\
853     129& SDIAG8 & & 1
854     &\begin{minipage}[t]{3in}
855     {User-Defined Surface Diagnostic-8}
856     \end{minipage}\\
857     130& SDIAG9 & & 1
858     &\begin{minipage}[t]{3in}
859     {User-Defined Surface Diagnostic-9}
860     \end{minipage}\\
861     131& SDIAG10 & & 1
862     &\begin{minipage}[t]{3in}
863     {User-Defined Surface Diagnostic-1-}
864     \end{minipage}\\
865     132& UDIAG3 & & Nrphys
866     &\begin{minipage}[t]{3in}
867     {User-Defined Multi-Level Diagnostic-3}
868     \end{minipage}\\
869     133& UDIAG4 & & Nrphys
870     &\begin{minipage}[t]{3in}
871     {User-Defined Multi-Level Diagnostic-4}
872     \end{minipage}\\
873     134& UDIAG5 & & Nrphys
874     &\begin{minipage}[t]{3in}
875     {User-Defined Multi-Level Diagnostic-5}
876     \end{minipage}\\
877     135& UDIAG6 & & Nrphys
878     &\begin{minipage}[t]{3in}
879     {User-Defined Multi-Level Diagnostic-6}
880     \end{minipage}\\
881     136& UDIAG7 & & Nrphys
882     &\begin{minipage}[t]{3in}
883     {User-Defined Multi-Level Diagnostic-7}
884     \end{minipage}\\
885     137& UDIAG8 & & Nrphys
886     &\begin{minipage}[t]{3in}
887     {User-Defined Multi-Level Diagnostic-8}
888     \end{minipage}\\
889     138& UDIAG9 & & Nrphys
890     &\begin{minipage}[t]{3in}
891     {User-Defined Multi-Level Diagnostic-9}
892     \end{minipage}\\
893     139& UDIAG10 & & Nrphys
894     &\begin{minipage}[t]{3in}
895     {User-Defined Multi-Level Diagnostic-10}
896     \end{minipage}\\
897     \end{tabular}
898     \vspace{1.5in}
899     \vfill
900    
901     \newpage
902     \vspace*{\fill}
903     \begin{tabular}{lllll}
904     \hline\hline
905     N & NAME & UNITS & LEVELS & DESCRIPTION \\
906     \hline
907    
908     &\\
909     238& ETAN & $(hPa,m)$ & 1
910     &\begin{minipage}[t]{3in}
911     {Perturbation of Surface (pressure, height)}
912     \end{minipage}\\
913     239& ETANSQ & $(hPa^2,m^2)$ & 1
914     &\begin{minipage}[t]{3in}
915     {Square of Perturbation of Surface (pressure, height)}
916     \end{minipage}\\
917     240& THETA & $deg K$ & Nr
918     &\begin{minipage}[t]{3in}
919     {Potential Temperature}
920     \end{minipage}\\
921     241& SALT & $g/kg$ & Nr
922     &\begin{minipage}[t]{3in}
923     {Salt (or Water Vapor Mixing Ratio)}
924     \end{minipage}\\
925     242& UVEL & $m/sec$ & Nr
926     &\begin{minipage}[t]{3in}
927     {U-Velocity}
928     \end{minipage}\\
929     243& VVEL & $m/sec$ & Nr
930     &\begin{minipage}[t]{3in}
931     {V-Velocity}
932     \end{minipage}\\
933     244& WVEL & $m/sec$ & Nr
934     &\begin{minipage}[t]{3in}
935     {Vertical-Velocity}
936     \end{minipage}\\
937     245& THETASQ & $deg^2$ & Nr
938     &\begin{minipage}[t]{3in}
939     {Square of Potential Temperature}
940     \end{minipage}\\
941     246& SALTSQ & $g^2/{kg}^2$ & Nr
942     &\begin{minipage}[t]{3in}
943     {Square of Salt (or Water Vapor Mixing Ratio)}
944     \end{minipage}\\
945     247& UVELSQ & $m^2/sec^2$ & Nr
946     &\begin{minipage}[t]{3in}
947     {Square of U-Velocity}
948     \end{minipage}\\
949     248& VVELSQ & $m^2/sec^2$ & Nr
950     &\begin{minipage}[t]{3in}
951     {Square of V-Velocity}
952     \end{minipage}\\
953     249& WVELSQ & $m^2/sec^2$ & Nr
954     &\begin{minipage}[t]{3in}
955     {Square of Vertical-Velocity}
956     \end{minipage}\\
957     250& UVELVVEL & $m^2/sec^2$ & Nr
958     &\begin{minipage}[t]{3in}
959     {Meridional Transport of Zonal Momentum}
960     \end{minipage}\\
961     \end{tabular}
962     \vspace{1.5in}
963     \vfill
964    
965     \newpage
966     \vspace*{\fill}
967     \begin{tabular}{lllll}
968     \hline\hline
969     N & NAME & UNITS & LEVELS & DESCRIPTION \\
970     \hline
971    
972     &\\
973     251& UVELMASS & $m/sec$ & Nr
974     &\begin{minipage}[t]{3in}
975     {Zonal Mass-Weighted Component of Velocity}
976     \end{minipage}\\
977     252& VVELMASS & $m/sec$ & Nr
978     &\begin{minipage}[t]{3in}
979     {Meridional Mass-Weighted Component of Velocity}
980     \end{minipage}\\
981     253& WVELMASS & $m/sec$ & Nr
982     &\begin{minipage}[t]{3in}
983     {Vertical Mass-Weighted Component of Velocity}
984     \end{minipage}\\
985     254& UTHMASS & $m-deg/sec$ & Nr
986     &\begin{minipage}[t]{3in}
987     {Zonal Mass-Weight Transp of Pot Temp}
988     \end{minipage}\\
989     255& VTHMASS & $m-deg/sec$ & Nr
990     &\begin{minipage}[t]{3in}
991     {Meridional Mass-Weight Transp of Pot Temp}
992     \end{minipage}\\
993     256& WTHMASS & $m-deg/sec$ & Nr
994     &\begin{minipage}[t]{3in}
995     {Vertical Mass-Weight Transp of Pot Temp}
996     \end{minipage}\\
997     257& USLTMASS & $m-kg/sec-kg$ & Nr
998     &\begin{minipage}[t]{3in}
999     {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1000     \end{minipage}\\
1001     258& VSLTMASS & $m-kg/sec-kg$ & Nr
1002     &\begin{minipage}[t]{3in}
1003     {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1004     \end{minipage}\\
1005     259& WSLTMASS & $m-kg/sec-kg$ & Nr
1006     &\begin{minipage}[t]{3in}
1007     {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1008     \end{minipage}\\
1009     260& UVELTH & $m-deg/sec$ & Nr
1010     &\begin{minipage}[t]{3in}
1011     {Zonal Transp of Pot Temp}
1012     \end{minipage}\\
1013     261& VVELTH & $m-deg/sec$ & Nr
1014     &\begin{minipage}[t]{3in}
1015     {Meridional Transp of Pot Temp}
1016     \end{minipage}\\
1017     262& WVELTH & $m-deg/sec$ & Nr
1018     &\begin{minipage}[t]{3in}
1019     {Vertical Transp of Pot Temp}
1020     \end{minipage}\\
1021     263& UVELSLT & $m-kg/sec-kg$ & Nr
1022     &\begin{minipage}[t]{3in}
1023     {Zonal Transp of Salt (or W.Vap Mix Rat.)}
1024     \end{minipage}\\
1025     264& VVELSLT & $m-kg/sec-kg$ & Nr
1026     &\begin{minipage}[t]{3in}
1027     {Meridional Transp of Salt (or W.Vap Mix Rat.)}
1028     \end{minipage}\\
1029     265& WVELSLT & $m-kg/sec-kg$ & Nr
1030     &\begin{minipage}[t]{3in}
1031     {Vertical Transp of Salt (or W.Vap Mix Rat.)}
1032     \end{minipage}\\
1033     266& UTRAC1 & $m-kg/sec-kg$ & Nr
1034     &\begin{minipage}[t]{3in}
1035     {Zonal Transp of Tracer 1}
1036     \end{minipage}\\
1037     267& VTRAC1 & $m-kg/sec-kg$ & Nr
1038     &\begin{minipage}[t]{3in}
1039     {Meridional Transp of Tracer 1}
1040     \end{minipage}\\
1041     268& WTRAC1 & $m-kg/sec-kg$ & Nr
1042     &\begin{minipage}[t]{3in}
1043     {Vertical Transp of Tracer 1}
1044     \end{minipage}\\
1045     269& UTRAC2 & $m-kg/sec-kg$ & Nr
1046     &\begin{minipage}[t]{3in}
1047     {Zonal Transp of Tracer 2}
1048     \end{minipage}\\
1049     270& VTRAC2 & $m-kg/sec-kg$ & Nr
1050     &\begin{minipage}[t]{3in}
1051     {Meridional Transp of Tracer 2}
1052     \end{minipage}\\
1053     271& WTRAC2 & $m-kg/sec-kg$ & Nr
1054     &\begin{minipage}[t]{3in}
1055     {Vertical Transp of Tracer 2}
1056     \end{minipage}\\
1057     272& UTRAC3 & $m-kg/sec-kg$ & Nr
1058     &\begin{minipage}[t]{3in}
1059     {Zonal Transp of Tracer 3}
1060     \end{minipage}\\
1061     273& VTRAC3 & $m-kg/sec-kg$ & Nr
1062     &\begin{minipage}[t]{3in}
1063     {Meridional Transp of Tracer 3}
1064     \end{minipage}\\
1065     274& WTRAC3 & $m-kg/sec-kg$ & Nr
1066     &\begin{minipage}[t]{3in}
1067     {Vertical Transp of Tracer 3}
1068     \end{minipage}\\
1069     275& WSLTMASS & $m-kg/sec-kg$ & Nr
1070     &\begin{minipage}[t]{3in}
1071     {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1072     \end{minipage}\\
1073     \end{tabular}
1074     \vspace{1.5in}
1075     \vfill
1076 molod 1.1
1077 molod 1.8 \newpage
1078     \vspace*{\fill}
1079     \begin{tabular}{lllll}
1080     \hline\hline
1081     N & NAME & UNITS & LEVELS & DESCRIPTION \\
1082     \hline
1083    
1084     &\\
1085     275& UTRAC4 & $m-kg/sec-kg$ & Nr
1086     &\begin{minipage}[t]{3in}
1087     {Zonal Transp of Tracer 4}
1088     \end{minipage}\\
1089     276& VTRAC4 & $m-kg/sec-kg$ & Nr
1090     &\begin{minipage}[t]{3in}
1091     {Meridional Transp of Tracer 4}
1092     \end{minipage}\\
1093     277& WTRAC4 & $m-kg/sec-kg$ & Nr
1094     &\begin{minipage}[t]{3in}
1095     {Vertical Transp of Tracer 4}
1096     \end{minipage}\\
1097     278& UTRAC5 & $m-kg/sec-kg$ & Nr
1098     &\begin{minipage}[t]{3in}
1099     {Zonal Transp of Tracer 5}
1100     \end{minipage}\\
1101     279& VTRAC5 & $m-kg/sec-kg$ & Nr
1102     &\begin{minipage}[t]{3in}
1103     {Meridional Transp of Tracer 5}
1104     \end{minipage}\\
1105     280& WTRAC5 & $m-kg/sec-kg$ & Nr
1106     &\begin{minipage}[t]{3in}
1107     {Vertical Transp of Tracer 5}
1108     \end{minipage}\\
1109     281& TRAC1 & $kg/kg$ & Nr
1110     &\begin{minipage}[t]{3in}
1111     {Mass-Weight Tracer 1}
1112     \end{minipage}\\
1113     282& TRAC2 & $kg/kg$ & Nr
1114     &\begin{minipage}[t]{3in}
1115     {Mass-Weight Tracer 2}
1116     \end{minipage}\\
1117     283& TRAC3 & $kg/kg$ & Nr
1118     &\begin{minipage}[t]{3in}
1119     {Mass-Weight Tracer 3}
1120     \end{minipage}\\
1121     284& TRAC4 & $kg/kg$ & Nr
1122     &\begin{minipage}[t]{3in}
1123     {Mass-Weight Tracer 4}
1124     \end{minipage}\\
1125     285& TRAC5 & $kg/kg$ & Nr
1126     &\begin{minipage}[t]{3in}
1127     {Mass-Weight Tracer 5}
1128     \end{minipage}\\
1129     286& DICBIOA & $mol/m3/s$ & Nr
1130     &\begin{minipage}[t]{3in}
1131     {Biological Productivity}
1132     \end{minipage}\\
1133     287& DICCARB & $mol eq/m3/s$ & Nr
1134     &\begin{minipage}[t]{3in}
1135     {Carbonate chg-biol prod and remin}
1136     \end{minipage}\\
1137     288& DICTFLX & $mol/m3/s$ & 1
1138     &\begin{minipage}[t]{3in}
1139     {Tendency of DIC due to air-sea exch}
1140     \end{minipage}\\
1141     289& DICOFLX & $mol/m3/s$ & 1
1142     &\begin{minipage}[t]{3in}
1143     {Tendency of O2 due to air-sea exch}
1144     \end{minipage}\\
1145     290& DICCFLX & $mol/m2/s$ & 1
1146     &\begin{minipage}[t]{3in}
1147     {Flux of CO2 - air-sea exch}
1148     \end{minipage}\\
1149     291& DICPCO2 & $atm$ & 1
1150     &\begin{minipage}[t]{3in}
1151     {Partial Pressure of CO2}
1152     \end{minipage}\\
1153     292& DICPHAV & $dimensionless$ & 1
1154     &\begin{minipage}[t]{3in}
1155     {Average pH}
1156     \end{minipage}\\
1157     293& DTCONV & $deg/sec$ & Nr
1158     &\begin{minipage}[t]{3in}
1159     {Temp Change due to Convection}
1160     \end{minipage}\\
1161     294& DQCONV & $g/kg/sec$ & Nr
1162     &\begin{minipage}[t]{3in}
1163     {Specific Humidity Change due to Convection}
1164     \end{minipage}\\
1165     295& RELHUM & $percent$ & Nr
1166     &\begin{minipage}[t]{3in}
1167     {Relative Humidity}
1168     \end{minipage}\\
1169     296& PRECLS & $g/m^2/sec$ & 1
1170     &\begin{minipage}[t]{3in}
1171     {Large Scale Precipitation}
1172     \end{minipage}\\
1173     297& ENPREC & $J/g$ & 1
1174     &\begin{minipage}[t]{3in}
1175     {Energy of Precipitation (snow, rain Temp)}
1176     \end{minipage}\\
1177     298& VISCA4 & $m^4/sec$ & 1
1178     &\begin{minipage}[t]{3in}
1179     {Biharmonic Viscosity Coefficient}
1180     \end{minipage}\\
1181     299& VISCAH & $m^2/sec$ & 1
1182     &\begin{minipage}[t]{3in}
1183     {Harmonic Viscosity Coefficient}
1184     \end{minipage}\\
1185     300& DRHODR & $kg/m^3/{r-unit}$ & Nr
1186     &\begin{minipage}[t]{3in}
1187     {Stratification: d.Sigma/dr}
1188     \end{minipage}\\
1189     \end{tabular}
1190     \vspace{1.5in}
1191     \vfill
1192    
1193     \newpage
1194     \vspace*{\fill}
1195     \begin{tabular}{lllll}
1196     \hline\hline
1197     N & NAME & UNITS & LEVELS & DESCRIPTION \\
1198     \hline
1199    
1200     &\\
1201     301& DETADT2 & ${r-unit}^2/s^2$ & 1
1202     &\begin{minipage}[t]{3in}
1203     {Square of Eta (Surf.P,SSH) Tendency}
1204     \end{minipage}\\
1205 molod 1.1 \end{tabular}
1206     \vspace{1.5in}
1207     \vfill
1208    
1209     \newpage
1210    
1211     \subsubsection{Diagnostic Description}
1212    
1213     In this section we list and describe the diagnostic quantities available within the
1214     GCM. The diagnostics are listed in the order that they appear in the
1215     Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
1216     In all cases, each diagnostic as currently archived on the output datasets
1217     is time-averaged over its diagnostic output frequency:
1218    
1219     \[
1220     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1221     \]
1222     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1223 molod 1.5 output frequency of the diagnostic, and $\Delta t$ is
1224     the timestep over which the diagnostic is updated.
1225 molod 1.1
1226     {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1227    
1228     The zonal wind stress is the turbulent flux of zonal momentum from
1229     the surface. See section 3.3 for a description of the surface layer parameterization.
1230     \[
1231     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1232     \]
1233     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1234     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1235     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1236     the zonal wind in the lowest model layer.
1237     \\
1238    
1239    
1240     {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1241    
1242     The meridional wind stress is the turbulent flux of meridional momentum from
1243     the surface. See section 3.3 for a description of the surface layer parameterization.
1244     \[
1245     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1246     \]
1247     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1248     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1249     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1250     the meridional wind in the lowest model layer.
1251     \\
1252    
1253     {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1254    
1255     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1256     gradient of virtual potential temperature and the eddy exchange coefficient:
1257     \[
1258     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1259     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1260     \]
1261     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1262     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1263     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1264     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1265     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1266     at the surface and at the bottom model level.
1267     \\
1268    
1269    
1270     {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1271    
1272     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1273     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1274     \[
1275     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1276     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1277     \]
1278     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1279     the potential evapotranspiration actually evaporated, L is the latent
1280     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1281     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1282     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1283     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1284     humidity at the surface and at the bottom model level, respectively.
1285     \\
1286    
1287     {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1288    
1289     Over sea ice there is an additional source of energy at the surface due to the heat
1290     conduction from the relatively warm ocean through the sea ice. The heat conduction
1291     through sea ice represents an additional energy source term for the ground temperature equation.
1292    
1293     \[
1294     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1295     \]
1296    
1297     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1298     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1299     $T_g$ is the temperature of the sea ice.
1300    
1301     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1302     \\
1303    
1304    
1305     {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1306    
1307     \begin{eqnarray*}
1308     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1309     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1310     \end{eqnarray*}
1311     \\
1312     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1313     $F_{LW}^\uparrow$ is
1314     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1315     \\
1316    
1317     {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1318    
1319     \begin{eqnarray*}
1320     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1321     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1322     \end{eqnarray*}
1323     \\
1324     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1325     $F_{SW}^\downarrow$ is
1326     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1327     \\
1328    
1329    
1330     \noindent
1331     {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
1332    
1333     \noindent
1334     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1335     \[
1336     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1337     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1338     \]
1339     \\
1340     where we used the hydrostatic equation:
1341     \[
1342     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1343     \]
1344     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1345     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1346     stratification.
1347     \\
1348    
1349     \noindent
1350     {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1351    
1352     \noindent
1353     The surface exchange coefficient is obtained from the similarity functions for the stability
1354     dependant flux profile relationships:
1355     \[
1356     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1357     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1358     { k \over { (\psi_{h} + \psi_{g}) } }
1359     \]
1360     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1361     viscous sublayer non-dimensional temperature or moisture change:
1362     \[
1363     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1364     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1365     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1366     \]
1367     and:
1368     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1369    
1370     \noindent
1371     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1372     the temperature and moisture gradients, specified differently for stable and unstable
1373     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1374     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1375     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1376     (see diagnostic number 67), and the subscript ref refers to a reference value.
1377     \\
1378    
1379     \noindent
1380     {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1381    
1382     \noindent
1383     The surface exchange coefficient is obtained from the similarity functions for the stability
1384     dependant flux profile relationships:
1385     \[
1386     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1387     \]
1388     where $\psi_m$ is the surface layer non-dimensional wind shear:
1389     \[
1390     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1391     \]
1392     \noindent
1393     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1394     the temperature and moisture gradients, specified differently for stable and unstable layers
1395     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1396     non-dimensional stability parameter, $u_*$ is the surface stress velocity
1397     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1398     \\
1399    
1400     \noindent
1401     {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1402    
1403     \noindent
1404     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1405     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1406     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1407     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1408     takes the form:
1409     \[
1410     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1411     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1412     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1413     \]
1414     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1415     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1416     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1417     depth,
1418     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1419     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1420     dimensionless buoyancy and wind shear
1421     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1422     are functions of the Richardson number.
1423    
1424     \noindent
1425     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1426     see Helfand and Labraga, 1988.
1427    
1428     \noindent
1429     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1430     in units of $m/sec$, given by:
1431     \[
1432     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1433     \]
1434     \noindent
1435     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1436     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1437     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1438     and $W_s$ is the magnitude of the surface layer wind.
1439     \\
1440    
1441     \noindent
1442     {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1443    
1444     \noindent
1445     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1446     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1447     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1448     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1449     takes the form:
1450     \[
1451     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1452     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1453     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1454     \]
1455     \noindent
1456     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1457     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1458     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1459     depth,
1460     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1461     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1462     dimensionless buoyancy and wind shear
1463     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1464     are functions of the Richardson number.
1465    
1466     \noindent
1467     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1468     see Helfand and Labraga, 1988.
1469    
1470     \noindent
1471     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1472     in units of $m/sec$, given by:
1473     \[
1474     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1475     \]
1476     \noindent
1477     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1478     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1479     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1480     magnitude of the surface layer wind.
1481     \\
1482    
1483     \noindent
1484     {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1485    
1486     \noindent
1487     The tendency of U-Momentum due to turbulence is written:
1488     \[
1489     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1490     = {\pp{}{z} }{(K_m \pp{u}{z})}
1491     \]
1492    
1493     \noindent
1494     The Helfand and Labraga level 2.5 scheme models the turbulent
1495     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1496     equation.
1497    
1498     \noindent
1499     {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1500    
1501     \noindent
1502     The tendency of V-Momentum due to turbulence is written:
1503     \[
1504     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1505     = {\pp{}{z} }{(K_m \pp{v}{z})}
1506     \]
1507    
1508     \noindent
1509     The Helfand and Labraga level 2.5 scheme models the turbulent
1510     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1511     equation.
1512     \\
1513    
1514     \noindent
1515     {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1516    
1517     \noindent
1518     The tendency of temperature due to turbulence is written:
1519     \[
1520     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1521     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1522     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1523     \]
1524    
1525     \noindent
1526     The Helfand and Labraga level 2.5 scheme models the turbulent
1527     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1528     equation.
1529     \\
1530    
1531     \noindent
1532     {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1533    
1534     \noindent
1535     The tendency of specific humidity due to turbulence is written:
1536     \[
1537     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1538     = {\pp{}{z} }{(K_h \pp{q}{z})}
1539     \]
1540    
1541     \noindent
1542     The Helfand and Labraga level 2.5 scheme models the turbulent
1543     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1544     equation.
1545     \\
1546    
1547     \noindent
1548     {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1549    
1550     \noindent
1551     \[
1552     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1553     \]
1554     where:
1555     \[
1556     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1557     \hspace{.4cm} and
1558     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1559     \]
1560     and
1561     \[
1562     \Gamma_s = g \eta \pp{s}{p}
1563     \]
1564    
1565     \noindent
1566     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1567     precipitation processes, or supersaturation rain.
1568     The summation refers to contributions from each cloud type called by RAS.
1569     The dry static energy is given
1570     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1571     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1572     the description of the convective parameterization. The fractional adjustment, or relaxation
1573     parameter, for each cloud type is given as $\alpha$, while
1574     $R$ is the rain re-evaporation adjustment.
1575     \\
1576    
1577     \noindent
1578     {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1579    
1580     \noindent
1581     \[
1582     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1583     \]
1584     where:
1585     \[
1586     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1587     \hspace{.4cm} and
1588     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1589     \]
1590     and
1591     \[
1592     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1593     \]
1594     \noindent
1595     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1596     precipitation processes, or supersaturation rain.
1597     The summation refers to contributions from each cloud type called by RAS.
1598     The dry static energy is given as $s$,
1599     the moist static energy is given as $h$,
1600     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1601     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1602     the description of the convective parameterization. The fractional adjustment, or relaxation
1603     parameter, for each cloud type is given as $\alpha$, while
1604     $R$ is the rain re-evaporation adjustment.
1605     \\
1606    
1607     \noindent
1608     {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1609    
1610     \noindent
1611     The net longwave heating rate is calculated as the vertical divergence of the
1612     net terrestrial radiative fluxes.
1613     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1614     longwave routine.
1615     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1616     For a given cloud fraction,
1617     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1618     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1619     for the upward and downward radiative fluxes.
1620     (see Section \ref{sec:fizhi:radcloud}).
1621     The cloudy-sky flux is then obtained as:
1622    
1623     \noindent
1624     \[
1625     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1626     \]
1627    
1628     \noindent
1629     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1630     net terrestrial radiative fluxes:
1631     \[
1632     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1633     \]
1634     or
1635     \[
1636     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1637     \]
1638    
1639     \noindent
1640     where $g$ is the accelation due to gravity,
1641     $c_p$ is the heat capacity of air at constant pressure,
1642     and
1643     \[
1644     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1645     \]
1646     \\
1647    
1648    
1649     \noindent
1650     {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1651    
1652     \noindent
1653     The net Shortwave heating rate is calculated as the vertical divergence of the
1654     net solar radiative fluxes.
1655     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1656     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1657     both CLMO (maximum overlap cloud fraction) and
1658     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1659     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1660     true time-averaged cloud fractions CLMO
1661     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1662     input at the top of the atmosphere.
1663    
1664     \noindent
1665     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1666     \[
1667     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1668     \]
1669     or
1670     \[
1671     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1672     \]
1673    
1674     \noindent
1675     where $g$ is the accelation due to gravity,
1676     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1677     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1678     \[
1679     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1680     \]
1681     \\
1682    
1683     \noindent
1684     {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1685    
1686     \noindent
1687     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1688     the vertical integral or total precipitable amount is given by:
1689     \[
1690     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1691     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1692     \]
1693     \\
1694    
1695     \noindent
1696     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1697     time step, scaled to $mm/day$.
1698     \\
1699    
1700     \noindent
1701     {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1702    
1703     \noindent
1704     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1705     the vertical integral or total precipitable amount is given by:
1706     \[
1707     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1708     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1709     \]
1710     \\
1711    
1712     \noindent
1713     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1714     time step, scaled to $mm/day$.
1715     \\
1716    
1717     \noindent
1718     {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1719    
1720     \noindent
1721     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1722     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1723    
1724     \[
1725     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1726     {\rho } {(- K_m \pp{U}{z})}
1727     \]
1728    
1729     \noindent
1730     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1731     \\
1732    
1733     \noindent
1734     {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1735    
1736     \noindent
1737     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1738     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1739    
1740     \[
1741     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1742     {\rho } {(- K_m \pp{V}{z})}
1743     \]
1744    
1745     \noindent
1746     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1747     \\
1748    
1749    
1750     \noindent
1751     {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1752    
1753     \noindent
1754     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1755     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1756    
1757     \noindent
1758     \[
1759     {\bf TTFLUX} = c_p {\rho }
1760     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1761     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1762     \]
1763    
1764     \noindent
1765     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1766     \\
1767    
1768    
1769     \noindent
1770     {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1771    
1772     \noindent
1773     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1774     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1775    
1776     \noindent
1777     \[
1778     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1779     {L {\rho }(- K_h \pp{q}{z})}
1780     \]
1781    
1782     \noindent
1783     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1784     \\
1785    
1786    
1787     \noindent
1788     {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1789    
1790     \noindent
1791     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1792     \[
1793     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1794     \]
1795    
1796     \noindent
1797     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1798     $z_0$ is the surface roughness.
1799    
1800     \noindent
1801     NOTE: CN is not available through model version 5.3, but is available in subsequent
1802     versions.
1803     \\
1804    
1805     \noindent
1806     {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1807    
1808     \noindent
1809     The surface wind speed is calculated for the last internal turbulence time step:
1810     \[
1811     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1812     \]
1813    
1814     \noindent
1815     where the subscript $Nrphys$ refers to the lowest model level.
1816     \\
1817    
1818     \noindent
1819     {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1820    
1821     \noindent
1822     The air/surface virtual temperature difference measures the stability of the surface layer:
1823     \[
1824     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1825     \]
1826     \noindent
1827     where
1828     \[
1829     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1830     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1831     \]
1832    
1833     \noindent
1834     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1835     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1836     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1837     refers to the surface.
1838     \\
1839    
1840    
1841     \noindent
1842     {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1843    
1844     \noindent
1845     The ground temperature equation is solved as part of the turbulence package
1846     using a backward implicit time differencing scheme:
1847     \[
1848     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1849     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1850     \]
1851    
1852     \noindent
1853     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1854     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1855     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1856     flux, and $C_g$ is the total heat capacity of the ground.
1857     $C_g$ is obtained by solving a heat diffusion equation
1858     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1859     \[
1860     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1861     { 86400. \over {2 \pi} } } \, \, .
1862     \]
1863     \noindent
1864     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1865     {cm \over {^oK}}$,
1866     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1867     by $2 \pi$ $radians/
1868     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1869     is a function of the ground wetness, $W$.
1870     \\
1871    
1872     \noindent
1873     {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1874    
1875     \noindent
1876     The surface temperature estimate is made by assuming that the model's lowest
1877     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1878     The surface temperature is therefore:
1879     \[
1880     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1881     \]
1882     \\
1883    
1884     \noindent
1885     {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1886    
1887     \noindent
1888     The change in surface temperature from one turbulence time step to the next, solved
1889     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1890     \[
1891     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1892     \]
1893    
1894     \noindent
1895     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1896     refers to the value at the previous turbulence time level.
1897     \\
1898    
1899     \noindent
1900     {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1901    
1902     \noindent
1903     The ground specific humidity is obtained by interpolating between the specific
1904     humidity at the lowest model level and the specific humidity of a saturated ground.
1905     The interpolation is performed using the potential evapotranspiration function:
1906     \[
1907     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1908     \]
1909    
1910     \noindent
1911     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1912     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1913     pressure.
1914     \\
1915    
1916     \noindent
1917     {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1918    
1919     \noindent
1920     The surface saturation specific humidity is the saturation specific humidity at
1921     the ground temprature and surface pressure:
1922     \[
1923     {\bf QS} = q^*(T_g,P_s)
1924     \]
1925     \\
1926    
1927     \noindent
1928     {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1929     radiation subroutine (deg)}
1930     \[
1931     {\bf TGRLW} = T_g(\lambda , \phi ,n)
1932     \]
1933     \noindent
1934     where $T_g$ is the model ground temperature at the current time step $n$.
1935     \\
1936    
1937    
1938     \noindent
1939     {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1940     \[
1941     {\bf ST4} = \sigma T^4
1942     \]
1943     \noindent
1944     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1945     \\
1946    
1947     \noindent
1948     {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1949     \[
1950     {\bf OLR} = F_{LW,top}^{NET}
1951     \]
1952     \noindent
1953     where top indicates the top of the first model layer.
1954     In the GCM, $p_{top}$ = 0.0 mb.
1955     \\
1956    
1957    
1958     \noindent
1959     {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1960     \[
1961     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1962     \]
1963     \noindent
1964     where top indicates the top of the first model layer.
1965     In the GCM, $p_{top}$ = 0.0 mb.
1966     \\
1967    
1968     \noindent
1969     {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1970    
1971     \noindent
1972     \begin{eqnarray*}
1973     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1974     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1975     \end{eqnarray*}
1976     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1977     $F(clearsky)_{LW}^\uparrow$ is
1978     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1979     \\
1980    
1981     \noindent
1982     {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1983    
1984     \noindent
1985     The net longwave heating rate is calculated as the vertical divergence of the
1986     net terrestrial radiative fluxes.
1987     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1988     longwave routine.
1989     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1990     For a given cloud fraction,
1991     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1992     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1993     for the upward and downward radiative fluxes.
1994     (see Section \ref{sec:fizhi:radcloud}).
1995     The cloudy-sky flux is then obtained as:
1996    
1997     \noindent
1998     \[
1999     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2000     \]
2001    
2002     \noindent
2003     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2004     vertical divergence of the
2005     clear-sky longwave radiative flux:
2006     \[
2007     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2008     \]
2009     or
2010     \[
2011     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2012     \]
2013    
2014     \noindent
2015     where $g$ is the accelation due to gravity,
2016     $c_p$ is the heat capacity of air at constant pressure,
2017     and
2018     \[
2019     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2020     \]
2021     \\
2022    
2023    
2024     \noindent
2025     {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
2026     radiation subroutine (deg)}
2027     \[
2028     {\bf TLW} = T(\lambda , \phi ,level, n)
2029     \]
2030     \noindent
2031     where $T$ is the model temperature at the current time step $n$.
2032     \\
2033    
2034    
2035     \noindent
2036     {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
2037     the Longwave radiation subroutine (kg/kg)}
2038     \[
2039     {\bf SHLW} = q(\lambda , \phi , level , n)
2040     \]
2041     \noindent
2042     where $q$ is the model specific humidity at the current time step $n$.
2043     \\
2044    
2045    
2046     \noindent
2047     {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
2048     the Longwave radiation subroutine (kg/kg)}
2049     \[
2050     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2051     \]
2052     \noindent
2053     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2054     mean zonally averaged ozone data set.
2055     \\
2056    
2057    
2058     \noindent
2059     {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2060    
2061     \noindent
2062     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2063     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2064     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2065     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2066     \[
2067     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2068     \]
2069     \\
2070    
2071    
2072     {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2073    
2074     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2075     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2076     Radiation packages.
2077     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2078     \[
2079     {\bf CLDTOT} = F_{RAS} + F_{LS}
2080     \]
2081     \\
2082     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2083     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2084     \\
2085    
2086    
2087     \noindent
2088     {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2089    
2090     \noindent
2091     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2092     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2093     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2094     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2095     \[
2096     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2097     \]
2098     \\
2099    
2100     \noindent
2101     {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2102    
2103     \noindent
2104     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2105     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2106     Radiation algorithm. These are
2107     convective and large-scale clouds whose radiative characteristics are not
2108     assumed to be correlated in the vertical.
2109     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2110     \[
2111     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2112     \]
2113     \\
2114    
2115     \noindent
2116     {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2117     \[
2118     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2119     \]
2120     \noindent
2121     where $S_0$, is the extra-terrestial solar contant,
2122     $R_a$ is the earth-sun distance in Astronomical Units,
2123     and $cos \phi_z$ is the cosine of the zenith angle.
2124     It should be noted that {\bf RADSWT}, as well as
2125     {\bf OSR} and {\bf OSRCLR},
2126     are calculated at the top of the atmosphere (p=0 mb). However, the
2127     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2128     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2129     \\
2130    
2131     \noindent
2132     {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
2133    
2134     \noindent
2135     The surface evaporation is a function of the gradient of moisture, the potential
2136     evapotranspiration fraction and the eddy exchange coefficient:
2137     \[
2138     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2139     \]
2140     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2141     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2142     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2143     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2144     number 34) and at the bottom model level, respectively.
2145     \\
2146    
2147     \noindent
2148     {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2149    
2150     \noindent
2151     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2152     and Analysis forcing.
2153     \[
2154     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2155     \]
2156     \\
2157    
2158     \noindent
2159     {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2160    
2161     \noindent
2162     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2163     and Analysis forcing.
2164     \[
2165     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2166     \]
2167     \\
2168    
2169     \noindent
2170     {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2171    
2172     \noindent
2173     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2174     and Analysis forcing.
2175     \begin{eqnarray*}
2176     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2177     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2178     \end{eqnarray*}
2179     \\
2180    
2181     \noindent
2182     {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2183    
2184     \noindent
2185     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2186     and Analysis forcing.
2187     \[
2188     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2189     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2190     \]
2191     \\
2192    
2193     \noindent
2194     {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2195    
2196     \noindent
2197     The surface stress velocity, or the friction velocity, is the wind speed at
2198     the surface layer top impeded by the surface drag:
2199     \[
2200     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2201     C_u = {k \over {\psi_m} }
2202     \]
2203    
2204     \noindent
2205     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2206     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2207    
2208     \noindent
2209     {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
2210    
2211     \noindent
2212     Over the land surface, the surface roughness length is interpolated to the local
2213     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2214     the roughness length is a function of the surface-stress velocity, $u_*$.
2215     \[
2216     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2217     \]
2218    
2219     \noindent
2220     where the constants are chosen to interpolate between the reciprocal relation of
2221     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2222     for moderate to large winds.
2223     \\
2224    
2225     \noindent
2226     {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2227    
2228     \noindent
2229     The fraction of time when turbulence is present is defined as the fraction of
2230     time when the turbulent kinetic energy exceeds some minimum value, defined here
2231     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2232     incremented. The fraction over the averaging interval is reported.
2233     \\
2234    
2235     \noindent
2236     {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2237    
2238     \noindent
2239     The depth of the PBL is defined by the turbulence parameterization to be the
2240     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2241     value.
2242    
2243     \[
2244     {\bf PBL} = P_{PBL} - P_{surface}
2245     \]
2246    
2247     \noindent
2248     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2249     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2250     \\
2251    
2252     \noindent
2253     {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2254    
2255     \noindent
2256     The net Shortwave heating rate is calculated as the vertical divergence of the
2257     net solar radiative fluxes.
2258     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2259     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2260     both CLMO (maximum overlap cloud fraction) and
2261     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2262     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2263     true time-averaged cloud fractions CLMO
2264     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2265     input at the top of the atmosphere.
2266    
2267     \noindent
2268     The heating rate due to Shortwave Radiation under clear skies is defined as:
2269     \[
2270     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2271     \]
2272     or
2273     \[
2274     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2275     \]
2276    
2277     \noindent
2278     where $g$ is the accelation due to gravity,
2279     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2280     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2281     \[
2282     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2283     \]
2284     \\
2285    
2286     \noindent
2287     {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2288     \[
2289     {\bf OSR} = F_{SW,top}^{NET}
2290     \]
2291     \noindent
2292     where top indicates the top of the first model layer used in the shortwave radiation
2293     routine.
2294     In the GCM, $p_{SW_{top}}$ = 0 mb.
2295     \\
2296    
2297     \noindent
2298     {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2299     \[
2300     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2301     \]
2302     \noindent
2303     where top indicates the top of the first model layer used in the shortwave radiation
2304     routine.
2305     In the GCM, $p_{SW_{top}}$ = 0 mb.
2306     \\
2307    
2308    
2309     \noindent
2310     {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2311    
2312     \noindent
2313     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2314     \[
2315     {\bf CLDMAS} = \eta m_B
2316     \]
2317     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2318     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2319     description of the convective parameterization.
2320     \\
2321    
2322    
2323    
2324     \noindent
2325     {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2326    
2327     \noindent
2328     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2329     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2330     Zonal U-Wind which is archived on the Prognostic Output data stream.
2331     \[
2332     {\bf UAVE} = u(\lambda, \phi, level , t)
2333     \]
2334     \\
2335     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2336     \\
2337    
2338     \noindent
2339     {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2340    
2341     \noindent
2342     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2343     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2344     Meridional V-Wind which is archived on the Prognostic Output data stream.
2345     \[
2346     {\bf VAVE} = v(\lambda, \phi, level , t)
2347     \]
2348     \\
2349     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2350     \\
2351    
2352     \noindent
2353     {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2354    
2355     \noindent
2356     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2357     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2358     Temperature which is archived on the Prognostic Output data stream.
2359     \[
2360     {\bf TAVE} = T(\lambda, \phi, level , t)
2361     \]
2362     \\
2363    
2364     \noindent
2365     {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2366    
2367     \noindent
2368     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2369     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2370     Specific Humidity which is archived on the Prognostic Output data stream.
2371     \[
2372     {\bf QAVE} = q(\lambda, \phi, level , t)
2373     \]
2374     \\
2375    
2376     \noindent
2377     {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2378    
2379     \noindent
2380     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2381     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2382     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2383     \begin{eqnarray*}
2384     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2385     & = & p_s(\lambda, \phi, level , t) - p_T
2386     \end{eqnarray*}
2387     \\
2388    
2389    
2390     \noindent
2391     {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2392    
2393     \noindent
2394     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2395     produced by the GCM Turbulence parameterization over
2396     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2397     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2398     \[
2399     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2400     \]
2401     \\
2402     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2403     \\
2404    
2405     \noindent
2406     {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2407    
2408     \noindent
2409     \begin{eqnarray*}
2410     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2411     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2412     \end{eqnarray*}
2413     \noindent
2414     \\
2415     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2416     $F(clearsky){SW}^\downarrow$ is
2417     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2418     the upward clearsky Shortwave flux.
2419     \\
2420    
2421     \noindent
2422     {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
2423    
2424     \noindent
2425     The GCM provides Users with a built-in mechanism for archiving user-defined
2426     diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
2427     diagnostic counters and pointers located in COMMON /DIAGP/,
2428     must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
2429     A convenient method for incorporating all necessary COMMON files is to
2430     include the GCM {\em vstate.com} file in the routine which employs the
2431     user-defined diagnostics.
2432    
2433     \noindent
2434     In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
2435     the QDIAG array with the desired quantity within the User's
2436     application program or within modified GCM subroutines, as well as increment
2437     the diagnostic counter at the time when the diagnostic is updated.
2438     The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
2439     automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
2440     diagnostic has been enabled.
2441     The syntax for its use is given by
2442     \begin{verbatim}
2443     do j=1,jm
2444     do i=1,im
2445     qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
2446     enddo
2447     enddo
2448    
2449     NSDIAG1 = NSDIAG1 + 1
2450     \end{verbatim}
2451     The diagnostics defined in this manner will automatically be archived by the output routines.
2452     \\
2453    
2454     \noindent
2455     {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
2456    
2457     \noindent
2458     The GCM provides Users with a built-in mechanism for archiving user-defined
2459     diagnostics. For a complete description refer to Diagnostic \#84.
2460     The syntax for using the surface SDIAG2 diagnostic is given by
2461     \begin{verbatim}
2462     do j=1,jm
2463     do i=1,im
2464     qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
2465     enddo
2466     enddo
2467    
2468     NSDIAG2 = NSDIAG2 + 1
2469     \end{verbatim}
2470     The diagnostics defined in this manner will automatically be archived by the output routines.
2471     \\
2472    
2473     \noindent
2474     {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
2475    
2476     \noindent
2477     The GCM provides Users with a built-in mechanism for archiving user-defined
2478     diagnostics. For a complete description refer to Diagnostic \#84.
2479     The syntax for using the upper-air UDIAG1 diagnostic is given by
2480     \begin{verbatim}
2481     do L=1,Nrphys
2482     do j=1,jm
2483     do i=1,im
2484     qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
2485     enddo
2486     enddo
2487     enddo
2488    
2489     NUDIAG1 = NUDIAG1 + 1
2490     \end{verbatim}
2491     The diagnostics defined in this manner will automatically be archived by the
2492     output programs.
2493     \\
2494    
2495     \noindent
2496     {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
2497    
2498     \noindent
2499     The GCM provides Users with a built-in mechanism for archiving user-defined
2500     diagnostics. For a complete description refer to Diagnostic \#84.
2501     The syntax for using the upper-air UDIAG2 diagnostic is given by
2502     \begin{verbatim}
2503     do L=1,Nrphys
2504     do j=1,jm
2505     do i=1,im
2506     qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
2507     enddo
2508     enddo
2509     enddo
2510    
2511     NUDIAG2 = NUDIAG2 + 1
2512     \end{verbatim}
2513     The diagnostics defined in this manner will automatically be archived by the
2514     output programs.
2515     \\
2516    
2517    
2518     \noindent
2519     {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2520    
2521     \noindent
2522     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2523     and the Analysis forcing.
2524     \[
2525     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2526     \]
2527     \\
2528    
2529     \noindent
2530     {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2531    
2532     \noindent
2533     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2534     and the Analysis forcing.
2535     \[
2536     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2537     \]
2538     \\
2539    
2540     \noindent
2541     {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2542    
2543     \noindent
2544     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2545     and the Analysis forcing.
2546     \begin{eqnarray*}
2547     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2548     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2549     \end{eqnarray*}
2550     \\
2551     If we define the time-tendency of Temperature due to Diabatic processes as
2552     \begin{eqnarray*}
2553     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2554     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2555     \end{eqnarray*}
2556     then, since there are no surface pressure changes due to Diabatic processes, we may write
2557     \[
2558     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2559     \]
2560     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2561     \[
2562     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2563     \]
2564     \\
2565    
2566     \noindent
2567     {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2568    
2569     \noindent
2570     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2571     and the Analysis forcing.
2572     \[
2573     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2574     \]
2575     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2576     \[
2577     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2578     \]
2579     then, since there are no surface pressure changes due to Diabatic processes, we may write
2580     \[
2581     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2582     \]
2583     Thus, {\bf DIABQ} may be written as
2584     \[
2585     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2586     \]
2587     \\
2588    
2589     \noindent
2590     {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2591    
2592     \noindent
2593     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2594     $u q$ over the depth of the atmosphere at each model timestep,
2595     and dividing by the total mass of the column.
2596     \[
2597     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2598     \]
2599     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2600     \[
2601     {\bf VINTUQ} = { \int_0^1 u q dp }
2602     \]
2603     \\
2604    
2605    
2606     \noindent
2607     {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2608    
2609     \noindent
2610     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2611     $v q$ over the depth of the atmosphere at each model timestep,
2612     and dividing by the total mass of the column.
2613     \[
2614     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2615     \]
2616     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2617     \[
2618     {\bf VINTVQ} = { \int_0^1 v q dp }
2619     \]
2620     \\
2621    
2622    
2623     \noindent
2624     {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2625    
2626     \noindent
2627     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2628     $u T$ over the depth of the atmosphere at each model timestep,
2629     and dividing by the total mass of the column.
2630     \[
2631     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2632     \]
2633     Or,
2634     \[
2635     {\bf VINTUT} = { \int_0^1 u T dp }
2636     \]
2637     \\
2638    
2639     \noindent
2640     {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2641    
2642     \noindent
2643     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2644     $v T$ over the depth of the atmosphere at each model timestep,
2645     and dividing by the total mass of the column.
2646     \[
2647     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2648     \]
2649     Using $\rho \delta z = -{\delta p \over g} $, we have
2650     \[
2651     {\bf VINTVT} = { \int_0^1 v T dp }
2652     \]
2653     \\
2654    
2655     \noindent
2656     {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2657    
2658     If we define the
2659     time-averaged random and maximum overlapped cloudiness as CLRO and
2660     CLMO respectively, then the probability of clear sky associated
2661     with random overlapped clouds at any level is (1-CLRO) while the probability of
2662     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2663     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2664     the total cloud fraction at each level may be obtained by
2665     1-(1-CLRO)*(1-CLMO).
2666    
2667     At any given level, we may define the clear line-of-site probability by
2668     appropriately accounting for the maximum and random overlap
2669     cloudiness. The clear line-of-site probability is defined to be
2670     equal to the product of the clear line-of-site probabilities
2671     associated with random and maximum overlap cloudiness. The clear
2672     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2673     from the current pressure $p$
2674     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2675     is simply 1.0 minus the largest maximum overlap cloud value along the
2676     line-of-site, ie.
2677    
2678     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2679    
2680     Thus, even in the time-averaged sense it is assumed that the
2681     maximum overlap clouds are correlated in the vertical. The clear
2682     line-of-site probability associated with random overlap clouds is
2683     defined to be the product of the clear sky probabilities at each
2684     level along the line-of-site, ie.
2685    
2686     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2687    
2688     The total cloud fraction at a given level associated with a line-
2689     of-site calculation is given by
2690    
2691     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2692     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2693    
2694    
2695     \noindent
2696     The 2-dimensional net cloud fraction as seen from the top of the
2697     atmosphere is given by
2698     \[
2699     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2700     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2701     \]
2702     \\
2703     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2704    
2705    
2706     \noindent
2707     {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2708    
2709     \noindent
2710     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2711     given by:
2712     \begin{eqnarray*}
2713     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2714     & = & {\pi \over g} \int_0^1 q dp
2715     \end{eqnarray*}
2716     where we have used the hydrostatic relation
2717     $\rho \delta z = -{\delta p \over g} $.
2718     \\
2719    
2720    
2721     \noindent
2722     {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2723    
2724     \noindent
2725     The u-wind at the 2-meter depth is determined from the similarity theory:
2726     \[
2727     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2728     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2729     \]
2730    
2731     \noindent
2732     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2733     $sl$ refers to the height of the top of the surface layer. If the roughness height
2734     is above two meters, ${\bf U2M}$ is undefined.
2735     \\
2736    
2737     \noindent
2738     {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2739    
2740     \noindent
2741     The v-wind at the 2-meter depth is a determined from the similarity theory:
2742     \[
2743     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2744     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2745     \]
2746    
2747     \noindent
2748     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2749     $sl$ refers to the height of the top of the surface layer. If the roughness height
2750     is above two meters, ${\bf V2M}$ is undefined.
2751     \\
2752    
2753     \noindent
2754     {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2755    
2756     \noindent
2757     The temperature at the 2-meter depth is a determined from the similarity theory:
2758     \[
2759     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2760     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2761     (\theta_{sl} - \theta_{surf}))
2762     \]
2763     where:
2764     \[
2765     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2766     \]
2767    
2768     \noindent
2769     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2770     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2771     $sl$ refers to the height of the top of the surface layer. If the roughness height
2772     is above two meters, ${\bf T2M}$ is undefined.
2773     \\
2774    
2775     \noindent
2776     {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2777    
2778     \noindent
2779     The specific humidity at the 2-meter depth is determined from the similarity theory:
2780     \[
2781     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2782     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2783     (q_{sl} - q_{surf}))
2784     \]
2785     where:
2786     \[
2787     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2788     \]
2789    
2790     \noindent
2791     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2792     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2793     $sl$ refers to the height of the top of the surface layer. If the roughness height
2794     is above two meters, ${\bf Q2M}$ is undefined.
2795     \\
2796    
2797     \noindent
2798     {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2799    
2800     \noindent
2801     The u-wind at the 10-meter depth is an interpolation between the surface wind
2802     and the model lowest level wind using the ratio of the non-dimensional wind shear
2803     at the two levels:
2804     \[
2805     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2806     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2807     \]
2808    
2809     \noindent
2810     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2811     $sl$ refers to the height of the top of the surface layer.
2812     \\
2813    
2814     \noindent
2815     {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2816    
2817     \noindent
2818     The v-wind at the 10-meter depth is an interpolation between the surface wind
2819     and the model lowest level wind using the ratio of the non-dimensional wind shear
2820     at the two levels:
2821     \[
2822     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2823     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2824     \]
2825    
2826     \noindent
2827     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2828     $sl$ refers to the height of the top of the surface layer.
2829     \\
2830    
2831     \noindent
2832     {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2833    
2834     \noindent
2835     The temperature at the 10-meter depth is an interpolation between the surface potential
2836     temperature and the model lowest level potential temperature using the ratio of the
2837     non-dimensional temperature gradient at the two levels:
2838     \[
2839     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2840     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2841     (\theta_{sl} - \theta_{surf}))
2842     \]
2843     where:
2844     \[
2845     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2846     \]
2847    
2848     \noindent
2849     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2850     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2851     $sl$ refers to the height of the top of the surface layer.
2852     \\
2853    
2854     \noindent
2855     {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2856    
2857     \noindent
2858     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2859     humidity and the model lowest level specific humidity using the ratio of the
2860     non-dimensional temperature gradient at the two levels:
2861     \[
2862     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2863     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2864     (q_{sl} - q_{surf}))
2865     \]
2866     where:
2867     \[
2868     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2869     \]
2870    
2871     \noindent
2872     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2873     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2874     $sl$ refers to the height of the top of the surface layer.
2875     \\
2876    
2877     \noindent
2878     {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2879    
2880     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2881     \[
2882     {\bf DTRAIN} = \eta_{r_D}m_B
2883     \]
2884     \noindent
2885     where $r_D$ is the detrainment level,
2886     $m_B$ is the cloud base mass flux, and $\eta$
2887     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2888     \\
2889    
2890     \noindent
2891     {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2892    
2893     \noindent
2894     Due to computational errors associated with the numerical scheme used for
2895     the advection of moisture, negative values of specific humidity may be generated. The
2896     specific humidity is checked for negative values after every dynamics timestep. If negative
2897     values have been produced, a filling algorithm is invoked which redistributes moisture from
2898     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2899     to eliminate negative specific humidity, scaled to a per-day rate:
2900     \[
2901     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2902     \]
2903     where
2904     \[
2905     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2906     \]
2907    
2908     \subsection{Dos and Donts}
2909    
2910     \subsection{Diagnostics Reference}
2911    

  ViewVC Help
Powered by ViewVC 1.1.22