1 |
edhill |
1.2 |
\section{Diagnostics--A Flexible Infrastructure} |
2 |
|
|
\label{sec:pkg:diagnostics} |
3 |
|
|
\begin{rawhtml} |
4 |
|
|
<!-- CMIREDIR:package_diagnostics: --> |
5 |
|
|
\end{rawhtml} |
6 |
molod |
1.1 |
|
7 |
|
|
\subsection{Introduction} |
8 |
|
|
|
9 |
molod |
1.7 |
\noindent |
10 |
molod |
1.5 |
This section of the documentation describes the Diagnostics package available within |
11 |
molod |
1.7 |
the GCM. A large selection of model diagnostics is available for output. |
12 |
|
|
In addition to the diagnostic quantities pre-defined in the GCM, there exists |
13 |
|
|
the option, in any experiment, to define a new diagnostic quantity and include it |
14 |
|
|
as part of the diagnostic output with the addition of a single subroutine call in the |
15 |
|
|
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled |
16 |
|
|
as default, thus each user must specify the exact diagnostic information required for an |
17 |
|
|
experiment. This is accomplished by enabling the specific diagnostic of interest cataloged |
18 |
|
|
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling |
19 |
|
|
diagnostic output and defining new diagnostic quantities are found in Section |
20 |
|
|
\ref{sec:diagnostics:usersguide} of this document. |
21 |
|
|
|
22 |
|
|
\noindent |
23 |
|
|
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
24 |
|
|
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
25 |
|
|
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
26 |
|
|
A counter is defined which records how many times each diagnostic quantity has been |
27 |
|
|
incremented. Several special diagnostics are included in the menu. Quantities refered to |
28 |
|
|
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
29 |
|
|
frequency at which a diagnostic is incremented separately for each model grid location. |
30 |
|
|
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
31 |
|
|
defining new diagnostics for a particular experiment. |
32 |
molod |
1.1 |
|
33 |
|
|
\subsection{Equations} |
34 |
|
|
Not relevant. |
35 |
|
|
|
36 |
|
|
\subsection{Key Subroutines and Parameters} |
37 |
|
|
\label{sec:diagnostics:diagover} |
38 |
|
|
|
39 |
molod |
1.7 |
\noindent |
40 |
|
|
The diagnostics are computed at various times and places within the GCM. Because the |
41 |
|
|
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
42 |
|
|
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
43 |
|
|
while others are components of vectors. An internal array is defined which contains |
44 |
|
|
information concerning various grid attributes of each diagnostic. The GDIAG |
45 |
|
|
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
46 |
|
|
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
47 |
|
|
order to extract the grid-attribute information. The GDIAG array is described in |
48 |
|
|
Table \ref{tab:diagnostics:gdiag.tabl}. |
49 |
molod |
1.1 |
|
50 |
|
|
\begin{table} |
51 |
|
|
\caption{Diagnostic Parsing Array} |
52 |
|
|
\label{tab:diagnostics:gdiag.tabl} |
53 |
|
|
\begin{center} |
54 |
|
|
\begin{tabular}{ |c|c|l| } |
55 |
|
|
\hline |
56 |
|
|
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
57 |
|
|
\hline |
58 |
|
|
\hline |
59 |
|
|
Array & Value & Description \\ |
60 |
|
|
\hline |
61 |
|
|
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
62 |
|
|
& $\rightarrow$ U & U-vector component Diagnostic \\ |
63 |
|
|
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
64 |
|
|
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
65 |
|
|
& $\rightarrow$ V & C-Grid V-Point \\ |
66 |
|
|
& $\rightarrow$ M & C-Grid Mass Point \\ |
67 |
molod |
1.3 |
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
68 |
|
|
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
69 |
molod |
1.1 |
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
70 |
|
|
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
71 |
|
|
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
72 |
|
|
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
73 |
|
|
& & vector or counter component mate \\ \hline |
74 |
|
|
\end{tabular} |
75 |
|
|
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
76 |
|
|
\end{center} |
77 |
|
|
\end{table} |
78 |
|
|
|
79 |
molod |
1.7 |
|
80 |
|
|
\noindent |
81 |
molod |
1.1 |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
82 |
molod |
1.3 |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
83 |
|
|
U-vector component located at the C-grid U-point. |
84 |
molod |
1.1 |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
85 |
|
|
|
86 |
molod |
1.7 |
|
87 |
|
|
\noindent |
88 |
molod |
1.1 |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
89 |
molod |
1.7 |
C-grid location, etc.) defined internally. The Output routines use this information |
90 |
|
|
in order to determine what type of transformations need to be performed. Any |
91 |
|
|
interpolations are done at the time of output rather than during each model step. |
92 |
|
|
In this way the User has flexibility in determining the type of gridded data which |
93 |
|
|
is output. |
94 |
|
|
|
95 |
molod |
1.1 |
|
96 |
molod |
1.7 |
\noindent |
97 |
molod |
1.1 |
There are several utilities within the GCM available to users to enable, disable, |
98 |
molod |
1.5 |
clear, write and retrieve model diagnostics, and may be called from any routine. |
99 |
|
|
The available utilities and the CALL sequences are listed below. |
100 |
molod |
1.1 |
|
101 |
|
|
|
102 |
molod |
1.7 |
\noindent |
103 |
|
|
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
104 |
|
|
quantity with a field sent through the argument list. |
105 |
|
|
|
106 |
|
|
|
107 |
|
|
\noindent |
108 |
|
|
\begin{tabbing} |
109 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
110 |
|
|
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
111 |
|
|
bibjflg, bi, bj, arrayin) \\ |
112 |
|
|
\\ |
113 |
|
|
where \> myThid \>= Current Process(or) \\ |
114 |
|
|
\> chardiag \>= Character *8 expression for diag to fill \\ |
115 |
|
|
\> levflg \>= Integer flag for vertical levels: \\ |
116 |
|
|
\> \> 0 indicates multiple levels incremented in qdiag \\ |
117 |
|
|
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
118 |
|
|
\> \> negative integer - the input data array is single-leveled \\ |
119 |
|
|
\> \> positive integer - the input data array is multi-leveled \\ |
120 |
|
|
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
121 |
|
|
\> \> positive: fill in "nlevs" levels in the same order as \\ |
122 |
|
|
\> \> the input array \\ |
123 |
|
|
\> \> negative: fill in -nlevs levels in reverse order. \\ |
124 |
|
|
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
125 |
|
|
\> \> 0 indicates that the bi-bj loop must be done here \\ |
126 |
|
|
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
127 |
|
|
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
128 |
|
|
\> \> AND that we have been sent a local array \\ |
129 |
|
|
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
130 |
|
|
\> \> AND that we have been sent a local array \\ |
131 |
|
|
\> \> AND that the array has the shadow regions \\ |
132 |
|
|
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
133 |
|
|
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
134 |
|
|
\> arrayin \>= Field to increment diagnostics array \\ |
135 |
|
|
\end{tabbing} |
136 |
|
|
|
137 |
|
|
|
138 |
|
|
\noindent |
139 |
molod |
1.5 |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
140 |
|
|
that space is allocated for the diagnostic and the model routines will increment the |
141 |
|
|
diagnostic value during execution. This routine is the underlying interface |
142 |
molod |
1.1 |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
143 |
|
|
number from the menu, and its calling sequence is given by: |
144 |
|
|
|
145 |
molod |
1.7 |
\noindent |
146 |
molod |
1.1 |
\begin{tabbing} |
147 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
148 |
molod |
1.5 |
\> call setdiag (num) \\ |
149 |
molod |
1.1 |
\\ |
150 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
151 |
molod |
1.1 |
\end{tabbing} |
152 |
|
|
|
153 |
molod |
1.7 |
\noindent |
154 |
molod |
1.5 |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
155 |
|
|
is particulary useful when called from a user output routine, although it can be called |
156 |
|
|
from any routine. This routine returns the time-averaged value of the diagnostic by |
157 |
|
|
dividing the current accumulated diagnostic value by its corresponding counter. This |
158 |
|
|
routine does not change the value of the diagnostic itself, that is, it does not replace |
159 |
|
|
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
160 |
molod |
1.1 |
|
161 |
molod |
1.7 |
\noindent |
162 |
molod |
1.1 |
\begin{tabbing} |
163 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
164 |
molod |
1.5 |
\> call getdiag (lev,num,qtmp,undef) \\ |
165 |
molod |
1.1 |
\\ |
166 |
molod |
1.5 |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
167 |
|
|
\> num \>= Diagnostic number from menu \\ |
168 |
|
|
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
169 |
|
|
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
170 |
molod |
1.1 |
\end{tabbing} |
171 |
|
|
|
172 |
molod |
1.7 |
\noindent |
173 |
molod |
1.5 |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
174 |
|
|
particularly useful when called from user output routines to re-initialize diagnostics |
175 |
|
|
during the run. The calling sequence is: |
176 |
molod |
1.1 |
|
177 |
molod |
1.7 |
\noindent |
178 |
molod |
1.1 |
\begin{tabbing} |
179 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
180 |
molod |
1.5 |
\> call clrdiag (num) \\ |
181 |
molod |
1.1 |
\\ |
182 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
183 |
molod |
1.1 |
\end{tabbing} |
184 |
|
|
|
185 |
molod |
1.7 |
\noindent |
186 |
molod |
1.5 |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
187 |
|
|
that the diagnostic is no longer available to the user. The memory previously allocated |
188 |
|
|
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
189 |
molod |
1.1 |
|
190 |
molod |
1.7 |
\noindent |
191 |
molod |
1.1 |
\begin{tabbing} |
192 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
193 |
molod |
1.5 |
\> call zapdiag (NUM) \\ |
194 |
molod |
1.1 |
\\ |
195 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
196 |
molod |
1.1 |
\end{tabbing} |
197 |
|
|
|
198 |
molod |
1.7 |
|
199 |
|
|
\subsection{Usage Notes} |
200 |
|
|
\label{sec:diagnostics:usersguide} |
201 |
|
|
|
202 |
|
|
\noindent |
203 |
|
|
We begin this section with a discussion on the manner in which computer |
204 |
|
|
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
205 |
|
|
single diagnostic array QDIAG which is located in the file \\ |
206 |
|
|
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
207 |
|
|
and has the form: |
208 |
molod |
1.1 |
|
209 |
molod |
1.3 |
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
210 |
molod |
1.1 |
|
211 |
molod |
1.7 |
\noindent |
212 |
|
|
where numdiags is an Integer variable which should be set equal to the number of |
213 |
|
|
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
214 |
|
|
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
215 |
|
|
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
216 |
|
|
to minimize the memory requirement of the model for diagnostics, the default GCM |
217 |
|
|
executable is compiled with room for only one horizontal diagnostic array, or with |
218 |
|
|
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
219 |
molod |
1.3 |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
220 |
molod |
1.1 |
This can be accomplished by manually changing the parameter numdiags in the |
221 |
molod |
1.7 |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. |
222 |
|
|
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
223 |
|
|
for output each multiplied by the number of levels defined for that diagnostic quantity. |
224 |
|
|
This is illustrated in the example below: |
225 |
molod |
1.1 |
|
226 |
molod |
1.7 |
\noindent |
227 |
molod |
1.3 |
To use the diagnostics package, other than enabling it in packages.conf |
228 |
|
|
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
229 |
|
|
must be supplied in the run directory called data.diagnostics. The namelist |
230 |
|
|
will activate a user-defined list of diagnostics quantities to be computed, |
231 |
|
|
specify the frequency of output, the number of levels, and the name of |
232 |
|
|
up to 10 separate output files. A sample data.diagnostics namelist file: |
233 |
|
|
|
234 |
molod |
1.7 |
\noindent |
235 |
|
|
$\#$ Diagnostic Package Choices \\ |
236 |
|
|
$\&$diagnostics\_list \\ |
237 |
|
|
frequency(1) = 10, \ \\ |
238 |
|
|
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
239 |
|
|
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
240 |
|
|
filename(1) = 'diagout1', \ \\ |
241 |
|
|
frequency(2) = 100, \ \\ |
242 |
|
|
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
243 |
|
|
fields(1,2) = 'THETA ','SALT ', \ \\ |
244 |
|
|
filename(2) = 'diagout2', \ \\ |
245 |
|
|
$\&$end \ \\ |
246 |
molod |
1.3 |
|
247 |
molod |
1.7 |
\noindent |
248 |
molod |
1.3 |
In this example, there are two output files that will be generated |
249 |
|
|
for each tile and for each output time. The first set of output files |
250 |
molod |
1.7 |
has the prefix diagout1, does time averaging every 10 time steps |
251 |
|
|
(frequency is 10), they will write fields which are multiple-level |
252 |
|
|
fields and output levels 1-5. The names of diagnostics quantities are |
253 |
|
|
UVEL and VVEL. The second set of output files |
254 |
molod |
1.3 |
has the prefix diagout2, does time averaging every 100 time steps, |
255 |
molod |
1.7 |
they include fields which are multiple-level fields, levels output are 1-5, |
256 |
molod |
1.3 |
and the names of diagnostics quantities are THETA and SALT. |
257 |
|
|
|
258 |
molod |
1.7 |
\noindent |
259 |
|
|
In order to define and include as part of the diagnostic output any field |
260 |
|
|
that is desired for a particular experiment, two steps must be taken. The |
261 |
|
|
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
262 |
|
|
accomplished by setting one of the fields slots to either UDIAG1 through |
263 |
|
|
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
264 |
|
|
fields. These are listed in the diagnostics menu. The second step is to |
265 |
|
|
add a call to fill\_diagnostics from the subroutine in which the quantity |
266 |
|
|
desired for diagnostic output is computed. |
267 |
|
|
|
268 |
molod |
1.1 |
\newpage |
269 |
|
|
|
270 |
|
|
\subsubsection{GCM Diagnostic Menu} |
271 |
|
|
\label{sec:diagnostics:menu} |
272 |
|
|
|
273 |
|
|
\begin{tabular}{lllll} |
274 |
|
|
\hline\hline |
275 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
276 |
|
|
\hline |
277 |
|
|
|
278 |
|
|
&\\ |
279 |
molod |
1.9 |
84 & SDIAG1 & & 1 |
280 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
281 |
molod |
1.9 |
{User-Defined Surface Diagnostic-1} |
282 |
molod |
1.1 |
\end{minipage}\\ |
283 |
molod |
1.9 |
85 & SDIAG2 & & 1 |
284 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
285 |
molod |
1.9 |
{User-Defined Surface Diagnostic-2} |
286 |
molod |
1.1 |
\end{minipage}\\ |
287 |
molod |
1.9 |
86 & UDIAG1 & & Nrphys |
288 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
289 |
molod |
1.9 |
{User-Defined Upper-Air Diagnostic-1} |
290 |
molod |
1.1 |
\end{minipage}\\ |
291 |
molod |
1.9 |
87 & UDIAG2 & & Nrphys |
292 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
293 |
molod |
1.9 |
{User-Defined Upper-Air Diagnostic-2} |
294 |
molod |
1.1 |
\end{minipage}\\ |
295 |
molod |
1.9 |
124& SDIAG3 & & 1 |
296 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
297 |
molod |
1.9 |
{User-Defined Surface Diagnostic-3} |
298 |
molod |
1.1 |
\end{minipage}\\ |
299 |
molod |
1.9 |
125& SDIAG4 & & 1 |
300 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
301 |
molod |
1.9 |
{User-Defined Surface Diagnostic-4} |
302 |
molod |
1.1 |
\end{minipage}\\ |
303 |
molod |
1.9 |
126& SDIAG5 & & 1 |
304 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
305 |
molod |
1.9 |
{User-Defined Surface Diagnostic-5} |
306 |
molod |
1.1 |
\end{minipage}\\ |
307 |
molod |
1.9 |
127& SDIAG6 & & 1 |
308 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
309 |
molod |
1.9 |
{User-Defined Surface Diagnostic-6} |
310 |
molod |
1.1 |
\end{minipage}\\ |
311 |
molod |
1.9 |
128& SDIAG7 & & 1 |
312 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
313 |
molod |
1.9 |
{User-Defined Surface Diagnostic-7} |
314 |
molod |
1.1 |
\end{minipage}\\ |
315 |
molod |
1.9 |
129& SDIAG8 & & 1 |
316 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
317 |
molod |
1.9 |
{User-Defined Surface Diagnostic-8} |
318 |
molod |
1.1 |
\end{minipage}\\ |
319 |
molod |
1.9 |
130& SDIAG9 & & 1 |
320 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
321 |
molod |
1.9 |
{User-Defined Surface Diagnostic-9} |
322 |
molod |
1.1 |
\end{minipage}\\ |
323 |
molod |
1.9 |
131& SDIAG10 & & 1 |
324 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
325 |
molod |
1.9 |
{User-Defined Surface Diagnostic-1-} |
326 |
molod |
1.1 |
\end{minipage}\\ |
327 |
molod |
1.9 |
132& UDIAG3 & & Nrphys |
328 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
329 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-3} |
330 |
molod |
1.1 |
\end{minipage}\\ |
331 |
molod |
1.9 |
133& UDIAG4 & & Nrphys |
332 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
333 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-4} |
334 |
molod |
1.1 |
\end{minipage}\\ |
335 |
molod |
1.9 |
134& UDIAG5 & & Nrphys |
336 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
337 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-5} |
338 |
molod |
1.1 |
\end{minipage}\\ |
339 |
molod |
1.9 |
135& UDIAG6 & & Nrphys |
340 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
341 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-6} |
342 |
molod |
1.1 |
\end{minipage}\\ |
343 |
molod |
1.9 |
136& UDIAG7 & & Nrphys |
344 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
345 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-7} |
346 |
molod |
1.1 |
\end{minipage}\\ |
347 |
molod |
1.9 |
137& UDIAG8 & & Nrphys |
348 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
349 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-8} |
350 |
molod |
1.1 |
\end{minipage}\\ |
351 |
molod |
1.9 |
138& UDIAG9 & & Nrphys |
352 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
353 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-9} |
354 |
molod |
1.1 |
\end{minipage}\\ |
355 |
molod |
1.9 |
139& UDIAG10 & & Nrphys |
356 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
357 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-10} |
358 |
molod |
1.1 |
\end{minipage}\\ |
359 |
molod |
1.8 |
\end{tabular} |
360 |
molod |
1.9 |
\vspace{1.5in} |
361 |
|
|
\vfill |
362 |
molod |
1.8 |
|
363 |
|
|
\newpage |
364 |
|
|
\vspace*{\fill} |
365 |
|
|
\begin{tabular}{lllll} |
366 |
|
|
\hline\hline |
367 |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
368 |
|
|
\hline |
369 |
|
|
|
370 |
|
|
&\\ |
371 |
molod |
1.9 |
238& ETAN & $(hPa,m)$ & 1 |
372 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
373 |
molod |
1.9 |
{Perturbation of Surface (pressure, height)} |
374 |
molod |
1.1 |
\end{minipage}\\ |
375 |
molod |
1.9 |
239& ETANSQ & $(hPa^2,m^2)$ & 1 |
376 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
377 |
molod |
1.9 |
{Square of Perturbation of Surface (pressure, height)} |
378 |
molod |
1.1 |
\end{minipage}\\ |
379 |
molod |
1.9 |
240& THETA & $deg K$ & Nr |
380 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
381 |
molod |
1.9 |
{Potential Temperature} |
382 |
molod |
1.1 |
\end{minipage}\\ |
383 |
molod |
1.9 |
241& SALT & $g/kg$ & Nr |
384 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
385 |
molod |
1.9 |
{Salt (or Water Vapor Mixing Ratio)} |
386 |
molod |
1.1 |
\end{minipage}\\ |
387 |
molod |
1.9 |
242& UVEL & $m/sec$ & Nr |
388 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
389 |
molod |
1.9 |
{U-Velocity} |
390 |
molod |
1.1 |
\end{minipage}\\ |
391 |
molod |
1.9 |
243& VVEL & $m/sec$ & Nr |
392 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
393 |
molod |
1.9 |
{V-Velocity} |
394 |
molod |
1.1 |
\end{minipage}\\ |
395 |
molod |
1.9 |
244& WVEL & $m/sec$ & Nr |
396 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
397 |
molod |
1.9 |
{Vertical-Velocity} |
398 |
molod |
1.1 |
\end{minipage}\\ |
399 |
molod |
1.9 |
245& THETASQ & $deg^2$ & Nr |
400 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
401 |
molod |
1.9 |
{Square of Potential Temperature} |
402 |
molod |
1.1 |
\end{minipage}\\ |
403 |
molod |
1.9 |
246& SALTSQ & $g^2/{kg}^2$ & Nr |
404 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
405 |
molod |
1.9 |
{Square of Salt (or Water Vapor Mixing Ratio)} |
406 |
molod |
1.1 |
\end{minipage}\\ |
407 |
molod |
1.9 |
247& UVELSQ & $m^2/sec^2$ & Nr |
408 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
409 |
molod |
1.9 |
{Square of U-Velocity} |
410 |
molod |
1.1 |
\end{minipage}\\ |
411 |
molod |
1.9 |
248& VVELSQ & $m^2/sec^2$ & Nr |
412 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
413 |
molod |
1.9 |
{Square of V-Velocity} |
414 |
molod |
1.1 |
\end{minipage}\\ |
415 |
molod |
1.9 |
249& WVELSQ & $m^2/sec^2$ & Nr |
416 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
417 |
molod |
1.9 |
{Square of Vertical-Velocity} |
418 |
molod |
1.1 |
\end{minipage}\\ |
419 |
molod |
1.9 |
250& UVELVVEL & $m^2/sec^2$ & Nr |
420 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
421 |
molod |
1.9 |
{Meridional Transport of Zonal Momentum} |
422 |
molod |
1.1 |
\end{minipage}\\ |
423 |
molod |
1.9 |
251& UVELMASS & $m/sec$ & Nr |
424 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
425 |
molod |
1.9 |
{Zonal Mass-Weighted Component of Velocity} |
426 |
molod |
1.1 |
\end{minipage}\\ |
427 |
molod |
1.9 |
252& VVELMASS & $m/sec$ & Nr |
428 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
429 |
molod |
1.9 |
{Meridional Mass-Weighted Component of Velocity} |
430 |
molod |
1.1 |
\end{minipage}\\ |
431 |
molod |
1.9 |
253& WVELMASS & $m/sec$ & Nr |
432 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
433 |
molod |
1.9 |
{Vertical Mass-Weighted Component of Velocity} |
434 |
molod |
1.1 |
\end{minipage}\\ |
435 |
molod |
1.9 |
254& UTHMASS & $m-deg/sec$ & Nr |
436 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
437 |
molod |
1.9 |
{Zonal Mass-Weight Transp of Pot Temp} |
438 |
molod |
1.1 |
\end{minipage}\\ |
439 |
molod |
1.9 |
255& VTHMASS & $m-deg/sec$ & Nr |
440 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
441 |
molod |
1.9 |
{Meridional Mass-Weight Transp of Pot Temp} |
442 |
molod |
1.1 |
\end{minipage}\\ |
443 |
molod |
1.9 |
256& WTHMASS & $m-deg/sec$ & Nr |
444 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
445 |
molod |
1.9 |
{Vertical Mass-Weight Transp of Pot Temp} |
446 |
molod |
1.1 |
\end{minipage}\\ |
447 |
molod |
1.9 |
257& USLTMASS & $m-kg/sec-kg$ & Nr |
448 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
449 |
molod |
1.9 |
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
450 |
molod |
1.1 |
\end{minipage}\\ |
451 |
molod |
1.9 |
258& VSLTMASS & $m-kg/sec-kg$ & Nr |
452 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
453 |
molod |
1.9 |
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
454 |
molod |
1.8 |
\end{minipage}\\ |
455 |
molod |
1.9 |
259& WSLTMASS & $m-kg/sec-kg$ & Nr |
456 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
457 |
molod |
1.9 |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
458 |
molod |
1.1 |
\end{minipage}\\ |
459 |
molod |
1.9 |
260& UVELTH & $m-deg/sec$ & Nr |
460 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
461 |
molod |
1.9 |
{Zonal Transp of Pot Temp} |
462 |
molod |
1.1 |
\end{minipage}\\ |
463 |
molod |
1.9 |
261& VVELTH & $m-deg/sec$ & Nr |
464 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
465 |
molod |
1.9 |
{Meridional Transp of Pot Temp} |
466 |
molod |
1.1 |
\end{minipage}\\ |
467 |
molod |
1.9 |
262& WVELTH & $m-deg/sec$ & Nr |
468 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
469 |
molod |
1.9 |
{Vertical Transp of Pot Temp} |
470 |
molod |
1.1 |
\end{minipage}\\ |
471 |
molod |
1.9 |
263& UVELSLT & $m-kg/sec-kg$ & Nr |
472 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
473 |
molod |
1.9 |
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
474 |
molod |
1.8 |
\end{minipage}\\ |
475 |
molod |
1.9 |
264& VVELSLT & $m-kg/sec-kg$ & Nr |
476 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
477 |
molod |
1.9 |
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
478 |
molod |
1.8 |
\end{minipage}\\ |
479 |
molod |
1.9 |
265& WVELSLT & $m-kg/sec-kg$ & Nr |
480 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
481 |
molod |
1.9 |
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
482 |
molod |
1.8 |
\end{minipage}\\ |
483 |
molod |
1.9 |
275& WSLTMASS & $m-kg/sec-kg$ & Nr |
484 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
485 |
molod |
1.9 |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
486 |
molod |
1.8 |
\end{minipage}\\ |
487 |
molod |
1.9 |
298& VISCA4 & $m^4/sec$ & 1 |
488 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
489 |
molod |
1.9 |
{Biharmonic Viscosity Coefficient} |
490 |
molod |
1.8 |
\end{minipage}\\ |
491 |
molod |
1.9 |
299& VISCAH & $m^2/sec$ & 1 |
492 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
493 |
molod |
1.9 |
{Harmonic Viscosity Coefficient} |
494 |
molod |
1.8 |
\end{minipage}\\ |
495 |
molod |
1.9 |
300& DRHODR & $kg/m^3/{r-unit}$ & Nr |
496 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
497 |
molod |
1.9 |
{Stratification: d.Sigma/dr} |
498 |
molod |
1.8 |
\end{minipage}\\ |
499 |
molod |
1.9 |
301& DETADT2 & ${r-unit}^2/s^2$ & 1 |
500 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
501 |
molod |
1.9 |
{Square of Eta (Surf.P,SSH) Tendency} |
502 |
molod |
1.1 |
\end{minipage}\\ |
503 |
molod |
1.8 |
\end{tabular} |
504 |
molod |
1.9 |
\vspace{1.5in} |
505 |
molod |
1.8 |
\vfill |
506 |
|
|
|
507 |
|
|
\newpage |
508 |
|
|
|
509 |
molod |
1.9 |
\subsubsection{Diagnostic Description} |
510 |
molod |
1.1 |
|
511 |
molod |
1.9 |
In this section we list and describe the diagnostic quantities available within the |
512 |
|
|
GCM. The diagnostics are listed in the order that they appear in the |
513 |
|
|
Diagnostic Menu, Section \ref{sec:diagnostics:menu}. |
514 |
|
|
In all cases, each diagnostic as currently archived on the output datasets |
515 |
|
|
is time-averaged over its diagnostic output frequency: |
516 |
molod |
1.1 |
|
517 |
molod |
1.9 |
\[ |
518 |
|
|
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
519 |
|
|
\] |
520 |
|
|
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
521 |
|
|
output frequency of the diagnostic, and $\Delta t$ is |
522 |
|
|
the timestep over which the diagnostic is updated. |
523 |
molod |
1.1 |
|
524 |
|
|
\subsection{Dos and Donts} |
525 |
|
|
|
526 |
|
|
\subsection{Diagnostics Reference} |
527 |
|
|
|