/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (show annotations) (download) (as text)
Mon Oct 18 19:43:56 2004 UTC (20 years, 9 months ago) by molod
Branch: MAIN
Changes since 1.6: +138 -73 lines
File MIME type: application/x-tex
Updating

1 \section{Diagnostics--A Flexible Infrastructure}
2 \label{sec:pkg:diagnostics}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_diagnostics: -->
5 \end{rawhtml}
6
7 \subsection{Introduction}
8
9 \noindent
10 This section of the documentation describes the Diagnostics package available within
11 the GCM. A large selection of model diagnostics is available for output.
12 In addition to the diagnostic quantities pre-defined in the GCM, there exists
13 the option, in any experiment, to define a new diagnostic quantity and include it
14 as part of the diagnostic output with the addition of a single subroutine call in the
15 routine where the field is computed. As a matter of philosophy, no diagnostic is enabled
16 as default, thus each user must specify the exact diagnostic information required for an
17 experiment. This is accomplished by enabling the specific diagnostic of interest cataloged
18 in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling
19 diagnostic output and defining new diagnostic quantities are found in Section
20 \ref{sec:diagnostics:usersguide} of this document.
21
22 \noindent
23 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within
24 the GCM. Once a diagnostic is enabled, the GCM will continually increment an array
25 specifically allocated for that diagnostic whenever the appropriate quantity is computed.
26 A counter is defined which records how many times each diagnostic quantity has been
27 incremented. Several special diagnostics are included in the menu. Quantities refered to
28 as ``Counter Diagnostics'', are defined for selected diagnostics which record the
29 frequency at which a diagnostic is incremented separately for each model grid location.
30 Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate
31 defining new diagnostics for a particular experiment.
32
33 \subsection{Equations}
34 Not relevant.
35
36 \subsection{Key Subroutines and Parameters}
37 \label{sec:diagnostics:diagover}
38
39 \noindent
40 The diagnostics are computed at various times and places within the GCM. Because the
41 MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,
42 corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,
43 while others are components of vectors. An internal array is defined which contains
44 information concerning various grid attributes of each diagnostic. The GDIAG
45 array (in common block \\diagnostics in file diagnostics.h) is internally defined as a
46 character*8 variable, and is equivalenced to a character*1 "parse" array in output in
47 order to extract the grid-attribute information. The GDIAG array is described in
48 Table \ref{tab:diagnostics:gdiag.tabl}.
49
50 \begin{table}
51 \caption{Diagnostic Parsing Array}
52 \label{tab:diagnostics:gdiag.tabl}
53 \begin{center}
54 \begin{tabular}{ |c|c|l| }
55 \hline
56 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57 \hline
58 \hline
59 Array & Value & Description \\
60 \hline
61 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62 & $\rightarrow$ U & U-vector component Diagnostic \\
63 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65 & $\rightarrow$ V & C-Grid V-Point \\
66 & $\rightarrow$ M & C-Grid Mass Point \\
67 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
68 parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
69 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
70 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
71 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
72 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
73 & & vector or counter component mate \\ \hline
74 \end{tabular}
75 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
76 \end{center}
77 \end{table}
78
79
80 \noindent
81 As an example, consider a diagnostic whose associated GDIAG parameter is equal
82 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
83 U-vector component located at the C-grid U-point.
84 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
85
86
87 \noindent
88 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
89 C-grid location, etc.) defined internally. The Output routines use this information
90 in order to determine what type of transformations need to be performed. Any
91 interpolations are done at the time of output rather than during each model step.
92 In this way the User has flexibility in determining the type of gridded data which
93 is output.
94
95
96 \noindent
97 There are several utilities within the GCM available to users to enable, disable,
98 clear, write and retrieve model diagnostics, and may be called from any routine.
99 The available utilities and the CALL sequences are listed below.
100
101
102 \noindent
103 {\bf fill\_diagnostics}: This routine will increment the specified diagnostic
104 quantity with a field sent through the argument list.
105
106
107 \noindent
108 \begin{tabbing}
109 XXXXXXXXX\=XXXXXX\= \kill
110 \> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\
111 bibjflg, bi, bj, arrayin) \\
112 \\
113 where \> myThid \>= Current Process(or) \\
114 \> chardiag \>= Character *8 expression for diag to fill \\
115 \> levflg \>= Integer flag for vertical levels: \\
116 \> \> 0 indicates multiple levels incremented in qdiag \\
117 \> \> non-0 (any integer) - WHICH single level to increment. \\
118 \> \> negative integer - the input data array is single-leveled \\
119 \> \> positive integer - the input data array is multi-leveled \\
120 \> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\
121 \> \> positive: fill in "nlevs" levels in the same order as \\
122 \> \> the input array \\
123 \> \> negative: fill in -nlevs levels in reverse order. \\
124 \> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\
125 \> \> 0 indicates that the bi-bj loop must be done here \\
126 \> \> 1 indicates that the bi-bj loop is done OUTSIDE \\
127 \> \> 2 indicates that the bi-bj loop is done OUTSIDE \\
128 \> \> AND that we have been sent a local array \\
129 \> \> 3 indicates that the bi-bj loop is done OUTSIDE \\
130 \> \> AND that we have been sent a local array \\
131 \> \> AND that the array has the shadow regions \\
132 \> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\
133 \> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\
134 \> arrayin \>= Field to increment diagnostics array \\
135 \end{tabbing}
136
137
138 \noindent
139 {\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning
140 that space is allocated for the diagnostic and the model routines will increment the
141 diagnostic value during execution. This routine is the underlying interface
142 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
143 number from the menu, and its calling sequence is given by:
144
145 \noindent
146 \begin{tabbing}
147 XXXXXXXXX\=XXXXXX\= \kill
148 \> call setdiag (num) \\
149 \\
150 where \> num \>= Diagnostic number from menu \\
151 \end{tabbing}
152
153 \noindent
154 {\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine
155 is particulary useful when called from a user output routine, although it can be called
156 from any routine. This routine returns the time-averaged value of the diagnostic by
157 dividing the current accumulated diagnostic value by its corresponding counter. This
158 routine does not change the value of the diagnostic itself, that is, it does not replace
159 the diagnostic with its time-average. The calling sequence for this routine is givin by:
160
161 \noindent
162 \begin{tabbing}
163 XXXXXXXXX\=XXXXXX\= \kill
164 \> call getdiag (lev,num,qtmp,undef) \\
165 \\
166 where \> lev \>= Model Level at which the diagnostic is desired \\
167 \> num \>= Diagnostic number from menu \\
168 \> qtmp \>= Time-Averaged Diagnostic Output \\
169 \> undef \>= Fill value to be used when diagnostic is undefined \\
170 \end{tabbing}
171
172 \noindent
173 {\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is
174 particularly useful when called from user output routines to re-initialize diagnostics
175 during the run. The calling sequence is:
176
177 \noindent
178 \begin{tabbing}
179 XXXXXXXXX\=XXXXXX\= \kill
180 \> call clrdiag (num) \\
181 \\
182 where \> num \>= Diagnostic number from menu \\
183 \end{tabbing}
184
185 \noindent
186 {\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning
187 that the diagnostic is no longer available to the user. The memory previously allocated
188 to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by:
189
190 \noindent
191 \begin{tabbing}
192 XXXXXXXXX\=XXXXXX\= \kill
193 \> call zapdiag (NUM) \\
194 \\
195 where \> num \>= Diagnostic number from menu \\
196 \end{tabbing}
197
198
199 \subsection{Usage Notes}
200 \label{sec:diagnostics:usersguide}
201
202 \noindent
203 We begin this section with a discussion on the manner in which computer
204 memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the
205 single diagnostic array QDIAG which is located in the file \\
206 \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.
207 and has the form:
208
209 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
210
211 \noindent
212 where numdiags is an Integer variable which should be set equal to the number of
213 enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions
214 of qdiag correspond to the horizontal dimension of a given diagnostic, while the third
215 dimension of qdiag is used to identify diagnostic fields and levels combined. In order
216 to minimize the memory requirement of the model for diagnostics, the default GCM
217 executable is compiled with room for only one horizontal diagnostic array, or with
218 numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic,
219 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
220 This can be accomplished by manually changing the parameter numdiags in the
221 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}.
222 numdiags should be set greater than or equal to the sum of all the diagnostics activated
223 for output each multiplied by the number of levels defined for that diagnostic quantity.
224 This is illustrated in the example below:
225
226 \noindent
227 To use the diagnostics package, other than enabling it in packages.conf
228 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
229 must be supplied in the run directory called data.diagnostics. The namelist
230 will activate a user-defined list of diagnostics quantities to be computed,
231 specify the frequency of output, the number of levels, and the name of
232 up to 10 separate output files. A sample data.diagnostics namelist file:
233
234 \noindent
235 $\#$ Diagnostic Package Choices \\
236 $\&$diagnostics\_list \\
237 frequency(1) = 10, \ \\
238 levels(1,1) = 1.,2.,3.,4.,5., \ \\
239 fields(1,1) = 'UVEL ','VVEL ', \ \\
240 filename(1) = 'diagout1', \ \\
241 frequency(2) = 100, \ \\
242 levels(1,2) = 1.,2.,3.,4.,5., \ \\
243 fields(1,2) = 'THETA ','SALT ', \ \\
244 filename(2) = 'diagout2', \ \\
245 $\&$end \ \\
246
247 \noindent
248 In this example, there are two output files that will be generated
249 for each tile and for each output time. The first set of output files
250 has the prefix diagout1, does time averaging every 10 time steps
251 (frequency is 10), they will write fields which are multiple-level
252 fields and output levels 1-5. The names of diagnostics quantities are
253 UVEL and VVEL. The second set of output files
254 has the prefix diagout2, does time averaging every 100 time steps,
255 they include fields which are multiple-level fields, levels output are 1-5,
256 and the names of diagnostics quantities are THETA and SALT.
257
258 \noindent
259 In order to define and include as part of the diagnostic output any field
260 that is desired for a particular experiment, two steps must be taken. The
261 first is to enable the ``User Diagnostic'' in data.diagnostics. This is
262 accomplished by setting one of the fields slots to either UDIAG1 through
263 UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level
264 fields. These are listed in the diagnostics menu. The second step is to
265 add a call to fill\_diagnostics from the subroutine in which the quantity
266 desired for diagnostic output is computed.
267
268 \newpage
269
270 \subsubsection{GCM Diagnostic Menu}
271 \label{sec:diagnostics:menu}
272
273 \begin{tabular}{lllll}
274 \hline\hline
275 N & NAME & UNITS & LEVELS & DESCRIPTION \\
276 \hline
277
278 &\\
279 1 & UFLUX & $Newton/m^2$ & 1
280 &\begin{minipage}[t]{3in}
281 {Surface U-Wind Stress on the atmosphere}
282 \end{minipage}\\
283 2 & VFLUX & $Newton/m^2$ & 1
284 &\begin{minipage}[t]{3in}
285 {Surface V-Wind Stress on the atmosphere}
286 \end{minipage}\\
287 3 & HFLUX & $Watts/m^2$ & 1
288 &\begin{minipage}[t]{3in}
289 {Surface Flux of Sensible Heat}
290 \end{minipage}\\
291 4 & EFLUX & $Watts/m^2$ & 1
292 &\begin{minipage}[t]{3in}
293 {Surface Flux of Latent Heat}
294 \end{minipage}\\
295 5 & QICE & $Watts/m^2$ & 1
296 &\begin{minipage}[t]{3in}
297 {Heat Conduction through Sea-Ice}
298 \end{minipage}\\
299 6 & RADLWG & $Watts/m^2$ & 1
300 &\begin{minipage}[t]{3in}
301 {Net upward LW flux at the ground}
302 \end{minipage}\\
303 7 & RADSWG & $Watts/m^2$ & 1
304 &\begin{minipage}[t]{3in}
305 {Net downward SW flux at the ground}
306 \end{minipage}\\
307 8 & RI & $dimensionless$ & Nrphys
308 &\begin{minipage}[t]{3in}
309 {Richardson Number}
310 \end{minipage}\\
311 9 & CT & $dimensionless$ & 1
312 &\begin{minipage}[t]{3in}
313 {Surface Drag coefficient for T and Q}
314 \end{minipage}\\
315 10 & CU & $dimensionless$ & 1
316 &\begin{minipage}[t]{3in}
317 {Surface Drag coefficient for U and V}
318 \end{minipage}\\
319 11 & ET & $m^2/sec$ & Nrphys
320 &\begin{minipage}[t]{3in}
321 {Diffusivity coefficient for T and Q}
322 \end{minipage}\\
323 12 & EU & $m^2/sec$ & Nrphys
324 &\begin{minipage}[t]{3in}
325 {Diffusivity coefficient for U and V}
326 \end{minipage}\\
327 13 & TURBU & $m/sec/day$ & Nrphys
328 &\begin{minipage}[t]{3in}
329 {U-Momentum Changes due to Turbulence}
330 \end{minipage}\\
331 14 & TURBV & $m/sec/day$ & Nrphys
332 &\begin{minipage}[t]{3in}
333 {V-Momentum Changes due to Turbulence}
334 \end{minipage}\\
335 15 & TURBT & $deg/day$ & Nrphys
336 &\begin{minipage}[t]{3in}
337 {Temperature Changes due to Turbulence}
338 \end{minipage}\\
339 16 & TURBQ & $g/kg/day$ & Nrphys
340 &\begin{minipage}[t]{3in}
341 {Specific Humidity Changes due to Turbulence}
342 \end{minipage}\\
343 17 & MOISTT & $deg/day$ & Nrphys
344 &\begin{minipage}[t]{3in}
345 {Temperature Changes due to Moist Processes}
346 \end{minipage}\\
347 18 & MOISTQ & $g/kg/day$ & Nrphys
348 &\begin{minipage}[t]{3in}
349 {Specific Humidity Changes due to Moist Processes}
350 \end{minipage}\\
351 19 & RADLW & $deg/day$ & Nrphys
352 &\begin{minipage}[t]{3in}
353 {Net Longwave heating rate for each level}
354 \end{minipage}\\
355 20 & RADSW & $deg/day$ & Nrphys
356 &\begin{minipage}[t]{3in}
357 {Net Shortwave heating rate for each level}
358 \end{minipage}\\
359 21 & PREACC & $mm/day$ & 1
360 &\begin{minipage}[t]{3in}
361 {Total Precipitation}
362 \end{minipage}\\
363 22 & PRECON & $mm/day$ & 1
364 &\begin{minipage}[t]{3in}
365 {Convective Precipitation}
366 \end{minipage}\\
367 23 & TUFLUX & $Newton/m^2$ & Nrphys
368 &\begin{minipage}[t]{3in}
369 {Turbulent Flux of U-Momentum}
370 \end{minipage}\\
371 24 & TVFLUX & $Newton/m^2$ & Nrphys
372 &\begin{minipage}[t]{3in}
373 {Turbulent Flux of V-Momentum}
374 \end{minipage}\\
375 25 & TTFLUX & $Watts/m^2$ & Nrphys
376 &\begin{minipage}[t]{3in}
377 {Turbulent Flux of Sensible Heat}
378 \end{minipage}\\
379 26 & TQFLUX & $Watts/m^2$ & Nrphys
380 &\begin{minipage}[t]{3in}
381 {Turbulent Flux of Latent Heat}
382 \end{minipage}\\
383 27 & CN & $dimensionless$ & 1
384 &\begin{minipage}[t]{3in}
385 {Neutral Drag Coefficient}
386 \end{minipage}\\
387 28 & WINDS & $m/sec$ & 1
388 &\begin{minipage}[t]{3in}
389 {Surface Wind Speed}
390 \end{minipage}\\
391 29 & DTSRF & $deg$ & 1
392 &\begin{minipage}[t]{3in}
393 {Air/Surface virtual temperature difference}
394 \end{minipage}\\
395 30 & TG & $deg$ & 1
396 &\begin{minipage}[t]{3in}
397 {Ground temperature}
398 \end{minipage}\\
399 31 & TS & $deg$ & 1
400 &\begin{minipage}[t]{3in}
401 {Surface air temperature (Adiabatic from lowest model layer)}
402 \end{minipage}\\
403 32 & DTG & $deg$ & 1
404 &\begin{minipage}[t]{3in}
405 {Ground temperature adjustment}
406 \end{minipage}\\
407
408 \end{tabular}
409
410 \newpage
411 \vspace*{\fill}
412 \begin{tabular}{lllll}
413 \hline\hline
414 N & NAME & UNITS & LEVELS & DESCRIPTION \\
415 \hline
416
417 &\\
418 33 & QG & $g/kg$ & 1
419 &\begin{minipage}[t]{3in}
420 {Ground specific humidity}
421 \end{minipage}\\
422 34 & QS & $g/kg$ & 1
423 &\begin{minipage}[t]{3in}
424 {Saturation surface specific humidity}
425 \end{minipage}\\
426
427 &\\
428 35 & TGRLW & $deg$ & 1
429 &\begin{minipage}[t]{3in}
430 {Instantaneous ground temperature used as input to the
431 Longwave radiation subroutine}
432 \end{minipage}\\
433 36 & ST4 & $Watts/m^2$ & 1
434 &\begin{minipage}[t]{3in}
435 {Upward Longwave flux at the ground ($\sigma T^4$)}
436 \end{minipage}\\
437 37 & OLR & $Watts/m^2$ & 1
438 &\begin{minipage}[t]{3in}
439 {Net upward Longwave flux at the top of the model}
440 \end{minipage}\\
441 38 & OLRCLR & $Watts/m^2$ & 1
442 &\begin{minipage}[t]{3in}
443 {Net upward clearsky Longwave flux at the top of the model}
444 \end{minipage}\\
445 39 & LWGCLR & $Watts/m^2$ & 1
446 &\begin{minipage}[t]{3in}
447 {Net upward clearsky Longwave flux at the ground}
448 \end{minipage}\\
449 40 & LWCLR & $deg/day$ & Nrphys
450 &\begin{minipage}[t]{3in}
451 {Net clearsky Longwave heating rate for each level}
452 \end{minipage}\\
453 41 & TLW & $deg$ & Nrphys
454 &\begin{minipage}[t]{3in}
455 {Instantaneous temperature used as input to the Longwave radiation
456 subroutine}
457 \end{minipage}\\
458 42 & SHLW & $g/g$ & Nrphys
459 &\begin{minipage}[t]{3in}
460 {Instantaneous specific humidity used as input to the Longwave radiation
461 subroutine}
462 \end{minipage}\\
463 43 & OZLW & $g/g$ & Nrphys
464 &\begin{minipage}[t]{3in}
465 {Instantaneous ozone used as input to the Longwave radiation
466 subroutine}
467 \end{minipage}\\
468 44 & CLMOLW & $0-1$ & Nrphys
469 &\begin{minipage}[t]{3in}
470 {Maximum overlap cloud fraction used in the Longwave radiation
471 subroutine}
472 \end{minipage}\\
473 45 & CLDTOT & $0-1$ & Nrphys
474 &\begin{minipage}[t]{3in}
475 {Total cloud fraction used in the Longwave and Shortwave radiation
476 subroutines}
477 \end{minipage}\\
478 46 & RADSWT & $Watts/m^2$ & 1
479 &\begin{minipage}[t]{3in}
480 {Incident Shortwave radiation at the top of the atmosphere}
481 \end{minipage}\\
482 47 & CLROSW & $0-1$ & Nrphys
483 &\begin{minipage}[t]{3in}
484 {Random overlap cloud fraction used in the shortwave radiation
485 subroutine}
486 \end{minipage}\\
487 48 & CLMOSW & $0-1$ & Nrphys
488 &\begin{minipage}[t]{3in}
489 {Maximum overlap cloud fraction used in the shortwave radiation
490 subroutine}
491 \end{minipage}\\
492 49 & EVAP & $mm/day$ & 1
493 &\begin{minipage}[t]{3in}
494 {Surface evaporation}
495 \end{minipage}\\
496 \end{tabular}
497 \vfill
498
499 \newpage
500 \vspace*{\fill}
501 \begin{tabular}{lllll}
502 \hline\hline
503 N & NAME & UNITS & LEVELS & DESCRIPTION \\
504 \hline
505
506 &\\
507 50 & DUDT & $m/sec/day$ & Nrphys
508 &\begin{minipage}[t]{3in}
509 {Total U-Wind tendency}
510 \end{minipage}\\
511 51 & DVDT & $m/sec/day$ & Nrphys
512 &\begin{minipage}[t]{3in}
513 {Total V-Wind tendency}
514 \end{minipage}\\
515 52 & DTDT & $deg/day$ & Nrphys
516 &\begin{minipage}[t]{3in}
517 {Total Temperature tendency}
518 \end{minipage}\\
519 53 & DQDT & $g/kg/day$ & Nrphys
520 &\begin{minipage}[t]{3in}
521 {Total Specific Humidity tendency}
522 \end{minipage}\\
523 54 & USTAR & $m/sec$ & 1
524 &\begin{minipage}[t]{3in}
525 {Surface USTAR wind}
526 \end{minipage}\\
527 55 & Z0 & $m$ & 1
528 &\begin{minipage}[t]{3in}
529 {Surface roughness}
530 \end{minipage}\\
531 56 & FRQTRB & $0-1$ & Nrphys-1
532 &\begin{minipage}[t]{3in}
533 {Frequency of Turbulence}
534 \end{minipage}\\
535 57 & PBL & $mb$ & 1
536 &\begin{minipage}[t]{3in}
537 {Planetary Boundary Layer depth}
538 \end{minipage}\\
539 58 & SWCLR & $deg/day$ & Nrphys
540 &\begin{minipage}[t]{3in}
541 {Net clearsky Shortwave heating rate for each level}
542 \end{minipage}\\
543 59 & OSR & $Watts/m^2$ & 1
544 &\begin{minipage}[t]{3in}
545 {Net downward Shortwave flux at the top of the model}
546 \end{minipage}\\
547 60 & OSRCLR & $Watts/m^2$ & 1
548 &\begin{minipage}[t]{3in}
549 {Net downward clearsky Shortwave flux at the top of the model}
550 \end{minipage}\\
551 61 & CLDMAS & $kg / m^2$ & Nrphys
552 &\begin{minipage}[t]{3in}
553 {Convective cloud mass flux}
554 \end{minipage}\\
555 62 & UAVE & $m/sec$ & Nrphys
556 &\begin{minipage}[t]{3in}
557 {Time-averaged $u-Wind$}
558 \end{minipage}\\
559 63 & VAVE & $m/sec$ & Nrphys
560 &\begin{minipage}[t]{3in}
561 {Time-averaged $v-Wind$}
562 \end{minipage}\\
563 64 & TAVE & $deg$ & Nrphys
564 &\begin{minipage}[t]{3in}
565 {Time-averaged $Temperature$}
566 \end{minipage}\\
567 65 & QAVE & $g/g$ & Nrphys
568 &\begin{minipage}[t]{3in}
569 {Time-averaged $Specific \, \, Humidity$}
570 \end{minipage}\\
571 66 & PAVE & $mb$ & 1
572 &\begin{minipage}[t]{3in}
573 {Time-averaged $p_{surf} - p_{top}$}
574 \end{minipage}\\
575 67 & QQAVE & $(m/sec)^2$ & Nrphys
576 &\begin{minipage}[t]{3in}
577 {Time-averaged $Turbulent Kinetic Energy$}
578 \end{minipage}\\
579 68 & SWGCLR & $Watts/m^2$ & 1
580 &\begin{minipage}[t]{3in}
581 {Net downward clearsky Shortwave flux at the ground}
582 \end{minipage}\\
583 69 & SDIAG1 & & 1
584 &\begin{minipage}[t]{3in}
585 {User-Defined Surface Diagnostic-1}
586 \end{minipage}\\
587 70 & SDIAG2 & & 1
588 &\begin{minipage}[t]{3in}
589 {User-Defined Surface Diagnostic-2}
590 \end{minipage}\\
591 71 & UDIAG1 & & Nrphys
592 &\begin{minipage}[t]{3in}
593 {User-Defined Upper-Air Diagnostic-1}
594 \end{minipage}\\
595 72 & UDIAG2 & & Nrphys
596 &\begin{minipage}[t]{3in}
597 {User-Defined Upper-Air Diagnostic-2}
598 \end{minipage}\\
599 73 & DIABU & $m/sec/day$ & Nrphys
600 &\begin{minipage}[t]{3in}
601 {Total Diabatic forcing on $u-Wind$}
602 \end{minipage}\\
603 74 & DIABV & $m/sec/day$ & Nrphys
604 &\begin{minipage}[t]{3in}
605 {Total Diabatic forcing on $v-Wind$}
606 \end{minipage}\\
607 75 & DIABT & $deg/day$ & Nrphys
608 &\begin{minipage}[t]{3in}
609 {Total Diabatic forcing on $Temperature$}
610 \end{minipage}\\
611 76 & DIABQ & $g/kg/day$ & Nrphys
612 &\begin{minipage}[t]{3in}
613 {Total Diabatic forcing on $Specific \, \, Humidity$}
614 \end{minipage}\\
615
616 \end{tabular}
617 \vfill
618
619 \newpage
620 \vspace*{\fill}
621 \begin{tabular}{lllll}
622 \hline\hline
623 N & NAME & UNITS & LEVELS & DESCRIPTION \\
624 \hline
625
626 77 & VINTUQ & $m/sec \cdot g/kg$ & 1
627 &\begin{minipage}[t]{3in}
628 {Vertically integrated $u \, q$}
629 \end{minipage}\\
630 78 & VINTVQ & $m/sec \cdot g/kg$ & 1
631 &\begin{minipage}[t]{3in}
632 {Vertically integrated $v \, q$}
633 \end{minipage}\\
634 79 & VINTUT & $m/sec \cdot deg$ & 1
635 &\begin{minipage}[t]{3in}
636 {Vertically integrated $u \, T$}
637 \end{minipage}\\
638 80 & VINTVT & $m/sec \cdot deg$ & 1
639 &\begin{minipage}[t]{3in}
640 {Vertically integrated $v \, T$}
641 \end{minipage}\\
642 81 & CLDFRC & $0-1$ & 1
643 &\begin{minipage}[t]{3in}
644 {Total Cloud Fraction}
645 \end{minipage}\\
646 82 & QINT & $gm/cm^2$ & 1
647 &\begin{minipage}[t]{3in}
648 {Precipitable water}
649 \end{minipage}\\
650 83 & U2M & $m/sec$ & 1
651 &\begin{minipage}[t]{3in}
652 {U-Wind at 2 meters}
653 \end{minipage}\\
654 84 & V2M & $m/sec$ & 1
655 &\begin{minipage}[t]{3in}
656 {V-Wind at 2 meters}
657 \end{minipage}\\
658 85 & T2M & $deg$ & 1
659 &\begin{minipage}[t]{3in}
660 {Temperature at 2 meters}
661 \end{minipage}\\
662 86 & Q2M & $g/kg$ & 1
663 &\begin{minipage}[t]{3in}
664 {Specific Humidity at 2 meters}
665 \end{minipage}\\
666 87 & U10M & $m/sec$ & 1
667 &\begin{minipage}[t]{3in}
668 {U-Wind at 10 meters}
669 \end{minipage}\\
670 88 & V10M & $m/sec$ & 1
671 &\begin{minipage}[t]{3in}
672 {V-Wind at 10 meters}
673 \end{minipage}\\
674 89 & T10M & $deg$ & 1
675 &\begin{minipage}[t]{3in}
676 {Temperature at 10 meters}
677 \end{minipage}\\
678 90 & Q10M & $g/kg$ & 1
679 &\begin{minipage}[t]{3in}
680 {Specific Humidity at 10 meters}
681 \end{minipage}\\
682 91 & DTRAIN & $kg/m^2$ & Nrphys
683 &\begin{minipage}[t]{3in}
684 {Detrainment Cloud Mass Flux}
685 \end{minipage}\\
686 92 & QFILL & $g/kg/day$ & Nrphys
687 &\begin{minipage}[t]{3in}
688 {Filling of negative specific humidity}
689 \end{minipage}\\
690
691 \end{tabular}
692 \vspace{1.5in}
693 \vfill
694
695 \newpage
696
697 \subsubsection{Diagnostic Description}
698
699 In this section we list and describe the diagnostic quantities available within the
700 GCM. The diagnostics are listed in the order that they appear in the
701 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
702 In all cases, each diagnostic as currently archived on the output datasets
703 is time-averaged over its diagnostic output frequency:
704
705 \[
706 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
707 \]
708 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
709 output frequency of the diagnostic, and $\Delta t$ is
710 the timestep over which the diagnostic is updated.
711
712 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
713
714 The zonal wind stress is the turbulent flux of zonal momentum from
715 the surface. See section 3.3 for a description of the surface layer parameterization.
716 \[
717 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
718 \]
719 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
720 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
721 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
722 the zonal wind in the lowest model layer.
723 \\
724
725
726 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
727
728 The meridional wind stress is the turbulent flux of meridional momentum from
729 the surface. See section 3.3 for a description of the surface layer parameterization.
730 \[
731 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
732 \]
733 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
734 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
735 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
736 the meridional wind in the lowest model layer.
737 \\
738
739 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
740
741 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
742 gradient of virtual potential temperature and the eddy exchange coefficient:
743 \[
744 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
745 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
746 \]
747 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
748 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
749 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
750 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
751 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
752 at the surface and at the bottom model level.
753 \\
754
755
756 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
757
758 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
759 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
760 \[
761 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
762 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
763 \]
764 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
765 the potential evapotranspiration actually evaporated, L is the latent
766 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
767 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
768 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
769 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
770 humidity at the surface and at the bottom model level, respectively.
771 \\
772
773 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
774
775 Over sea ice there is an additional source of energy at the surface due to the heat
776 conduction from the relatively warm ocean through the sea ice. The heat conduction
777 through sea ice represents an additional energy source term for the ground temperature equation.
778
779 \[
780 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
781 \]
782
783 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
784 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
785 $T_g$ is the temperature of the sea ice.
786
787 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
788 \\
789
790
791 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
792
793 \begin{eqnarray*}
794 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
795 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
796 \end{eqnarray*}
797 \\
798 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
799 $F_{LW}^\uparrow$ is
800 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
801 \\
802
803 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
804
805 \begin{eqnarray*}
806 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
807 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
808 \end{eqnarray*}
809 \\
810 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
811 $F_{SW}^\downarrow$ is
812 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
813 \\
814
815
816 \noindent
817 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
818
819 \noindent
820 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
821 \[
822 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
823 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
824 \]
825 \\
826 where we used the hydrostatic equation:
827 \[
828 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
829 \]
830 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
831 indicate dominantly unstable shear, and large positive values indicate dominantly stable
832 stratification.
833 \\
834
835 \noindent
836 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
837
838 \noindent
839 The surface exchange coefficient is obtained from the similarity functions for the stability
840 dependant flux profile relationships:
841 \[
842 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
843 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
844 { k \over { (\psi_{h} + \psi_{g}) } }
845 \]
846 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
847 viscous sublayer non-dimensional temperature or moisture change:
848 \[
849 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
850 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
851 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
852 \]
853 and:
854 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
855
856 \noindent
857 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
858 the temperature and moisture gradients, specified differently for stable and unstable
859 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
860 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
861 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
862 (see diagnostic number 67), and the subscript ref refers to a reference value.
863 \\
864
865 \noindent
866 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
867
868 \noindent
869 The surface exchange coefficient is obtained from the similarity functions for the stability
870 dependant flux profile relationships:
871 \[
872 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
873 \]
874 where $\psi_m$ is the surface layer non-dimensional wind shear:
875 \[
876 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
877 \]
878 \noindent
879 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
880 the temperature and moisture gradients, specified differently for stable and unstable layers
881 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
882 non-dimensional stability parameter, $u_*$ is the surface stress velocity
883 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
884 \\
885
886 \noindent
887 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
888
889 \noindent
890 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
891 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
892 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
893 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
894 takes the form:
895 \[
896 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
897 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
898 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
899 \]
900 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
901 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
902 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
903 depth,
904 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
905 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
906 dimensionless buoyancy and wind shear
907 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
908 are functions of the Richardson number.
909
910 \noindent
911 For the detailed equations and derivations of the modified level 2.5 closure scheme,
912 see Helfand and Labraga, 1988.
913
914 \noindent
915 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
916 in units of $m/sec$, given by:
917 \[
918 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
919 \]
920 \noindent
921 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
922 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
923 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
924 and $W_s$ is the magnitude of the surface layer wind.
925 \\
926
927 \noindent
928 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
929
930 \noindent
931 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
932 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
933 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
934 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
935 takes the form:
936 \[
937 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
938 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
939 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
940 \]
941 \noindent
942 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
943 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
944 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
945 depth,
946 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
947 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
948 dimensionless buoyancy and wind shear
949 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
950 are functions of the Richardson number.
951
952 \noindent
953 For the detailed equations and derivations of the modified level 2.5 closure scheme,
954 see Helfand and Labraga, 1988.
955
956 \noindent
957 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
958 in units of $m/sec$, given by:
959 \[
960 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
961 \]
962 \noindent
963 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
964 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
965 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
966 magnitude of the surface layer wind.
967 \\
968
969 \noindent
970 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
971
972 \noindent
973 The tendency of U-Momentum due to turbulence is written:
974 \[
975 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
976 = {\pp{}{z} }{(K_m \pp{u}{z})}
977 \]
978
979 \noindent
980 The Helfand and Labraga level 2.5 scheme models the turbulent
981 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
982 equation.
983
984 \noindent
985 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
986
987 \noindent
988 The tendency of V-Momentum due to turbulence is written:
989 \[
990 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
991 = {\pp{}{z} }{(K_m \pp{v}{z})}
992 \]
993
994 \noindent
995 The Helfand and Labraga level 2.5 scheme models the turbulent
996 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
997 equation.
998 \\
999
1000 \noindent
1001 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1002
1003 \noindent
1004 The tendency of temperature due to turbulence is written:
1005 \[
1006 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1007 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1008 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1009 \]
1010
1011 \noindent
1012 The Helfand and Labraga level 2.5 scheme models the turbulent
1013 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1014 equation.
1015 \\
1016
1017 \noindent
1018 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1019
1020 \noindent
1021 The tendency of specific humidity due to turbulence is written:
1022 \[
1023 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1024 = {\pp{}{z} }{(K_h \pp{q}{z})}
1025 \]
1026
1027 \noindent
1028 The Helfand and Labraga level 2.5 scheme models the turbulent
1029 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1030 equation.
1031 \\
1032
1033 \noindent
1034 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1035
1036 \noindent
1037 \[
1038 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1039 \]
1040 where:
1041 \[
1042 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1043 \hspace{.4cm} and
1044 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1045 \]
1046 and
1047 \[
1048 \Gamma_s = g \eta \pp{s}{p}
1049 \]
1050
1051 \noindent
1052 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1053 precipitation processes, or supersaturation rain.
1054 The summation refers to contributions from each cloud type called by RAS.
1055 The dry static energy is given
1056 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1057 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1058 the description of the convective parameterization. The fractional adjustment, or relaxation
1059 parameter, for each cloud type is given as $\alpha$, while
1060 $R$ is the rain re-evaporation adjustment.
1061 \\
1062
1063 \noindent
1064 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1065
1066 \noindent
1067 \[
1068 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1069 \]
1070 where:
1071 \[
1072 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1073 \hspace{.4cm} and
1074 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1075 \]
1076 and
1077 \[
1078 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1079 \]
1080 \noindent
1081 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1082 precipitation processes, or supersaturation rain.
1083 The summation refers to contributions from each cloud type called by RAS.
1084 The dry static energy is given as $s$,
1085 the moist static energy is given as $h$,
1086 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1087 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1088 the description of the convective parameterization. The fractional adjustment, or relaxation
1089 parameter, for each cloud type is given as $\alpha$, while
1090 $R$ is the rain re-evaporation adjustment.
1091 \\
1092
1093 \noindent
1094 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1095
1096 \noindent
1097 The net longwave heating rate is calculated as the vertical divergence of the
1098 net terrestrial radiative fluxes.
1099 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1100 longwave routine.
1101 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1102 For a given cloud fraction,
1103 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1104 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1105 for the upward and downward radiative fluxes.
1106 (see Section \ref{sec:fizhi:radcloud}).
1107 The cloudy-sky flux is then obtained as:
1108
1109 \noindent
1110 \[
1111 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1112 \]
1113
1114 \noindent
1115 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1116 net terrestrial radiative fluxes:
1117 \[
1118 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1119 \]
1120 or
1121 \[
1122 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1123 \]
1124
1125 \noindent
1126 where $g$ is the accelation due to gravity,
1127 $c_p$ is the heat capacity of air at constant pressure,
1128 and
1129 \[
1130 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1131 \]
1132 \\
1133
1134
1135 \noindent
1136 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1137
1138 \noindent
1139 The net Shortwave heating rate is calculated as the vertical divergence of the
1140 net solar radiative fluxes.
1141 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1142 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1143 both CLMO (maximum overlap cloud fraction) and
1144 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1145 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1146 true time-averaged cloud fractions CLMO
1147 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1148 input at the top of the atmosphere.
1149
1150 \noindent
1151 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1152 \[
1153 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1154 \]
1155 or
1156 \[
1157 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1158 \]
1159
1160 \noindent
1161 where $g$ is the accelation due to gravity,
1162 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1163 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1164 \[
1165 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1166 \]
1167 \\
1168
1169 \noindent
1170 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1171
1172 \noindent
1173 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1174 the vertical integral or total precipitable amount is given by:
1175 \[
1176 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1177 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1178 \]
1179 \\
1180
1181 \noindent
1182 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1183 time step, scaled to $mm/day$.
1184 \\
1185
1186 \noindent
1187 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1188
1189 \noindent
1190 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1191 the vertical integral or total precipitable amount is given by:
1192 \[
1193 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1194 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1195 \]
1196 \\
1197
1198 \noindent
1199 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1200 time step, scaled to $mm/day$.
1201 \\
1202
1203 \noindent
1204 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1205
1206 \noindent
1207 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1208 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1209
1210 \[
1211 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1212 {\rho } {(- K_m \pp{U}{z})}
1213 \]
1214
1215 \noindent
1216 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1217 \\
1218
1219 \noindent
1220 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1221
1222 \noindent
1223 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1224 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1225
1226 \[
1227 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1228 {\rho } {(- K_m \pp{V}{z})}
1229 \]
1230
1231 \noindent
1232 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1233 \\
1234
1235
1236 \noindent
1237 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1238
1239 \noindent
1240 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1241 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1242
1243 \noindent
1244 \[
1245 {\bf TTFLUX} = c_p {\rho }
1246 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1247 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1248 \]
1249
1250 \noindent
1251 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1252 \\
1253
1254
1255 \noindent
1256 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1257
1258 \noindent
1259 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1260 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1261
1262 \noindent
1263 \[
1264 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1265 {L {\rho }(- K_h \pp{q}{z})}
1266 \]
1267
1268 \noindent
1269 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1270 \\
1271
1272
1273 \noindent
1274 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1275
1276 \noindent
1277 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1278 \[
1279 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1280 \]
1281
1282 \noindent
1283 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1284 $z_0$ is the surface roughness.
1285
1286 \noindent
1287 NOTE: CN is not available through model version 5.3, but is available in subsequent
1288 versions.
1289 \\
1290
1291 \noindent
1292 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1293
1294 \noindent
1295 The surface wind speed is calculated for the last internal turbulence time step:
1296 \[
1297 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1298 \]
1299
1300 \noindent
1301 where the subscript $Nrphys$ refers to the lowest model level.
1302 \\
1303
1304 \noindent
1305 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1306
1307 \noindent
1308 The air/surface virtual temperature difference measures the stability of the surface layer:
1309 \[
1310 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1311 \]
1312 \noindent
1313 where
1314 \[
1315 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1316 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1317 \]
1318
1319 \noindent
1320 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1321 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1322 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1323 refers to the surface.
1324 \\
1325
1326
1327 \noindent
1328 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1329
1330 \noindent
1331 The ground temperature equation is solved as part of the turbulence package
1332 using a backward implicit time differencing scheme:
1333 \[
1334 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1335 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1336 \]
1337
1338 \noindent
1339 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1340 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1341 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1342 flux, and $C_g$ is the total heat capacity of the ground.
1343 $C_g$ is obtained by solving a heat diffusion equation
1344 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1345 \[
1346 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1347 { 86400. \over {2 \pi} } } \, \, .
1348 \]
1349 \noindent
1350 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1351 {cm \over {^oK}}$,
1352 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1353 by $2 \pi$ $radians/
1354 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1355 is a function of the ground wetness, $W$.
1356 \\
1357
1358 \noindent
1359 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1360
1361 \noindent
1362 The surface temperature estimate is made by assuming that the model's lowest
1363 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1364 The surface temperature is therefore:
1365 \[
1366 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1367 \]
1368 \\
1369
1370 \noindent
1371 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1372
1373 \noindent
1374 The change in surface temperature from one turbulence time step to the next, solved
1375 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1376 \[
1377 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1378 \]
1379
1380 \noindent
1381 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1382 refers to the value at the previous turbulence time level.
1383 \\
1384
1385 \noindent
1386 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1387
1388 \noindent
1389 The ground specific humidity is obtained by interpolating between the specific
1390 humidity at the lowest model level and the specific humidity of a saturated ground.
1391 The interpolation is performed using the potential evapotranspiration function:
1392 \[
1393 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1394 \]
1395
1396 \noindent
1397 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1398 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1399 pressure.
1400 \\
1401
1402 \noindent
1403 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1404
1405 \noindent
1406 The surface saturation specific humidity is the saturation specific humidity at
1407 the ground temprature and surface pressure:
1408 \[
1409 {\bf QS} = q^*(T_g,P_s)
1410 \]
1411 \\
1412
1413 \noindent
1414 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1415 radiation subroutine (deg)}
1416 \[
1417 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1418 \]
1419 \noindent
1420 where $T_g$ is the model ground temperature at the current time step $n$.
1421 \\
1422
1423
1424 \noindent
1425 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1426 \[
1427 {\bf ST4} = \sigma T^4
1428 \]
1429 \noindent
1430 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1431 \\
1432
1433 \noindent
1434 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1435 \[
1436 {\bf OLR} = F_{LW,top}^{NET}
1437 \]
1438 \noindent
1439 where top indicates the top of the first model layer.
1440 In the GCM, $p_{top}$ = 0.0 mb.
1441 \\
1442
1443
1444 \noindent
1445 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1446 \[
1447 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1448 \]
1449 \noindent
1450 where top indicates the top of the first model layer.
1451 In the GCM, $p_{top}$ = 0.0 mb.
1452 \\
1453
1454 \noindent
1455 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1456
1457 \noindent
1458 \begin{eqnarray*}
1459 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1460 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1461 \end{eqnarray*}
1462 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1463 $F(clearsky)_{LW}^\uparrow$ is
1464 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1465 \\
1466
1467 \noindent
1468 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1469
1470 \noindent
1471 The net longwave heating rate is calculated as the vertical divergence of the
1472 net terrestrial radiative fluxes.
1473 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1474 longwave routine.
1475 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1476 For a given cloud fraction,
1477 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1478 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1479 for the upward and downward radiative fluxes.
1480 (see Section \ref{sec:fizhi:radcloud}).
1481 The cloudy-sky flux is then obtained as:
1482
1483 \noindent
1484 \[
1485 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1486 \]
1487
1488 \noindent
1489 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1490 vertical divergence of the
1491 clear-sky longwave radiative flux:
1492 \[
1493 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1494 \]
1495 or
1496 \[
1497 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1498 \]
1499
1500 \noindent
1501 where $g$ is the accelation due to gravity,
1502 $c_p$ is the heat capacity of air at constant pressure,
1503 and
1504 \[
1505 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1506 \]
1507 \\
1508
1509
1510 \noindent
1511 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1512 radiation subroutine (deg)}
1513 \[
1514 {\bf TLW} = T(\lambda , \phi ,level, n)
1515 \]
1516 \noindent
1517 where $T$ is the model temperature at the current time step $n$.
1518 \\
1519
1520
1521 \noindent
1522 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1523 the Longwave radiation subroutine (kg/kg)}
1524 \[
1525 {\bf SHLW} = q(\lambda , \phi , level , n)
1526 \]
1527 \noindent
1528 where $q$ is the model specific humidity at the current time step $n$.
1529 \\
1530
1531
1532 \noindent
1533 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1534 the Longwave radiation subroutine (kg/kg)}
1535 \[
1536 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1537 \]
1538 \noindent
1539 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1540 mean zonally averaged ozone data set.
1541 \\
1542
1543
1544 \noindent
1545 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1546
1547 \noindent
1548 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1549 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1550 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1551 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1552 \[
1553 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1554 \]
1555 \\
1556
1557
1558 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1559
1560 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1561 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1562 Radiation packages.
1563 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1564 \[
1565 {\bf CLDTOT} = F_{RAS} + F_{LS}
1566 \]
1567 \\
1568 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1569 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1570 \\
1571
1572
1573 \noindent
1574 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1575
1576 \noindent
1577 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1578 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1579 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1580 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1581 \[
1582 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1583 \]
1584 \\
1585
1586 \noindent
1587 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1588
1589 \noindent
1590 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1591 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1592 Radiation algorithm. These are
1593 convective and large-scale clouds whose radiative characteristics are not
1594 assumed to be correlated in the vertical.
1595 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1596 \[
1597 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1598 \]
1599 \\
1600
1601 \noindent
1602 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1603 \[
1604 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1605 \]
1606 \noindent
1607 where $S_0$, is the extra-terrestial solar contant,
1608 $R_a$ is the earth-sun distance in Astronomical Units,
1609 and $cos \phi_z$ is the cosine of the zenith angle.
1610 It should be noted that {\bf RADSWT}, as well as
1611 {\bf OSR} and {\bf OSRCLR},
1612 are calculated at the top of the atmosphere (p=0 mb). However, the
1613 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1614 calculated at $p= p_{top}$ (0.0 mb for the GCM).
1615 \\
1616
1617 \noindent
1618 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1619
1620 \noindent
1621 The surface evaporation is a function of the gradient of moisture, the potential
1622 evapotranspiration fraction and the eddy exchange coefficient:
1623 \[
1624 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1625 \]
1626 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1627 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1628 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1629 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1630 number 34) and at the bottom model level, respectively.
1631 \\
1632
1633 \noindent
1634 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1635
1636 \noindent
1637 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1638 and Analysis forcing.
1639 \[
1640 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1641 \]
1642 \\
1643
1644 \noindent
1645 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1646
1647 \noindent
1648 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1649 and Analysis forcing.
1650 \[
1651 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1652 \]
1653 \\
1654
1655 \noindent
1656 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1657
1658 \noindent
1659 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1660 and Analysis forcing.
1661 \begin{eqnarray*}
1662 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1663 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1664 \end{eqnarray*}
1665 \\
1666
1667 \noindent
1668 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1669
1670 \noindent
1671 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1672 and Analysis forcing.
1673 \[
1674 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1675 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1676 \]
1677 \\
1678
1679 \noindent
1680 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1681
1682 \noindent
1683 The surface stress velocity, or the friction velocity, is the wind speed at
1684 the surface layer top impeded by the surface drag:
1685 \[
1686 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1687 C_u = {k \over {\psi_m} }
1688 \]
1689
1690 \noindent
1691 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1692 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1693
1694 \noindent
1695 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1696
1697 \noindent
1698 Over the land surface, the surface roughness length is interpolated to the local
1699 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1700 the roughness length is a function of the surface-stress velocity, $u_*$.
1701 \[
1702 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1703 \]
1704
1705 \noindent
1706 where the constants are chosen to interpolate between the reciprocal relation of
1707 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1708 for moderate to large winds.
1709 \\
1710
1711 \noindent
1712 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1713
1714 \noindent
1715 The fraction of time when turbulence is present is defined as the fraction of
1716 time when the turbulent kinetic energy exceeds some minimum value, defined here
1717 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1718 incremented. The fraction over the averaging interval is reported.
1719 \\
1720
1721 \noindent
1722 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1723
1724 \noindent
1725 The depth of the PBL is defined by the turbulence parameterization to be the
1726 depth at which the turbulent kinetic energy reduces to ten percent of its surface
1727 value.
1728
1729 \[
1730 {\bf PBL} = P_{PBL} - P_{surface}
1731 \]
1732
1733 \noindent
1734 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1735 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1736 \\
1737
1738 \noindent
1739 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1740
1741 \noindent
1742 The net Shortwave heating rate is calculated as the vertical divergence of the
1743 net solar radiative fluxes.
1744 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1745 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1746 both CLMO (maximum overlap cloud fraction) and
1747 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1748 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1749 true time-averaged cloud fractions CLMO
1750 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1751 input at the top of the atmosphere.
1752
1753 \noindent
1754 The heating rate due to Shortwave Radiation under clear skies is defined as:
1755 \[
1756 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1757 \]
1758 or
1759 \[
1760 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1761 \]
1762
1763 \noindent
1764 where $g$ is the accelation due to gravity,
1765 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1766 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1767 \[
1768 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1769 \]
1770 \\
1771
1772 \noindent
1773 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1774 \[
1775 {\bf OSR} = F_{SW,top}^{NET}
1776 \]
1777 \noindent
1778 where top indicates the top of the first model layer used in the shortwave radiation
1779 routine.
1780 In the GCM, $p_{SW_{top}}$ = 0 mb.
1781 \\
1782
1783 \noindent
1784 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1785 \[
1786 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1787 \]
1788 \noindent
1789 where top indicates the top of the first model layer used in the shortwave radiation
1790 routine.
1791 In the GCM, $p_{SW_{top}}$ = 0 mb.
1792 \\
1793
1794
1795 \noindent
1796 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1797
1798 \noindent
1799 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1800 \[
1801 {\bf CLDMAS} = \eta m_B
1802 \]
1803 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1804 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1805 description of the convective parameterization.
1806 \\
1807
1808
1809
1810 \noindent
1811 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1812
1813 \noindent
1814 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1815 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1816 Zonal U-Wind which is archived on the Prognostic Output data stream.
1817 \[
1818 {\bf UAVE} = u(\lambda, \phi, level , t)
1819 \]
1820 \\
1821 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1822 \\
1823
1824 \noindent
1825 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1826
1827 \noindent
1828 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1829 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1830 Meridional V-Wind which is archived on the Prognostic Output data stream.
1831 \[
1832 {\bf VAVE} = v(\lambda, \phi, level , t)
1833 \]
1834 \\
1835 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1836 \\
1837
1838 \noindent
1839 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1840
1841 \noindent
1842 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1843 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1844 Temperature which is archived on the Prognostic Output data stream.
1845 \[
1846 {\bf TAVE} = T(\lambda, \phi, level , t)
1847 \]
1848 \\
1849
1850 \noindent
1851 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1852
1853 \noindent
1854 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1855 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1856 Specific Humidity which is archived on the Prognostic Output data stream.
1857 \[
1858 {\bf QAVE} = q(\lambda, \phi, level , t)
1859 \]
1860 \\
1861
1862 \noindent
1863 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1864
1865 \noindent
1866 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1867 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1868 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1869 \begin{eqnarray*}
1870 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1871 & = & p_s(\lambda, \phi, level , t) - p_T
1872 \end{eqnarray*}
1873 \\
1874
1875
1876 \noindent
1877 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1878
1879 \noindent
1880 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1881 produced by the GCM Turbulence parameterization over
1882 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1883 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1884 \[
1885 {\bf QQAVE} = qq(\lambda, \phi, level , t)
1886 \]
1887 \\
1888 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1889 \\
1890
1891 \noindent
1892 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1893
1894 \noindent
1895 \begin{eqnarray*}
1896 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1897 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1898 \end{eqnarray*}
1899 \noindent
1900 \\
1901 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1902 $F(clearsky){SW}^\downarrow$ is
1903 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1904 the upward clearsky Shortwave flux.
1905 \\
1906
1907 \noindent
1908 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1909
1910 \noindent
1911 The GCM provides Users with a built-in mechanism for archiving user-defined
1912 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1913 diagnostic counters and pointers located in COMMON /DIAGP/,
1914 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1915 A convenient method for incorporating all necessary COMMON files is to
1916 include the GCM {\em vstate.com} file in the routine which employs the
1917 user-defined diagnostics.
1918
1919 \noindent
1920 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1921 the QDIAG array with the desired quantity within the User's
1922 application program or within modified GCM subroutines, as well as increment
1923 the diagnostic counter at the time when the diagnostic is updated.
1924 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1925 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1926 diagnostic has been enabled.
1927 The syntax for its use is given by
1928 \begin{verbatim}
1929 do j=1,jm
1930 do i=1,im
1931 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1932 enddo
1933 enddo
1934
1935 NSDIAG1 = NSDIAG1 + 1
1936 \end{verbatim}
1937 The diagnostics defined in this manner will automatically be archived by the output routines.
1938 \\
1939
1940 \noindent
1941 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1942
1943 \noindent
1944 The GCM provides Users with a built-in mechanism for archiving user-defined
1945 diagnostics. For a complete description refer to Diagnostic \#84.
1946 The syntax for using the surface SDIAG2 diagnostic is given by
1947 \begin{verbatim}
1948 do j=1,jm
1949 do i=1,im
1950 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1951 enddo
1952 enddo
1953
1954 NSDIAG2 = NSDIAG2 + 1
1955 \end{verbatim}
1956 The diagnostics defined in this manner will automatically be archived by the output routines.
1957 \\
1958
1959 \noindent
1960 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1961
1962 \noindent
1963 The GCM provides Users with a built-in mechanism for archiving user-defined
1964 diagnostics. For a complete description refer to Diagnostic \#84.
1965 The syntax for using the upper-air UDIAG1 diagnostic is given by
1966 \begin{verbatim}
1967 do L=1,Nrphys
1968 do j=1,jm
1969 do i=1,im
1970 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1971 enddo
1972 enddo
1973 enddo
1974
1975 NUDIAG1 = NUDIAG1 + 1
1976 \end{verbatim}
1977 The diagnostics defined in this manner will automatically be archived by the
1978 output programs.
1979 \\
1980
1981 \noindent
1982 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1983
1984 \noindent
1985 The GCM provides Users with a built-in mechanism for archiving user-defined
1986 diagnostics. For a complete description refer to Diagnostic \#84.
1987 The syntax for using the upper-air UDIAG2 diagnostic is given by
1988 \begin{verbatim}
1989 do L=1,Nrphys
1990 do j=1,jm
1991 do i=1,im
1992 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1993 enddo
1994 enddo
1995 enddo
1996
1997 NUDIAG2 = NUDIAG2 + 1
1998 \end{verbatim}
1999 The diagnostics defined in this manner will automatically be archived by the
2000 output programs.
2001 \\
2002
2003
2004 \noindent
2005 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2006
2007 \noindent
2008 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2009 and the Analysis forcing.
2010 \[
2011 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2012 \]
2013 \\
2014
2015 \noindent
2016 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2017
2018 \noindent
2019 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2020 and the Analysis forcing.
2021 \[
2022 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2023 \]
2024 \\
2025
2026 \noindent
2027 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2028
2029 \noindent
2030 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2031 and the Analysis forcing.
2032 \begin{eqnarray*}
2033 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2034 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2035 \end{eqnarray*}
2036 \\
2037 If we define the time-tendency of Temperature due to Diabatic processes as
2038 \begin{eqnarray*}
2039 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2040 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2041 \end{eqnarray*}
2042 then, since there are no surface pressure changes due to Diabatic processes, we may write
2043 \[
2044 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2045 \]
2046 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2047 \[
2048 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2049 \]
2050 \\
2051
2052 \noindent
2053 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2054
2055 \noindent
2056 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2057 and the Analysis forcing.
2058 \[
2059 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2060 \]
2061 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2062 \[
2063 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2064 \]
2065 then, since there are no surface pressure changes due to Diabatic processes, we may write
2066 \[
2067 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2068 \]
2069 Thus, {\bf DIABQ} may be written as
2070 \[
2071 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2072 \]
2073 \\
2074
2075 \noindent
2076 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2077
2078 \noindent
2079 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2080 $u q$ over the depth of the atmosphere at each model timestep,
2081 and dividing by the total mass of the column.
2082 \[
2083 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2084 \]
2085 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2086 \[
2087 {\bf VINTUQ} = { \int_0^1 u q dp }
2088 \]
2089 \\
2090
2091
2092 \noindent
2093 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2094
2095 \noindent
2096 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2097 $v q$ over the depth of the atmosphere at each model timestep,
2098 and dividing by the total mass of the column.
2099 \[
2100 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2101 \]
2102 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2103 \[
2104 {\bf VINTVQ} = { \int_0^1 v q dp }
2105 \]
2106 \\
2107
2108
2109 \noindent
2110 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2111
2112 \noindent
2113 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2114 $u T$ over the depth of the atmosphere at each model timestep,
2115 and dividing by the total mass of the column.
2116 \[
2117 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2118 \]
2119 Or,
2120 \[
2121 {\bf VINTUT} = { \int_0^1 u T dp }
2122 \]
2123 \\
2124
2125 \noindent
2126 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2127
2128 \noindent
2129 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2130 $v T$ over the depth of the atmosphere at each model timestep,
2131 and dividing by the total mass of the column.
2132 \[
2133 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2134 \]
2135 Using $\rho \delta z = -{\delta p \over g} $, we have
2136 \[
2137 {\bf VINTVT} = { \int_0^1 v T dp }
2138 \]
2139 \\
2140
2141 \noindent
2142 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2143
2144 If we define the
2145 time-averaged random and maximum overlapped cloudiness as CLRO and
2146 CLMO respectively, then the probability of clear sky associated
2147 with random overlapped clouds at any level is (1-CLRO) while the probability of
2148 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2149 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2150 the total cloud fraction at each level may be obtained by
2151 1-(1-CLRO)*(1-CLMO).
2152
2153 At any given level, we may define the clear line-of-site probability by
2154 appropriately accounting for the maximum and random overlap
2155 cloudiness. The clear line-of-site probability is defined to be
2156 equal to the product of the clear line-of-site probabilities
2157 associated with random and maximum overlap cloudiness. The clear
2158 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2159 from the current pressure $p$
2160 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2161 is simply 1.0 minus the largest maximum overlap cloud value along the
2162 line-of-site, ie.
2163
2164 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2165
2166 Thus, even in the time-averaged sense it is assumed that the
2167 maximum overlap clouds are correlated in the vertical. The clear
2168 line-of-site probability associated with random overlap clouds is
2169 defined to be the product of the clear sky probabilities at each
2170 level along the line-of-site, ie.
2171
2172 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2173
2174 The total cloud fraction at a given level associated with a line-
2175 of-site calculation is given by
2176
2177 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2178 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2179
2180
2181 \noindent
2182 The 2-dimensional net cloud fraction as seen from the top of the
2183 atmosphere is given by
2184 \[
2185 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2186 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2187 \]
2188 \\
2189 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2190
2191
2192 \noindent
2193 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2194
2195 \noindent
2196 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2197 given by:
2198 \begin{eqnarray*}
2199 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2200 & = & {\pi \over g} \int_0^1 q dp
2201 \end{eqnarray*}
2202 where we have used the hydrostatic relation
2203 $\rho \delta z = -{\delta p \over g} $.
2204 \\
2205
2206
2207 \noindent
2208 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2209
2210 \noindent
2211 The u-wind at the 2-meter depth is determined from the similarity theory:
2212 \[
2213 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2214 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2215 \]
2216
2217 \noindent
2218 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2219 $sl$ refers to the height of the top of the surface layer. If the roughness height
2220 is above two meters, ${\bf U2M}$ is undefined.
2221 \\
2222
2223 \noindent
2224 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2225
2226 \noindent
2227 The v-wind at the 2-meter depth is a determined from the similarity theory:
2228 \[
2229 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2230 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2231 \]
2232
2233 \noindent
2234 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2235 $sl$ refers to the height of the top of the surface layer. If the roughness height
2236 is above two meters, ${\bf V2M}$ is undefined.
2237 \\
2238
2239 \noindent
2240 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2241
2242 \noindent
2243 The temperature at the 2-meter depth is a determined from the similarity theory:
2244 \[
2245 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2246 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2247 (\theta_{sl} - \theta_{surf}))
2248 \]
2249 where:
2250 \[
2251 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2252 \]
2253
2254 \noindent
2255 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2256 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2257 $sl$ refers to the height of the top of the surface layer. If the roughness height
2258 is above two meters, ${\bf T2M}$ is undefined.
2259 \\
2260
2261 \noindent
2262 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2263
2264 \noindent
2265 The specific humidity at the 2-meter depth is determined from the similarity theory:
2266 \[
2267 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2268 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2269 (q_{sl} - q_{surf}))
2270 \]
2271 where:
2272 \[
2273 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2274 \]
2275
2276 \noindent
2277 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2278 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2279 $sl$ refers to the height of the top of the surface layer. If the roughness height
2280 is above two meters, ${\bf Q2M}$ is undefined.
2281 \\
2282
2283 \noindent
2284 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2285
2286 \noindent
2287 The u-wind at the 10-meter depth is an interpolation between the surface wind
2288 and the model lowest level wind using the ratio of the non-dimensional wind shear
2289 at the two levels:
2290 \[
2291 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2292 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2293 \]
2294
2295 \noindent
2296 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2297 $sl$ refers to the height of the top of the surface layer.
2298 \\
2299
2300 \noindent
2301 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2302
2303 \noindent
2304 The v-wind at the 10-meter depth is an interpolation between the surface wind
2305 and the model lowest level wind using the ratio of the non-dimensional wind shear
2306 at the two levels:
2307 \[
2308 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2309 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2310 \]
2311
2312 \noindent
2313 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2314 $sl$ refers to the height of the top of the surface layer.
2315 \\
2316
2317 \noindent
2318 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2319
2320 \noindent
2321 The temperature at the 10-meter depth is an interpolation between the surface potential
2322 temperature and the model lowest level potential temperature using the ratio of the
2323 non-dimensional temperature gradient at the two levels:
2324 \[
2325 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2326 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2327 (\theta_{sl} - \theta_{surf}))
2328 \]
2329 where:
2330 \[
2331 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2332 \]
2333
2334 \noindent
2335 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2336 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2337 $sl$ refers to the height of the top of the surface layer.
2338 \\
2339
2340 \noindent
2341 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2342
2343 \noindent
2344 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2345 humidity and the model lowest level specific humidity using the ratio of the
2346 non-dimensional temperature gradient at the two levels:
2347 \[
2348 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2349 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2350 (q_{sl} - q_{surf}))
2351 \]
2352 where:
2353 \[
2354 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2355 \]
2356
2357 \noindent
2358 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2359 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2360 $sl$ refers to the height of the top of the surface layer.
2361 \\
2362
2363 \noindent
2364 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2365
2366 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2367 \[
2368 {\bf DTRAIN} = \eta_{r_D}m_B
2369 \]
2370 \noindent
2371 where $r_D$ is the detrainment level,
2372 $m_B$ is the cloud base mass flux, and $\eta$
2373 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2374 \\
2375
2376 \noindent
2377 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2378
2379 \noindent
2380 Due to computational errors associated with the numerical scheme used for
2381 the advection of moisture, negative values of specific humidity may be generated. The
2382 specific humidity is checked for negative values after every dynamics timestep. If negative
2383 values have been produced, a filling algorithm is invoked which redistributes moisture from
2384 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2385 to eliminate negative specific humidity, scaled to a per-day rate:
2386 \[
2387 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2388 \]
2389 where
2390 \[
2391 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2392 \]
2393
2394 \subsection{Dos and Donts}
2395
2396 \subsection{Diagnostics Reference}
2397

  ViewVC Help
Powered by ViewVC 1.1.22