1 |
\section{Diagnostics--A Flexible Infrastructure} |
2 |
\label{sec:pkg:diagnostics} |
3 |
\begin{rawhtml} |
4 |
<!-- CMIREDIR:package_diagnostics: --> |
5 |
\end{rawhtml} |
6 |
|
7 |
\subsection{Introduction} |
8 |
|
9 |
\noindent |
10 |
This section of the documentation describes the Diagnostics package available within |
11 |
the GCM. A large selection of model diagnostics is available for output. |
12 |
In addition to the diagnostic quantities pre-defined in the GCM, there exists |
13 |
the option, in any experiment, to define a new diagnostic quantity and include it |
14 |
as part of the diagnostic output with the addition of a single subroutine call in the |
15 |
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled |
16 |
as default, thus each user must specify the exact diagnostic information required for an |
17 |
experiment. This is accomplished by enabling the specific diagnostic of interest cataloged |
18 |
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling |
19 |
diagnostic output and defining new diagnostic quantities are found in Section |
20 |
\ref{sec:diagnostics:usersguide} of this document. |
21 |
|
22 |
\noindent |
23 |
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
24 |
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
25 |
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
26 |
A counter is defined which records how many times each diagnostic quantity has been |
27 |
incremented. Several special diagnostics are included in the menu. Quantities refered to |
28 |
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
29 |
frequency at which a diagnostic is incremented separately for each model grid location. |
30 |
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
31 |
defining new diagnostics for a particular experiment. |
32 |
|
33 |
\subsection{Equations} |
34 |
Not relevant. |
35 |
|
36 |
\subsection{Key Subroutines and Parameters} |
37 |
\label{sec:diagnostics:diagover} |
38 |
|
39 |
\noindent |
40 |
The diagnostics are computed at various times and places within the GCM. Because the |
41 |
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
42 |
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
43 |
while others are components of vectors. An internal array is defined which contains |
44 |
information concerning various grid attributes of each diagnostic. The GDIAG |
45 |
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
46 |
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
47 |
order to extract the grid-attribute information. The GDIAG array is described in |
48 |
Table \ref{tab:diagnostics:gdiag.tabl}. |
49 |
|
50 |
\begin{table} |
51 |
\caption{Diagnostic Parsing Array} |
52 |
\label{tab:diagnostics:gdiag.tabl} |
53 |
\begin{center} |
54 |
\begin{tabular}{ |c|c|l| } |
55 |
\hline |
56 |
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
57 |
\hline |
58 |
\hline |
59 |
Array & Value & Description \\ |
60 |
\hline |
61 |
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
62 |
& $\rightarrow$ U & U-vector component Diagnostic \\ |
63 |
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
64 |
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
65 |
& $\rightarrow$ V & C-Grid V-Point \\ |
66 |
& $\rightarrow$ M & C-Grid Mass Point \\ |
67 |
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
68 |
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
69 |
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
70 |
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
71 |
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
72 |
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
73 |
& & vector or counter component mate \\ \hline |
74 |
\end{tabular} |
75 |
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
76 |
\end{center} |
77 |
\end{table} |
78 |
|
79 |
|
80 |
\noindent |
81 |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
82 |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
83 |
U-vector component located at the C-grid U-point. |
84 |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
85 |
|
86 |
|
87 |
\noindent |
88 |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
89 |
C-grid location, etc.) defined internally. The Output routines use this information |
90 |
in order to determine what type of transformations need to be performed. Any |
91 |
interpolations are done at the time of output rather than during each model step. |
92 |
In this way the User has flexibility in determining the type of gridded data which |
93 |
is output. |
94 |
|
95 |
|
96 |
\noindent |
97 |
There are several utilities within the GCM available to users to enable, disable, |
98 |
clear, write and retrieve model diagnostics, and may be called from any routine. |
99 |
The available utilities and the CALL sequences are listed below. |
100 |
|
101 |
|
102 |
\noindent |
103 |
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
104 |
quantity with a field sent through the argument list. |
105 |
|
106 |
|
107 |
\noindent |
108 |
\begin{tabbing} |
109 |
XXXXXXXXX\=XXXXXX\= \kill |
110 |
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
111 |
bibjflg, bi, bj, arrayin) \\ |
112 |
\\ |
113 |
where \> myThid \>= Current Process(or) \\ |
114 |
\> chardiag \>= Character *8 expression for diag to fill \\ |
115 |
\> levflg \>= Integer flag for vertical levels: \\ |
116 |
\> \> 0 indicates multiple levels incremented in qdiag \\ |
117 |
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
118 |
\> \> negative integer - the input data array is single-leveled \\ |
119 |
\> \> positive integer - the input data array is multi-leveled \\ |
120 |
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
121 |
\> \> positive: fill in "nlevs" levels in the same order as \\ |
122 |
\> \> the input array \\ |
123 |
\> \> negative: fill in -nlevs levels in reverse order. \\ |
124 |
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
125 |
\> \> 0 indicates that the bi-bj loop must be done here \\ |
126 |
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
127 |
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
128 |
\> \> AND that we have been sent a local array \\ |
129 |
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
130 |
\> \> AND that we have been sent a local array \\ |
131 |
\> \> AND that the array has the shadow regions \\ |
132 |
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
133 |
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
134 |
\> arrayin \>= Field to increment diagnostics array \\ |
135 |
\end{tabbing} |
136 |
|
137 |
|
138 |
\noindent |
139 |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
140 |
that space is allocated for the diagnostic and the model routines will increment the |
141 |
diagnostic value during execution. This routine is the underlying interface |
142 |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
143 |
number from the menu, and its calling sequence is given by: |
144 |
|
145 |
\noindent |
146 |
\begin{tabbing} |
147 |
XXXXXXXXX\=XXXXXX\= \kill |
148 |
\> call setdiag (num) \\ |
149 |
\\ |
150 |
where \> num \>= Diagnostic number from menu \\ |
151 |
\end{tabbing} |
152 |
|
153 |
\noindent |
154 |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
155 |
is particulary useful when called from a user output routine, although it can be called |
156 |
from any routine. This routine returns the time-averaged value of the diagnostic by |
157 |
dividing the current accumulated diagnostic value by its corresponding counter. This |
158 |
routine does not change the value of the diagnostic itself, that is, it does not replace |
159 |
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
160 |
|
161 |
\noindent |
162 |
\begin{tabbing} |
163 |
XXXXXXXXX\=XXXXXX\= \kill |
164 |
\> call getdiag (lev,num,qtmp,undef) \\ |
165 |
\\ |
166 |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
167 |
\> num \>= Diagnostic number from menu \\ |
168 |
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
169 |
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
170 |
\end{tabbing} |
171 |
|
172 |
\noindent |
173 |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
174 |
particularly useful when called from user output routines to re-initialize diagnostics |
175 |
during the run. The calling sequence is: |
176 |
|
177 |
\noindent |
178 |
\begin{tabbing} |
179 |
XXXXXXXXX\=XXXXXX\= \kill |
180 |
\> call clrdiag (num) \\ |
181 |
\\ |
182 |
where \> num \>= Diagnostic number from menu \\ |
183 |
\end{tabbing} |
184 |
|
185 |
\noindent |
186 |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
187 |
that the diagnostic is no longer available to the user. The memory previously allocated |
188 |
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
189 |
|
190 |
\noindent |
191 |
\begin{tabbing} |
192 |
XXXXXXXXX\=XXXXXX\= \kill |
193 |
\> call zapdiag (NUM) \\ |
194 |
\\ |
195 |
where \> num \>= Diagnostic number from menu \\ |
196 |
\end{tabbing} |
197 |
|
198 |
|
199 |
\subsection{Usage Notes} |
200 |
\label{sec:diagnostics:usersguide} |
201 |
|
202 |
\noindent |
203 |
We begin this section with a discussion on the manner in which computer |
204 |
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
205 |
single diagnostic array QDIAG which is located in the file \\ |
206 |
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
207 |
and has the form: |
208 |
|
209 |
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
210 |
|
211 |
\noindent |
212 |
where numdiags is an Integer variable which should be set equal to the number of |
213 |
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
214 |
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
215 |
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
216 |
to minimize the memory requirement of the model for diagnostics, the default GCM |
217 |
executable is compiled with room for only one horizontal diagnostic array, or with |
218 |
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
219 |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
220 |
This can be accomplished by manually changing the parameter numdiags in the |
221 |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. |
222 |
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
223 |
for output each multiplied by the number of levels defined for that diagnostic quantity. |
224 |
This is illustrated in the example below: |
225 |
|
226 |
\noindent |
227 |
To use the diagnostics package, other than enabling it in packages.conf |
228 |
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
229 |
must be supplied in the run directory called data.diagnostics. The namelist |
230 |
will activate a user-defined list of diagnostics quantities to be computed, |
231 |
specify the frequency of output, the number of levels, and the name of |
232 |
up to 10 separate output files. A sample data.diagnostics namelist file: |
233 |
|
234 |
\noindent |
235 |
$\#$ Diagnostic Package Choices \\ |
236 |
$\&$diagnostics\_list \\ |
237 |
frequency(1) = 10, \ \\ |
238 |
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
239 |
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
240 |
filename(1) = 'diagout1', \ \\ |
241 |
frequency(2) = 100, \ \\ |
242 |
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
243 |
fields(1,2) = 'THETA ','SALT ', \ \\ |
244 |
filename(2) = 'diagout2', \ \\ |
245 |
$\&$end \ \\ |
246 |
|
247 |
\noindent |
248 |
In this example, there are two output files that will be generated |
249 |
for each tile and for each output time. The first set of output files |
250 |
has the prefix diagout1, does time averaging every 10 time steps |
251 |
(frequency is 10), they will write fields which are multiple-level |
252 |
fields and output levels 1-5. The names of diagnostics quantities are |
253 |
UVEL and VVEL. The second set of output files |
254 |
has the prefix diagout2, does time averaging every 100 time steps, |
255 |
they include fields which are multiple-level fields, levels output are 1-5, |
256 |
and the names of diagnostics quantities are THETA and SALT. |
257 |
|
258 |
\noindent |
259 |
In order to define and include as part of the diagnostic output any field |
260 |
that is desired for a particular experiment, two steps must be taken. The |
261 |
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
262 |
accomplished by setting one of the fields slots to either UDIAG1 through |
263 |
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
264 |
fields. These are listed in the diagnostics menu. The second step is to |
265 |
add a call to fill\_diagnostics from the subroutine in which the quantity |
266 |
desired for diagnostic output is computed. |
267 |
|
268 |
\newpage |
269 |
|
270 |
\subsubsection{GCM Diagnostic Menu} |
271 |
\label{sec:diagnostics:menu} |
272 |
|
273 |
\begin{tabular}{lllll} |
274 |
\hline\hline |
275 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
276 |
\hline |
277 |
|
278 |
&\\ |
279 |
1 & UFLUX & $Newton/m^2$ & 1 |
280 |
&\begin{minipage}[t]{3in} |
281 |
{Surface U-Wind Stress on the atmosphere} |
282 |
\end{minipage}\\ |
283 |
2 & VFLUX & $Newton/m^2$ & 1 |
284 |
&\begin{minipage}[t]{3in} |
285 |
{Surface V-Wind Stress on the atmosphere} |
286 |
\end{minipage}\\ |
287 |
3 & HFLUX & $Watts/m^2$ & 1 |
288 |
&\begin{minipage}[t]{3in} |
289 |
{Surface Flux of Sensible Heat} |
290 |
\end{minipage}\\ |
291 |
4 & EFLUX & $Watts/m^2$ & 1 |
292 |
&\begin{minipage}[t]{3in} |
293 |
{Surface Flux of Latent Heat} |
294 |
\end{minipage}\\ |
295 |
5 & QICE & $Watts/m^2$ & 1 |
296 |
&\begin{minipage}[t]{3in} |
297 |
{Heat Conduction through Sea-Ice} |
298 |
\end{minipage}\\ |
299 |
6 & RADLWG & $Watts/m^2$ & 1 |
300 |
&\begin{minipage}[t]{3in} |
301 |
{Net upward LW flux at the ground} |
302 |
\end{minipage}\\ |
303 |
7 & RADSWG & $Watts/m^2$ & 1 |
304 |
&\begin{minipage}[t]{3in} |
305 |
{Net downward SW flux at the ground} |
306 |
\end{minipage}\\ |
307 |
8 & RI & $dimensionless$ & Nrphys |
308 |
&\begin{minipage}[t]{3in} |
309 |
{Richardson Number} |
310 |
\end{minipage}\\ |
311 |
9 & CT & $dimensionless$ & 1 |
312 |
&\begin{minipage}[t]{3in} |
313 |
{Surface Drag coefficient for T and Q} |
314 |
\end{minipage}\\ |
315 |
10 & CU & $dimensionless$ & 1 |
316 |
&\begin{minipage}[t]{3in} |
317 |
{Surface Drag coefficient for U and V} |
318 |
\end{minipage}\\ |
319 |
11 & ET & $m^2/sec$ & Nrphys |
320 |
&\begin{minipage}[t]{3in} |
321 |
{Diffusivity coefficient for T and Q} |
322 |
\end{minipage}\\ |
323 |
12 & EU & $m^2/sec$ & Nrphys |
324 |
&\begin{minipage}[t]{3in} |
325 |
{Diffusivity coefficient for U and V} |
326 |
\end{minipage}\\ |
327 |
13 & TURBU & $m/sec/day$ & Nrphys |
328 |
&\begin{minipage}[t]{3in} |
329 |
{U-Momentum Changes due to Turbulence} |
330 |
\end{minipage}\\ |
331 |
14 & TURBV & $m/sec/day$ & Nrphys |
332 |
&\begin{minipage}[t]{3in} |
333 |
{V-Momentum Changes due to Turbulence} |
334 |
\end{minipage}\\ |
335 |
15 & TURBT & $deg/day$ & Nrphys |
336 |
&\begin{minipage}[t]{3in} |
337 |
{Temperature Changes due to Turbulence} |
338 |
\end{minipage}\\ |
339 |
16 & TURBQ & $g/kg/day$ & Nrphys |
340 |
&\begin{minipage}[t]{3in} |
341 |
{Specific Humidity Changes due to Turbulence} |
342 |
\end{minipage}\\ |
343 |
17 & MOISTT & $deg/day$ & Nrphys |
344 |
&\begin{minipage}[t]{3in} |
345 |
{Temperature Changes due to Moist Processes} |
346 |
\end{minipage}\\ |
347 |
18 & MOISTQ & $g/kg/day$ & Nrphys |
348 |
&\begin{minipage}[t]{3in} |
349 |
{Specific Humidity Changes due to Moist Processes} |
350 |
\end{minipage}\\ |
351 |
19 & RADLW & $deg/day$ & Nrphys |
352 |
&\begin{minipage}[t]{3in} |
353 |
{Net Longwave heating rate for each level} |
354 |
\end{minipage}\\ |
355 |
20 & RADSW & $deg/day$ & Nrphys |
356 |
&\begin{minipage}[t]{3in} |
357 |
{Net Shortwave heating rate for each level} |
358 |
\end{minipage}\\ |
359 |
21 & PREACC & $mm/day$ & 1 |
360 |
&\begin{minipage}[t]{3in} |
361 |
{Total Precipitation} |
362 |
\end{minipage}\\ |
363 |
22 & PRECON & $mm/day$ & 1 |
364 |
&\begin{minipage}[t]{3in} |
365 |
{Convective Precipitation} |
366 |
\end{minipage}\\ |
367 |
23 & TUFLUX & $Newton/m^2$ & Nrphys |
368 |
&\begin{minipage}[t]{3in} |
369 |
{Turbulent Flux of U-Momentum} |
370 |
\end{minipage}\\ |
371 |
24 & TVFLUX & $Newton/m^2$ & Nrphys |
372 |
&\begin{minipage}[t]{3in} |
373 |
{Turbulent Flux of V-Momentum} |
374 |
\end{minipage}\\ |
375 |
25 & TTFLUX & $Watts/m^2$ & Nrphys |
376 |
&\begin{minipage}[t]{3in} |
377 |
{Turbulent Flux of Sensible Heat} |
378 |
\end{minipage}\\ |
379 |
26 & TQFLUX & $Watts/m^2$ & Nrphys |
380 |
&\begin{minipage}[t]{3in} |
381 |
{Turbulent Flux of Latent Heat} |
382 |
\end{minipage}\\ |
383 |
27 & CN & $dimensionless$ & 1 |
384 |
&\begin{minipage}[t]{3in} |
385 |
{Neutral Drag Coefficient} |
386 |
\end{minipage}\\ |
387 |
28 & WINDS & $m/sec$ & 1 |
388 |
&\begin{minipage}[t]{3in} |
389 |
{Surface Wind Speed} |
390 |
\end{minipage}\\ |
391 |
29 & DTSRF & $deg$ & 1 |
392 |
&\begin{minipage}[t]{3in} |
393 |
{Air/Surface virtual temperature difference} |
394 |
\end{minipage}\\ |
395 |
30 & TG & $deg$ & 1 |
396 |
&\begin{minipage}[t]{3in} |
397 |
{Ground temperature} |
398 |
\end{minipage}\\ |
399 |
31 & TS & $deg$ & 1 |
400 |
&\begin{minipage}[t]{3in} |
401 |
{Surface air temperature (Adiabatic from lowest model layer)} |
402 |
\end{minipage}\\ |
403 |
32 & DTG & $deg$ & 1 |
404 |
&\begin{minipage}[t]{3in} |
405 |
{Ground temperature adjustment} |
406 |
\end{minipage}\\ |
407 |
|
408 |
\end{tabular} |
409 |
|
410 |
\newpage |
411 |
\vspace*{\fill} |
412 |
\begin{tabular}{lllll} |
413 |
\hline\hline |
414 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
415 |
\hline |
416 |
|
417 |
&\\ |
418 |
33 & QG & $g/kg$ & 1 |
419 |
&\begin{minipage}[t]{3in} |
420 |
{Ground specific humidity} |
421 |
\end{minipage}\\ |
422 |
34 & QS & $g/kg$ & 1 |
423 |
&\begin{minipage}[t]{3in} |
424 |
{Saturation surface specific humidity} |
425 |
\end{minipage}\\ |
426 |
|
427 |
&\\ |
428 |
35 & TGRLW & $deg$ & 1 |
429 |
&\begin{minipage}[t]{3in} |
430 |
{Instantaneous ground temperature used as input to the |
431 |
Longwave radiation subroutine} |
432 |
\end{minipage}\\ |
433 |
36 & ST4 & $Watts/m^2$ & 1 |
434 |
&\begin{minipage}[t]{3in} |
435 |
{Upward Longwave flux at the ground ($\sigma T^4$)} |
436 |
\end{minipage}\\ |
437 |
37 & OLR & $Watts/m^2$ & 1 |
438 |
&\begin{minipage}[t]{3in} |
439 |
{Net upward Longwave flux at the top of the model} |
440 |
\end{minipage}\\ |
441 |
38 & OLRCLR & $Watts/m^2$ & 1 |
442 |
&\begin{minipage}[t]{3in} |
443 |
{Net upward clearsky Longwave flux at the top of the model} |
444 |
\end{minipage}\\ |
445 |
39 & LWGCLR & $Watts/m^2$ & 1 |
446 |
&\begin{minipage}[t]{3in} |
447 |
{Net upward clearsky Longwave flux at the ground} |
448 |
\end{minipage}\\ |
449 |
40 & LWCLR & $deg/day$ & Nrphys |
450 |
&\begin{minipage}[t]{3in} |
451 |
{Net clearsky Longwave heating rate for each level} |
452 |
\end{minipage}\\ |
453 |
41 & TLW & $deg$ & Nrphys |
454 |
&\begin{minipage}[t]{3in} |
455 |
{Instantaneous temperature used as input to the Longwave radiation |
456 |
subroutine} |
457 |
\end{minipage}\\ |
458 |
42 & SHLW & $g/g$ & Nrphys |
459 |
&\begin{minipage}[t]{3in} |
460 |
{Instantaneous specific humidity used as input to the Longwave radiation |
461 |
subroutine} |
462 |
\end{minipage}\\ |
463 |
43 & OZLW & $g/g$ & Nrphys |
464 |
&\begin{minipage}[t]{3in} |
465 |
{Instantaneous ozone used as input to the Longwave radiation |
466 |
subroutine} |
467 |
\end{minipage}\\ |
468 |
44 & CLMOLW & $0-1$ & Nrphys |
469 |
&\begin{minipage}[t]{3in} |
470 |
{Maximum overlap cloud fraction used in the Longwave radiation |
471 |
subroutine} |
472 |
\end{minipage}\\ |
473 |
45 & CLDTOT & $0-1$ & Nrphys |
474 |
&\begin{minipage}[t]{3in} |
475 |
{Total cloud fraction used in the Longwave and Shortwave radiation |
476 |
subroutines} |
477 |
\end{minipage}\\ |
478 |
46 & RADSWT & $Watts/m^2$ & 1 |
479 |
&\begin{minipage}[t]{3in} |
480 |
{Incident Shortwave radiation at the top of the atmosphere} |
481 |
\end{minipage}\\ |
482 |
47 & CLROSW & $0-1$ & Nrphys |
483 |
&\begin{minipage}[t]{3in} |
484 |
{Random overlap cloud fraction used in the shortwave radiation |
485 |
subroutine} |
486 |
\end{minipage}\\ |
487 |
48 & CLMOSW & $0-1$ & Nrphys |
488 |
&\begin{minipage}[t]{3in} |
489 |
{Maximum overlap cloud fraction used in the shortwave radiation |
490 |
subroutine} |
491 |
\end{minipage}\\ |
492 |
49 & EVAP & $mm/day$ & 1 |
493 |
&\begin{minipage}[t]{3in} |
494 |
{Surface evaporation} |
495 |
\end{minipage}\\ |
496 |
\end{tabular} |
497 |
\vfill |
498 |
|
499 |
\newpage |
500 |
\vspace*{\fill} |
501 |
\begin{tabular}{lllll} |
502 |
\hline\hline |
503 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
504 |
\hline |
505 |
|
506 |
&\\ |
507 |
50 & DUDT & $m/sec/day$ & Nrphys |
508 |
&\begin{minipage}[t]{3in} |
509 |
{Total U-Wind tendency} |
510 |
\end{minipage}\\ |
511 |
51 & DVDT & $m/sec/day$ & Nrphys |
512 |
&\begin{minipage}[t]{3in} |
513 |
{Total V-Wind tendency} |
514 |
\end{minipage}\\ |
515 |
52 & DTDT & $deg/day$ & Nrphys |
516 |
&\begin{minipage}[t]{3in} |
517 |
{Total Temperature tendency} |
518 |
\end{minipage}\\ |
519 |
53 & DQDT & $g/kg/day$ & Nrphys |
520 |
&\begin{minipage}[t]{3in} |
521 |
{Total Specific Humidity tendency} |
522 |
\end{minipage}\\ |
523 |
54 & USTAR & $m/sec$ & 1 |
524 |
&\begin{minipage}[t]{3in} |
525 |
{Surface USTAR wind} |
526 |
\end{minipage}\\ |
527 |
55 & Z0 & $m$ & 1 |
528 |
&\begin{minipage}[t]{3in} |
529 |
{Surface roughness} |
530 |
\end{minipage}\\ |
531 |
56 & FRQTRB & $0-1$ & Nrphys-1 |
532 |
&\begin{minipage}[t]{3in} |
533 |
{Frequency of Turbulence} |
534 |
\end{minipage}\\ |
535 |
57 & PBL & $mb$ & 1 |
536 |
&\begin{minipage}[t]{3in} |
537 |
{Planetary Boundary Layer depth} |
538 |
\end{minipage}\\ |
539 |
58 & SWCLR & $deg/day$ & Nrphys |
540 |
&\begin{minipage}[t]{3in} |
541 |
{Net clearsky Shortwave heating rate for each level} |
542 |
\end{minipage}\\ |
543 |
59 & OSR & $Watts/m^2$ & 1 |
544 |
&\begin{minipage}[t]{3in} |
545 |
{Net downward Shortwave flux at the top of the model} |
546 |
\end{minipage}\\ |
547 |
60 & OSRCLR & $Watts/m^2$ & 1 |
548 |
&\begin{minipage}[t]{3in} |
549 |
{Net downward clearsky Shortwave flux at the top of the model} |
550 |
\end{minipage}\\ |
551 |
61 & CLDMAS & $kg / m^2$ & Nrphys |
552 |
&\begin{minipage}[t]{3in} |
553 |
{Convective cloud mass flux} |
554 |
\end{minipage}\\ |
555 |
62 & UAVE & $m/sec$ & Nrphys |
556 |
&\begin{minipage}[t]{3in} |
557 |
{Time-averaged $u-Wind$} |
558 |
\end{minipage}\\ |
559 |
63 & VAVE & $m/sec$ & Nrphys |
560 |
&\begin{minipage}[t]{3in} |
561 |
{Time-averaged $v-Wind$} |
562 |
\end{minipage}\\ |
563 |
64 & TAVE & $deg$ & Nrphys |
564 |
&\begin{minipage}[t]{3in} |
565 |
{Time-averaged $Temperature$} |
566 |
\end{minipage}\\ |
567 |
65 & QAVE & $g/g$ & Nrphys |
568 |
&\begin{minipage}[t]{3in} |
569 |
{Time-averaged $Specific \, \, Humidity$} |
570 |
\end{minipage}\\ |
571 |
66 & PAVE & $mb$ & 1 |
572 |
&\begin{minipage}[t]{3in} |
573 |
{Time-averaged $p_{surf} - p_{top}$} |
574 |
\end{minipage}\\ |
575 |
67 & QQAVE & $(m/sec)^2$ & Nrphys |
576 |
&\begin{minipage}[t]{3in} |
577 |
{Time-averaged $Turbulent Kinetic Energy$} |
578 |
\end{minipage}\\ |
579 |
68 & SWGCLR & $Watts/m^2$ & 1 |
580 |
&\begin{minipage}[t]{3in} |
581 |
{Net downward clearsky Shortwave flux at the ground} |
582 |
\end{minipage}\\ |
583 |
69 & SDIAG1 & & 1 |
584 |
&\begin{minipage}[t]{3in} |
585 |
{User-Defined Surface Diagnostic-1} |
586 |
\end{minipage}\\ |
587 |
70 & SDIAG2 & & 1 |
588 |
&\begin{minipage}[t]{3in} |
589 |
{User-Defined Surface Diagnostic-2} |
590 |
\end{minipage}\\ |
591 |
71 & UDIAG1 & & Nrphys |
592 |
&\begin{minipage}[t]{3in} |
593 |
{User-Defined Upper-Air Diagnostic-1} |
594 |
\end{minipage}\\ |
595 |
72 & UDIAG2 & & Nrphys |
596 |
&\begin{minipage}[t]{3in} |
597 |
{User-Defined Upper-Air Diagnostic-2} |
598 |
\end{minipage}\\ |
599 |
73 & DIABU & $m/sec/day$ & Nrphys |
600 |
&\begin{minipage}[t]{3in} |
601 |
{Total Diabatic forcing on $u-Wind$} |
602 |
\end{minipage}\\ |
603 |
74 & DIABV & $m/sec/day$ & Nrphys |
604 |
&\begin{minipage}[t]{3in} |
605 |
{Total Diabatic forcing on $v-Wind$} |
606 |
\end{minipage}\\ |
607 |
75 & DIABT & $deg/day$ & Nrphys |
608 |
&\begin{minipage}[t]{3in} |
609 |
{Total Diabatic forcing on $Temperature$} |
610 |
\end{minipage}\\ |
611 |
76 & DIABQ & $g/kg/day$ & Nrphys |
612 |
&\begin{minipage}[t]{3in} |
613 |
{Total Diabatic forcing on $Specific \, \, Humidity$} |
614 |
\end{minipage}\\ |
615 |
|
616 |
\end{tabular} |
617 |
\vfill |
618 |
|
619 |
\newpage |
620 |
\vspace*{\fill} |
621 |
\begin{tabular}{lllll} |
622 |
\hline\hline |
623 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
624 |
\hline |
625 |
|
626 |
77 & VINTUQ & $m/sec \cdot g/kg$ & 1 |
627 |
&\begin{minipage}[t]{3in} |
628 |
{Vertically integrated $u \, q$} |
629 |
\end{minipage}\\ |
630 |
78 & VINTVQ & $m/sec \cdot g/kg$ & 1 |
631 |
&\begin{minipage}[t]{3in} |
632 |
{Vertically integrated $v \, q$} |
633 |
\end{minipage}\\ |
634 |
79 & VINTUT & $m/sec \cdot deg$ & 1 |
635 |
&\begin{minipage}[t]{3in} |
636 |
{Vertically integrated $u \, T$} |
637 |
\end{minipage}\\ |
638 |
80 & VINTVT & $m/sec \cdot deg$ & 1 |
639 |
&\begin{minipage}[t]{3in} |
640 |
{Vertically integrated $v \, T$} |
641 |
\end{minipage}\\ |
642 |
81 & CLDFRC & $0-1$ & 1 |
643 |
&\begin{minipage}[t]{3in} |
644 |
{Total Cloud Fraction} |
645 |
\end{minipage}\\ |
646 |
82 & QINT & $gm/cm^2$ & 1 |
647 |
&\begin{minipage}[t]{3in} |
648 |
{Precipitable water} |
649 |
\end{minipage}\\ |
650 |
83 & U2M & $m/sec$ & 1 |
651 |
&\begin{minipage}[t]{3in} |
652 |
{U-Wind at 2 meters} |
653 |
\end{minipage}\\ |
654 |
84 & V2M & $m/sec$ & 1 |
655 |
&\begin{minipage}[t]{3in} |
656 |
{V-Wind at 2 meters} |
657 |
\end{minipage}\\ |
658 |
85 & T2M & $deg$ & 1 |
659 |
&\begin{minipage}[t]{3in} |
660 |
{Temperature at 2 meters} |
661 |
\end{minipage}\\ |
662 |
86 & Q2M & $g/kg$ & 1 |
663 |
&\begin{minipage}[t]{3in} |
664 |
{Specific Humidity at 2 meters} |
665 |
\end{minipage}\\ |
666 |
87 & U10M & $m/sec$ & 1 |
667 |
&\begin{minipage}[t]{3in} |
668 |
{U-Wind at 10 meters} |
669 |
\end{minipage}\\ |
670 |
88 & V10M & $m/sec$ & 1 |
671 |
&\begin{minipage}[t]{3in} |
672 |
{V-Wind at 10 meters} |
673 |
\end{minipage}\\ |
674 |
89 & T10M & $deg$ & 1 |
675 |
&\begin{minipage}[t]{3in} |
676 |
{Temperature at 10 meters} |
677 |
\end{minipage}\\ |
678 |
90 & Q10M & $g/kg$ & 1 |
679 |
&\begin{minipage}[t]{3in} |
680 |
{Specific Humidity at 10 meters} |
681 |
\end{minipage}\\ |
682 |
91 & DTRAIN & $kg/m^2$ & Nrphys |
683 |
&\begin{minipage}[t]{3in} |
684 |
{Detrainment Cloud Mass Flux} |
685 |
\end{minipage}\\ |
686 |
92 & QFILL & $g/kg/day$ & Nrphys |
687 |
&\begin{minipage}[t]{3in} |
688 |
{Filling of negative specific humidity} |
689 |
\end{minipage}\\ |
690 |
|
691 |
\end{tabular} |
692 |
\vspace{1.5in} |
693 |
\vfill |
694 |
|
695 |
\newpage |
696 |
|
697 |
\subsubsection{Diagnostic Description} |
698 |
|
699 |
In this section we list and describe the diagnostic quantities available within the |
700 |
GCM. The diagnostics are listed in the order that they appear in the |
701 |
Diagnostic Menu, Section \ref{sec:diagnostics:menu}. |
702 |
In all cases, each diagnostic as currently archived on the output datasets |
703 |
is time-averaged over its diagnostic output frequency: |
704 |
|
705 |
\[ |
706 |
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
707 |
\] |
708 |
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
709 |
output frequency of the diagnostic, and $\Delta t$ is |
710 |
the timestep over which the diagnostic is updated. |
711 |
|
712 |
{\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } |
713 |
|
714 |
The zonal wind stress is the turbulent flux of zonal momentum from |
715 |
the surface. See section 3.3 for a description of the surface layer parameterization. |
716 |
\[ |
717 |
{\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
718 |
\] |
719 |
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
720 |
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
721 |
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is |
722 |
the zonal wind in the lowest model layer. |
723 |
\\ |
724 |
|
725 |
|
726 |
{\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) } |
727 |
|
728 |
The meridional wind stress is the turbulent flux of meridional momentum from |
729 |
the surface. See section 3.3 for a description of the surface layer parameterization. |
730 |
\[ |
731 |
{\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
732 |
\] |
733 |
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
734 |
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
735 |
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is |
736 |
the meridional wind in the lowest model layer. |
737 |
\\ |
738 |
|
739 |
{\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) } |
740 |
|
741 |
The turbulent flux of sensible heat from the surface to the atmosphere is a function of the |
742 |
gradient of virtual potential temperature and the eddy exchange coefficient: |
743 |
\[ |
744 |
{\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys}) |
745 |
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
746 |
\] |
747 |
where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific |
748 |
heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
749 |
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
750 |
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
751 |
for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature |
752 |
at the surface and at the bottom model level. |
753 |
\\ |
754 |
|
755 |
|
756 |
{\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) } |
757 |
|
758 |
The turbulent flux of latent heat from the surface to the atmosphere is a function of the |
759 |
gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient: |
760 |
\[ |
761 |
{\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys}) |
762 |
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
763 |
\] |
764 |
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
765 |
the potential evapotranspiration actually evaporated, L is the latent |
766 |
heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
767 |
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
768 |
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
769 |
for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific |
770 |
humidity at the surface and at the bottom model level, respectively. |
771 |
\\ |
772 |
|
773 |
{\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) } |
774 |
|
775 |
Over sea ice there is an additional source of energy at the surface due to the heat |
776 |
conduction from the relatively warm ocean through the sea ice. The heat conduction |
777 |
through sea ice represents an additional energy source term for the ground temperature equation. |
778 |
|
779 |
\[ |
780 |
{\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g) |
781 |
\] |
782 |
|
783 |
where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to |
784 |
be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and |
785 |
$T_g$ is the temperature of the sea ice. |
786 |
|
787 |
NOTE: QICE is not available through model version 5.3, but is available in subsequent versions. |
788 |
\\ |
789 |
|
790 |
|
791 |
{\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)} |
792 |
|
793 |
\begin{eqnarray*} |
794 |
{\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\ |
795 |
& = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow |
796 |
\end{eqnarray*} |
797 |
\\ |
798 |
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
799 |
$F_{LW}^\uparrow$ is |
800 |
the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux. |
801 |
\\ |
802 |
|
803 |
{\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)} |
804 |
|
805 |
\begin{eqnarray*} |
806 |
{\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\ |
807 |
& = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow |
808 |
\end{eqnarray*} |
809 |
\\ |
810 |
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
811 |
$F_{SW}^\downarrow$ is |
812 |
the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux. |
813 |
\\ |
814 |
|
815 |
|
816 |
\noindent |
817 |
{\bf 8) \underline {RI} Richardson Number} ($dimensionless$) |
818 |
|
819 |
\noindent |
820 |
The non-dimensional stability indicator is the ratio of the buoyancy to the shear: |
821 |
\[ |
822 |
{\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
823 |
= { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
824 |
\] |
825 |
\\ |
826 |
where we used the hydrostatic equation: |
827 |
\[ |
828 |
{\pp{\Phi}{P^ \kappa}} = c_p \theta_v |
829 |
\] |
830 |
Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$) |
831 |
indicate dominantly unstable shear, and large positive values indicate dominantly stable |
832 |
stratification. |
833 |
\\ |
834 |
|
835 |
\noindent |
836 |
{\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) } |
837 |
|
838 |
\noindent |
839 |
The surface exchange coefficient is obtained from the similarity functions for the stability |
840 |
dependant flux profile relationships: |
841 |
\[ |
842 |
{\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = |
843 |
-{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = |
844 |
{ k \over { (\psi_{h} + \psi_{g}) } } |
845 |
\] |
846 |
where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the |
847 |
viscous sublayer non-dimensional temperature or moisture change: |
848 |
\[ |
849 |
\psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and |
850 |
\hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } |
851 |
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} |
852 |
\] |
853 |
and: |
854 |
$h_{0} = 30z_{0}$ with a maximum value over land of 0.01 |
855 |
|
856 |
\noindent |
857 |
$\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of |
858 |
the temperature and moisture gradients, specified differently for stable and unstable |
859 |
layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
860 |
non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular |
861 |
viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity |
862 |
(see diagnostic number 67), and the subscript ref refers to a reference value. |
863 |
\\ |
864 |
|
865 |
\noindent |
866 |
{\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) } |
867 |
|
868 |
\noindent |
869 |
The surface exchange coefficient is obtained from the similarity functions for the stability |
870 |
dependant flux profile relationships: |
871 |
\[ |
872 |
{\bf CU} = {u_* \over W_s} = { k \over \psi_{m} } |
873 |
\] |
874 |
where $\psi_m$ is the surface layer non-dimensional wind shear: |
875 |
\[ |
876 |
\psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} |
877 |
\] |
878 |
\noindent |
879 |
$\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of |
880 |
the temperature and moisture gradients, specified differently for stable and unstable layers |
881 |
according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
882 |
non-dimensional stability parameter, $u_*$ is the surface stress velocity |
883 |
(see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. |
884 |
\\ |
885 |
|
886 |
\noindent |
887 |
{\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) } |
888 |
|
889 |
\noindent |
890 |
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or |
891 |
moisture flux for the atmosphere above the surface layer can be expressed as a turbulent |
892 |
diffusion coefficient $K_h$ times the negative of the gradient of potential temperature |
893 |
or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$ |
894 |
takes the form: |
895 |
\[ |
896 |
{\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} } |
897 |
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} |
898 |
\\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
899 |
\] |
900 |
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
901 |
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
902 |
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
903 |
depth, |
904 |
$S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
905 |
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
906 |
dimensionless buoyancy and wind shear |
907 |
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
908 |
are functions of the Richardson number. |
909 |
|
910 |
\noindent |
911 |
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
912 |
see Helfand and Labraga, 1988. |
913 |
|
914 |
\noindent |
915 |
In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, |
916 |
in units of $m/sec$, given by: |
917 |
\[ |
918 |
{\bf ET_{Nrphys}} = C_t * u_* = C_H W_s |
919 |
\] |
920 |
\noindent |
921 |
where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the |
922 |
surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface |
923 |
friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient, |
924 |
and $W_s$ is the magnitude of the surface layer wind. |
925 |
\\ |
926 |
|
927 |
\noindent |
928 |
{\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) } |
929 |
|
930 |
\noindent |
931 |
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat |
932 |
momentum flux for the atmosphere above the surface layer can be expressed as a turbulent |
933 |
diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. |
934 |
In the Helfand and Labraga (1988) adaptation of this closure, $K_m$ |
935 |
takes the form: |
936 |
\[ |
937 |
{\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} } |
938 |
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} |
939 |
\\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
940 |
\] |
941 |
\noindent |
942 |
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
943 |
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
944 |
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
945 |
depth, |
946 |
$S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
947 |
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
948 |
dimensionless buoyancy and wind shear |
949 |
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
950 |
are functions of the Richardson number. |
951 |
|
952 |
\noindent |
953 |
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
954 |
see Helfand and Labraga, 1988. |
955 |
|
956 |
\noindent |
957 |
In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, |
958 |
in units of $m/sec$, given by: |
959 |
\[ |
960 |
{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s |
961 |
\] |
962 |
\noindent |
963 |
where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer |
964 |
similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity |
965 |
(see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the |
966 |
magnitude of the surface layer wind. |
967 |
\\ |
968 |
|
969 |
\noindent |
970 |
{\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) } |
971 |
|
972 |
\noindent |
973 |
The tendency of U-Momentum due to turbulence is written: |
974 |
\[ |
975 |
{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} |
976 |
= {\pp{}{z} }{(K_m \pp{u}{z})} |
977 |
\] |
978 |
|
979 |
\noindent |
980 |
The Helfand and Labraga level 2.5 scheme models the turbulent |
981 |
flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion |
982 |
equation. |
983 |
|
984 |
\noindent |
985 |
{\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) } |
986 |
|
987 |
\noindent |
988 |
The tendency of V-Momentum due to turbulence is written: |
989 |
\[ |
990 |
{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} |
991 |
= {\pp{}{z} }{(K_m \pp{v}{z})} |
992 |
\] |
993 |
|
994 |
\noindent |
995 |
The Helfand and Labraga level 2.5 scheme models the turbulent |
996 |
flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion |
997 |
equation. |
998 |
\\ |
999 |
|
1000 |
\noindent |
1001 |
{\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) } |
1002 |
|
1003 |
\noindent |
1004 |
The tendency of temperature due to turbulence is written: |
1005 |
\[ |
1006 |
{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} = |
1007 |
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} |
1008 |
= P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} |
1009 |
\] |
1010 |
|
1011 |
\noindent |
1012 |
The Helfand and Labraga level 2.5 scheme models the turbulent |
1013 |
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
1014 |
equation. |
1015 |
\\ |
1016 |
|
1017 |
\noindent |
1018 |
{\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) } |
1019 |
|
1020 |
\noindent |
1021 |
The tendency of specific humidity due to turbulence is written: |
1022 |
\[ |
1023 |
{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} |
1024 |
= {\pp{}{z} }{(K_h \pp{q}{z})} |
1025 |
\] |
1026 |
|
1027 |
\noindent |
1028 |
The Helfand and Labraga level 2.5 scheme models the turbulent |
1029 |
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
1030 |
equation. |
1031 |
\\ |
1032 |
|
1033 |
\noindent |
1034 |
{\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) } |
1035 |
|
1036 |
\noindent |
1037 |
\[ |
1038 |
{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls} |
1039 |
\] |
1040 |
where: |
1041 |
\[ |
1042 |
\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i |
1043 |
\hspace{.4cm} and |
1044 |
\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q) |
1045 |
\] |
1046 |
and |
1047 |
\[ |
1048 |
\Gamma_s = g \eta \pp{s}{p} |
1049 |
\] |
1050 |
|
1051 |
\noindent |
1052 |
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
1053 |
precipitation processes, or supersaturation rain. |
1054 |
The summation refers to contributions from each cloud type called by RAS. |
1055 |
The dry static energy is given |
1056 |
as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
1057 |
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
1058 |
the description of the convective parameterization. The fractional adjustment, or relaxation |
1059 |
parameter, for each cloud type is given as $\alpha$, while |
1060 |
$R$ is the rain re-evaporation adjustment. |
1061 |
\\ |
1062 |
|
1063 |
\noindent |
1064 |
{\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) } |
1065 |
|
1066 |
\noindent |
1067 |
\[ |
1068 |
{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls} |
1069 |
\] |
1070 |
where: |
1071 |
\[ |
1072 |
\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i |
1073 |
\hspace{.4cm} and |
1074 |
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) |
1075 |
\] |
1076 |
and |
1077 |
\[ |
1078 |
\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p} |
1079 |
\] |
1080 |
\noindent |
1081 |
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
1082 |
precipitation processes, or supersaturation rain. |
1083 |
The summation refers to contributions from each cloud type called by RAS. |
1084 |
The dry static energy is given as $s$, |
1085 |
the moist static energy is given as $h$, |
1086 |
the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
1087 |
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
1088 |
the description of the convective parameterization. The fractional adjustment, or relaxation |
1089 |
parameter, for each cloud type is given as $\alpha$, while |
1090 |
$R$ is the rain re-evaporation adjustment. |
1091 |
\\ |
1092 |
|
1093 |
\noindent |
1094 |
{\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) } |
1095 |
|
1096 |
\noindent |
1097 |
The net longwave heating rate is calculated as the vertical divergence of the |
1098 |
net terrestrial radiative fluxes. |
1099 |
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
1100 |
longwave routine. |
1101 |
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
1102 |
For a given cloud fraction, |
1103 |
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
1104 |
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
1105 |
for the upward and downward radiative fluxes. |
1106 |
(see Section \ref{sec:fizhi:radcloud}). |
1107 |
The cloudy-sky flux is then obtained as: |
1108 |
|
1109 |
\noindent |
1110 |
\[ |
1111 |
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
1112 |
\] |
1113 |
|
1114 |
\noindent |
1115 |
Finally, the net longwave heating rate is calculated as the vertical divergence of the |
1116 |
net terrestrial radiative fluxes: |
1117 |
\[ |
1118 |
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} , |
1119 |
\] |
1120 |
or |
1121 |
\[ |
1122 |
{\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} . |
1123 |
\] |
1124 |
|
1125 |
\noindent |
1126 |
where $g$ is the accelation due to gravity, |
1127 |
$c_p$ is the heat capacity of air at constant pressure, |
1128 |
and |
1129 |
\[ |
1130 |
F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow |
1131 |
\] |
1132 |
\\ |
1133 |
|
1134 |
|
1135 |
\noindent |
1136 |
{\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) } |
1137 |
|
1138 |
\noindent |
1139 |
The net Shortwave heating rate is calculated as the vertical divergence of the |
1140 |
net solar radiative fluxes. |
1141 |
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
1142 |
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
1143 |
both CLMO (maximum overlap cloud fraction) and |
1144 |
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
1145 |
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
1146 |
true time-averaged cloud fractions CLMO |
1147 |
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
1148 |
input at the top of the atmosphere. |
1149 |
|
1150 |
\noindent |
1151 |
The heating rate due to Shortwave Radiation under cloudy skies is defined as: |
1152 |
\[ |
1153 |
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, |
1154 |
\] |
1155 |
or |
1156 |
\[ |
1157 |
{\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . |
1158 |
\] |
1159 |
|
1160 |
\noindent |
1161 |
where $g$ is the accelation due to gravity, |
1162 |
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
1163 |
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
1164 |
\[ |
1165 |
F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow |
1166 |
\] |
1167 |
\\ |
1168 |
|
1169 |
\noindent |
1170 |
{\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) } |
1171 |
|
1172 |
\noindent |
1173 |
For a change in specific humidity due to moist processes, $\Delta q_{moist}$, |
1174 |
the vertical integral or total precipitable amount is given by: |
1175 |
\[ |
1176 |
{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist} |
1177 |
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp |
1178 |
\] |
1179 |
\\ |
1180 |
|
1181 |
\noindent |
1182 |
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1183 |
time step, scaled to $mm/day$. |
1184 |
\\ |
1185 |
|
1186 |
\noindent |
1187 |
{\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) } |
1188 |
|
1189 |
\noindent |
1190 |
For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$, |
1191 |
the vertical integral or total precipitable amount is given by: |
1192 |
\[ |
1193 |
{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum} |
1194 |
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp |
1195 |
\] |
1196 |
\\ |
1197 |
|
1198 |
\noindent |
1199 |
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1200 |
time step, scaled to $mm/day$. |
1201 |
\\ |
1202 |
|
1203 |
\noindent |
1204 |
{\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) } |
1205 |
|
1206 |
\noindent |
1207 |
The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1208 |
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1209 |
|
1210 |
\[ |
1211 |
{\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} = |
1212 |
{\rho } {(- K_m \pp{U}{z})} |
1213 |
\] |
1214 |
|
1215 |
\noindent |
1216 |
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1217 |
\\ |
1218 |
|
1219 |
\noindent |
1220 |
{\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) } |
1221 |
|
1222 |
\noindent |
1223 |
The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1224 |
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1225 |
|
1226 |
\[ |
1227 |
{\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} = |
1228 |
{\rho } {(- K_m \pp{V}{z})} |
1229 |
\] |
1230 |
|
1231 |
\noindent |
1232 |
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1233 |
\\ |
1234 |
|
1235 |
|
1236 |
\noindent |
1237 |
{\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) } |
1238 |
|
1239 |
\noindent |
1240 |
The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes |
1241 |
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1242 |
|
1243 |
\noindent |
1244 |
\[ |
1245 |
{\bf TTFLUX} = c_p {\rho } |
1246 |
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})} |
1247 |
= c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})} |
1248 |
\] |
1249 |
|
1250 |
\noindent |
1251 |
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
1252 |
\\ |
1253 |
|
1254 |
|
1255 |
\noindent |
1256 |
{\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) } |
1257 |
|
1258 |
\noindent |
1259 |
The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes |
1260 |
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1261 |
|
1262 |
\noindent |
1263 |
\[ |
1264 |
{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} = |
1265 |
{L {\rho }(- K_h \pp{q}{z})} |
1266 |
\] |
1267 |
|
1268 |
\noindent |
1269 |
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
1270 |
\\ |
1271 |
|
1272 |
|
1273 |
\noindent |
1274 |
{\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) } |
1275 |
|
1276 |
\noindent |
1277 |
The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: |
1278 |
\[ |
1279 |
{\bf CN} = { k \over { \ln({h \over {z_0}})} } |
1280 |
\] |
1281 |
|
1282 |
\noindent |
1283 |
where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and |
1284 |
$z_0$ is the surface roughness. |
1285 |
|
1286 |
\noindent |
1287 |
NOTE: CN is not available through model version 5.3, but is available in subsequent |
1288 |
versions. |
1289 |
\\ |
1290 |
|
1291 |
\noindent |
1292 |
{\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) } |
1293 |
|
1294 |
\noindent |
1295 |
The surface wind speed is calculated for the last internal turbulence time step: |
1296 |
\[ |
1297 |
{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2} |
1298 |
\] |
1299 |
|
1300 |
\noindent |
1301 |
where the subscript $Nrphys$ refers to the lowest model level. |
1302 |
\\ |
1303 |
|
1304 |
\noindent |
1305 |
{\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) } |
1306 |
|
1307 |
\noindent |
1308 |
The air/surface virtual temperature difference measures the stability of the surface layer: |
1309 |
\[ |
1310 |
{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf} |
1311 |
\] |
1312 |
\noindent |
1313 |
where |
1314 |
\[ |
1315 |
\theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} |
1316 |
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
1317 |
\] |
1318 |
|
1319 |
\noindent |
1320 |
$\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
1321 |
$q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature |
1322 |
and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$ |
1323 |
refers to the surface. |
1324 |
\\ |
1325 |
|
1326 |
|
1327 |
\noindent |
1328 |
{\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) } |
1329 |
|
1330 |
\noindent |
1331 |
The ground temperature equation is solved as part of the turbulence package |
1332 |
using a backward implicit time differencing scheme: |
1333 |
\[ |
1334 |
{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm} |
1335 |
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE |
1336 |
\] |
1337 |
|
1338 |
\noindent |
1339 |
where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the |
1340 |
net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through |
1341 |
sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat |
1342 |
flux, and $C_g$ is the total heat capacity of the ground. |
1343 |
$C_g$ is obtained by solving a heat diffusion equation |
1344 |
for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: |
1345 |
\[ |
1346 |
C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} |
1347 |
{ 86400. \over {2 \pi} } } \, \, . |
1348 |
\] |
1349 |
\noindent |
1350 |
Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}} |
1351 |
{cm \over {^oK}}$, |
1352 |
the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided |
1353 |
by $2 \pi$ $radians/ |
1354 |
day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, |
1355 |
is a function of the ground wetness, $W$. |
1356 |
\\ |
1357 |
|
1358 |
\noindent |
1359 |
{\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) } |
1360 |
|
1361 |
\noindent |
1362 |
The surface temperature estimate is made by assuming that the model's lowest |
1363 |
layer is well-mixed, and therefore that $\theta$ is constant in that layer. |
1364 |
The surface temperature is therefore: |
1365 |
\[ |
1366 |
{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf} |
1367 |
\] |
1368 |
\\ |
1369 |
|
1370 |
\noindent |
1371 |
{\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) } |
1372 |
|
1373 |
\noindent |
1374 |
The change in surface temperature from one turbulence time step to the next, solved |
1375 |
using the Ground Temperature Equation (see diagnostic number 30) is calculated: |
1376 |
\[ |
1377 |
{\bf DTG} = {T_g}^{n} - {T_g}^{n-1} |
1378 |
\] |
1379 |
|
1380 |
\noindent |
1381 |
where superscript $n$ refers to the new, updated time level, and the superscript $n-1$ |
1382 |
refers to the value at the previous turbulence time level. |
1383 |
\\ |
1384 |
|
1385 |
\noindent |
1386 |
{\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) } |
1387 |
|
1388 |
\noindent |
1389 |
The ground specific humidity is obtained by interpolating between the specific |
1390 |
humidity at the lowest model level and the specific humidity of a saturated ground. |
1391 |
The interpolation is performed using the potential evapotranspiration function: |
1392 |
\[ |
1393 |
{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
1394 |
\] |
1395 |
|
1396 |
\noindent |
1397 |
where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
1398 |
and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface |
1399 |
pressure. |
1400 |
\\ |
1401 |
|
1402 |
\noindent |
1403 |
{\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) } |
1404 |
|
1405 |
\noindent |
1406 |
The surface saturation specific humidity is the saturation specific humidity at |
1407 |
the ground temprature and surface pressure: |
1408 |
\[ |
1409 |
{\bf QS} = q^*(T_g,P_s) |
1410 |
\] |
1411 |
\\ |
1412 |
|
1413 |
\noindent |
1414 |
{\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave |
1415 |
radiation subroutine (deg)} |
1416 |
\[ |
1417 |
{\bf TGRLW} = T_g(\lambda , \phi ,n) |
1418 |
\] |
1419 |
\noindent |
1420 |
where $T_g$ is the model ground temperature at the current time step $n$. |
1421 |
\\ |
1422 |
|
1423 |
|
1424 |
\noindent |
1425 |
{\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) } |
1426 |
\[ |
1427 |
{\bf ST4} = \sigma T^4 |
1428 |
\] |
1429 |
\noindent |
1430 |
where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature. |
1431 |
\\ |
1432 |
|
1433 |
\noindent |
1434 |
{\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
1435 |
\[ |
1436 |
{\bf OLR} = F_{LW,top}^{NET} |
1437 |
\] |
1438 |
\noindent |
1439 |
where top indicates the top of the first model layer. |
1440 |
In the GCM, $p_{top}$ = 0.0 mb. |
1441 |
\\ |
1442 |
|
1443 |
|
1444 |
\noindent |
1445 |
{\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
1446 |
\[ |
1447 |
{\bf OLRCLR} = F(clearsky)_{LW,top}^{NET} |
1448 |
\] |
1449 |
\noindent |
1450 |
where top indicates the top of the first model layer. |
1451 |
In the GCM, $p_{top}$ = 0.0 mb. |
1452 |
\\ |
1453 |
|
1454 |
\noindent |
1455 |
{\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) } |
1456 |
|
1457 |
\noindent |
1458 |
\begin{eqnarray*} |
1459 |
{\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\ |
1460 |
& = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow |
1461 |
\end{eqnarray*} |
1462 |
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1463 |
$F(clearsky)_{LW}^\uparrow$ is |
1464 |
the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux. |
1465 |
\\ |
1466 |
|
1467 |
\noindent |
1468 |
{\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) } |
1469 |
|
1470 |
\noindent |
1471 |
The net longwave heating rate is calculated as the vertical divergence of the |
1472 |
net terrestrial radiative fluxes. |
1473 |
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
1474 |
longwave routine. |
1475 |
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
1476 |
For a given cloud fraction, |
1477 |
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
1478 |
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
1479 |
for the upward and downward radiative fluxes. |
1480 |
(see Section \ref{sec:fizhi:radcloud}). |
1481 |
The cloudy-sky flux is then obtained as: |
1482 |
|
1483 |
\noindent |
1484 |
\[ |
1485 |
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
1486 |
\] |
1487 |
|
1488 |
\noindent |
1489 |
Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the |
1490 |
vertical divergence of the |
1491 |
clear-sky longwave radiative flux: |
1492 |
\[ |
1493 |
\pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} , |
1494 |
\] |
1495 |
or |
1496 |
\[ |
1497 |
{\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} . |
1498 |
\] |
1499 |
|
1500 |
\noindent |
1501 |
where $g$ is the accelation due to gravity, |
1502 |
$c_p$ is the heat capacity of air at constant pressure, |
1503 |
and |
1504 |
\[ |
1505 |
F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow |
1506 |
\] |
1507 |
\\ |
1508 |
|
1509 |
|
1510 |
\noindent |
1511 |
{\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave |
1512 |
radiation subroutine (deg)} |
1513 |
\[ |
1514 |
{\bf TLW} = T(\lambda , \phi ,level, n) |
1515 |
\] |
1516 |
\noindent |
1517 |
where $T$ is the model temperature at the current time step $n$. |
1518 |
\\ |
1519 |
|
1520 |
|
1521 |
\noindent |
1522 |
{\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to |
1523 |
the Longwave radiation subroutine (kg/kg)} |
1524 |
\[ |
1525 |
{\bf SHLW} = q(\lambda , \phi , level , n) |
1526 |
\] |
1527 |
\noindent |
1528 |
where $q$ is the model specific humidity at the current time step $n$. |
1529 |
\\ |
1530 |
|
1531 |
|
1532 |
\noindent |
1533 |
{\bf 43) \underline {OZLW} Instantaneous ozone used as input to |
1534 |
the Longwave radiation subroutine (kg/kg)} |
1535 |
\[ |
1536 |
{\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n) |
1537 |
\] |
1538 |
\noindent |
1539 |
where $\rm OZ$ is the interpolated ozone data set from the climatological monthly |
1540 |
mean zonally averaged ozone data set. |
1541 |
\\ |
1542 |
|
1543 |
|
1544 |
\noindent |
1545 |
{\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) } |
1546 |
|
1547 |
\noindent |
1548 |
{\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
1549 |
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are |
1550 |
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
1551 |
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1552 |
\[ |
1553 |
{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level ) |
1554 |
\] |
1555 |
\\ |
1556 |
|
1557 |
|
1558 |
{\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) } |
1559 |
|
1560 |
{\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed |
1561 |
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave |
1562 |
Radiation packages. |
1563 |
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1564 |
\[ |
1565 |
{\bf CLDTOT} = F_{RAS} + F_{LS} |
1566 |
\] |
1567 |
\\ |
1568 |
where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the |
1569 |
time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes. |
1570 |
\\ |
1571 |
|
1572 |
|
1573 |
\noindent |
1574 |
{\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) } |
1575 |
|
1576 |
\noindent |
1577 |
{\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
1578 |
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are |
1579 |
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
1580 |
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1581 |
\[ |
1582 |
{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level ) |
1583 |
\] |
1584 |
\\ |
1585 |
|
1586 |
\noindent |
1587 |
{\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) } |
1588 |
|
1589 |
\noindent |
1590 |
{\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed |
1591 |
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave |
1592 |
Radiation algorithm. These are |
1593 |
convective and large-scale clouds whose radiative characteristics are not |
1594 |
assumed to be correlated in the vertical. |
1595 |
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
1596 |
\[ |
1597 |
{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level ) |
1598 |
\] |
1599 |
\\ |
1600 |
|
1601 |
\noindent |
1602 |
{\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) } |
1603 |
\[ |
1604 |
{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z |
1605 |
\] |
1606 |
\noindent |
1607 |
where $S_0$, is the extra-terrestial solar contant, |
1608 |
$R_a$ is the earth-sun distance in Astronomical Units, |
1609 |
and $cos \phi_z$ is the cosine of the zenith angle. |
1610 |
It should be noted that {\bf RADSWT}, as well as |
1611 |
{\bf OSR} and {\bf OSRCLR}, |
1612 |
are calculated at the top of the atmosphere (p=0 mb). However, the |
1613 |
{\bf OLR} and {\bf OLRCLR} diagnostics are currently |
1614 |
calculated at $p= p_{top}$ (0.0 mb for the GCM). |
1615 |
\\ |
1616 |
|
1617 |
\noindent |
1618 |
{\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) } |
1619 |
|
1620 |
\noindent |
1621 |
The surface evaporation is a function of the gradient of moisture, the potential |
1622 |
evapotranspiration fraction and the eddy exchange coefficient: |
1623 |
\[ |
1624 |
{\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys}) |
1625 |
\] |
1626 |
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
1627 |
the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the |
1628 |
turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and |
1629 |
$q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic |
1630 |
number 34) and at the bottom model level, respectively. |
1631 |
\\ |
1632 |
|
1633 |
\noindent |
1634 |
{\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) } |
1635 |
|
1636 |
\noindent |
1637 |
{\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, |
1638 |
and Analysis forcing. |
1639 |
\[ |
1640 |
{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
1641 |
\] |
1642 |
\\ |
1643 |
|
1644 |
\noindent |
1645 |
{\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) } |
1646 |
|
1647 |
\noindent |
1648 |
{\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, |
1649 |
and Analysis forcing. |
1650 |
\[ |
1651 |
{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
1652 |
\] |
1653 |
\\ |
1654 |
|
1655 |
\noindent |
1656 |
{\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) } |
1657 |
|
1658 |
\noindent |
1659 |
{\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, |
1660 |
and Analysis forcing. |
1661 |
\begin{eqnarray*} |
1662 |
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
1663 |
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
1664 |
\end{eqnarray*} |
1665 |
\\ |
1666 |
|
1667 |
\noindent |
1668 |
{\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) } |
1669 |
|
1670 |
\noindent |
1671 |
{\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, |
1672 |
and Analysis forcing. |
1673 |
\[ |
1674 |
{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes} |
1675 |
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
1676 |
\] |
1677 |
\\ |
1678 |
|
1679 |
\noindent |
1680 |
{\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) } |
1681 |
|
1682 |
\noindent |
1683 |
The surface stress velocity, or the friction velocity, is the wind speed at |
1684 |
the surface layer top impeded by the surface drag: |
1685 |
\[ |
1686 |
{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} |
1687 |
C_u = {k \over {\psi_m} } |
1688 |
\] |
1689 |
|
1690 |
\noindent |
1691 |
$C_u$ is the non-dimensional surface drag coefficient (see diagnostic |
1692 |
number 10), and $W_s$ is the surface wind speed (see diagnostic number 28). |
1693 |
|
1694 |
\noindent |
1695 |
{\bf 55) \underline {Z0} Surface Roughness Length ($m$) } |
1696 |
|
1697 |
\noindent |
1698 |
Over the land surface, the surface roughness length is interpolated to the local |
1699 |
time from the monthly mean data of Dorman and Sellers (1989). Over the ocean, |
1700 |
the roughness length is a function of the surface-stress velocity, $u_*$. |
1701 |
\[ |
1702 |
{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} |
1703 |
\] |
1704 |
|
1705 |
\noindent |
1706 |
where the constants are chosen to interpolate between the reciprocal relation of |
1707 |
Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) |
1708 |
for moderate to large winds. |
1709 |
\\ |
1710 |
|
1711 |
\noindent |
1712 |
{\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) } |
1713 |
|
1714 |
\noindent |
1715 |
The fraction of time when turbulence is present is defined as the fraction of |
1716 |
time when the turbulent kinetic energy exceeds some minimum value, defined here |
1717 |
to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is |
1718 |
incremented. The fraction over the averaging interval is reported. |
1719 |
\\ |
1720 |
|
1721 |
\noindent |
1722 |
{\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) } |
1723 |
|
1724 |
\noindent |
1725 |
The depth of the PBL is defined by the turbulence parameterization to be the |
1726 |
depth at which the turbulent kinetic energy reduces to ten percent of its surface |
1727 |
value. |
1728 |
|
1729 |
\[ |
1730 |
{\bf PBL} = P_{PBL} - P_{surface} |
1731 |
\] |
1732 |
|
1733 |
\noindent |
1734 |
where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy |
1735 |
reaches one tenth of its surface value, and $P_s$ is the surface pressure. |
1736 |
\\ |
1737 |
|
1738 |
\noindent |
1739 |
{\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) } |
1740 |
|
1741 |
\noindent |
1742 |
The net Shortwave heating rate is calculated as the vertical divergence of the |
1743 |
net solar radiative fluxes. |
1744 |
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
1745 |
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
1746 |
both CLMO (maximum overlap cloud fraction) and |
1747 |
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
1748 |
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
1749 |
true time-averaged cloud fractions CLMO |
1750 |
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
1751 |
input at the top of the atmosphere. |
1752 |
|
1753 |
\noindent |
1754 |
The heating rate due to Shortwave Radiation under clear skies is defined as: |
1755 |
\[ |
1756 |
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, |
1757 |
\] |
1758 |
or |
1759 |
\[ |
1760 |
{\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . |
1761 |
\] |
1762 |
|
1763 |
\noindent |
1764 |
where $g$ is the accelation due to gravity, |
1765 |
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
1766 |
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
1767 |
\[ |
1768 |
F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow |
1769 |
\] |
1770 |
\\ |
1771 |
|
1772 |
\noindent |
1773 |
{\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) } |
1774 |
\[ |
1775 |
{\bf OSR} = F_{SW,top}^{NET} |
1776 |
\] |
1777 |
\noindent |
1778 |
where top indicates the top of the first model layer used in the shortwave radiation |
1779 |
routine. |
1780 |
In the GCM, $p_{SW_{top}}$ = 0 mb. |
1781 |
\\ |
1782 |
|
1783 |
\noindent |
1784 |
{\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) } |
1785 |
\[ |
1786 |
{\bf OSRCLR} = F(clearsky)_{SW,top}^{NET} |
1787 |
\] |
1788 |
\noindent |
1789 |
where top indicates the top of the first model layer used in the shortwave radiation |
1790 |
routine. |
1791 |
In the GCM, $p_{SW_{top}}$ = 0 mb. |
1792 |
\\ |
1793 |
|
1794 |
|
1795 |
\noindent |
1796 |
{\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) } |
1797 |
|
1798 |
\noindent |
1799 |
The amount of cloud mass moved per RAS timestep from all convective clouds is written: |
1800 |
\[ |
1801 |
{\bf CLDMAS} = \eta m_B |
1802 |
\] |
1803 |
where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is |
1804 |
the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the |
1805 |
description of the convective parameterization. |
1806 |
\\ |
1807 |
|
1808 |
|
1809 |
|
1810 |
\noindent |
1811 |
{\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) } |
1812 |
|
1813 |
\noindent |
1814 |
The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over |
1815 |
the {\bf NUAVE} output frequency. This is contrasted to the instantaneous |
1816 |
Zonal U-Wind which is archived on the Prognostic Output data stream. |
1817 |
\[ |
1818 |
{\bf UAVE} = u(\lambda, \phi, level , t) |
1819 |
\] |
1820 |
\\ |
1821 |
Note, {\bf UAVE} is computed and stored on the staggered C-grid. |
1822 |
\\ |
1823 |
|
1824 |
\noindent |
1825 |
{\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) } |
1826 |
|
1827 |
\noindent |
1828 |
The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over |
1829 |
the {\bf NVAVE} output frequency. This is contrasted to the instantaneous |
1830 |
Meridional V-Wind which is archived on the Prognostic Output data stream. |
1831 |
\[ |
1832 |
{\bf VAVE} = v(\lambda, \phi, level , t) |
1833 |
\] |
1834 |
\\ |
1835 |
Note, {\bf VAVE} is computed and stored on the staggered C-grid. |
1836 |
\\ |
1837 |
|
1838 |
\noindent |
1839 |
{\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) } |
1840 |
|
1841 |
\noindent |
1842 |
The diagnostic {\bf TAVE} is simply the time-averaged Temperature over |
1843 |
the {\bf NTAVE} output frequency. This is contrasted to the instantaneous |
1844 |
Temperature which is archived on the Prognostic Output data stream. |
1845 |
\[ |
1846 |
{\bf TAVE} = T(\lambda, \phi, level , t) |
1847 |
\] |
1848 |
\\ |
1849 |
|
1850 |
\noindent |
1851 |
{\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) } |
1852 |
|
1853 |
\noindent |
1854 |
The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over |
1855 |
the {\bf NQAVE} output frequency. This is contrasted to the instantaneous |
1856 |
Specific Humidity which is archived on the Prognostic Output data stream. |
1857 |
\[ |
1858 |
{\bf QAVE} = q(\lambda, \phi, level , t) |
1859 |
\] |
1860 |
\\ |
1861 |
|
1862 |
\noindent |
1863 |
{\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) } |
1864 |
|
1865 |
\noindent |
1866 |
The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over |
1867 |
the {\bf NPAVE} output frequency. This is contrasted to the instantaneous |
1868 |
Surface Pressure - PTOP which is archived on the Prognostic Output data stream. |
1869 |
\begin{eqnarray*} |
1870 |
{\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\ |
1871 |
& = & p_s(\lambda, \phi, level , t) - p_T |
1872 |
\end{eqnarray*} |
1873 |
\\ |
1874 |
|
1875 |
|
1876 |
\noindent |
1877 |
{\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ } |
1878 |
|
1879 |
\noindent |
1880 |
The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy |
1881 |
produced by the GCM Turbulence parameterization over |
1882 |
the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous |
1883 |
Turbulent Kinetic Energy which is archived on the Prognostic Output data stream. |
1884 |
\[ |
1885 |
{\bf QQAVE} = qq(\lambda, \phi, level , t) |
1886 |
\] |
1887 |
\\ |
1888 |
Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid. |
1889 |
\\ |
1890 |
|
1891 |
\noindent |
1892 |
{\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) } |
1893 |
|
1894 |
\noindent |
1895 |
\begin{eqnarray*} |
1896 |
{\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\ |
1897 |
& = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow |
1898 |
\end{eqnarray*} |
1899 |
\noindent |
1900 |
\\ |
1901 |
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1902 |
$F(clearsky){SW}^\downarrow$ is |
1903 |
the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is |
1904 |
the upward clearsky Shortwave flux. |
1905 |
\\ |
1906 |
|
1907 |
\noindent |
1908 |
{\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 } |
1909 |
|
1910 |
\noindent |
1911 |
The GCM provides Users with a built-in mechanism for archiving user-defined |
1912 |
diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated |
1913 |
diagnostic counters and pointers located in COMMON /DIAGP/, |
1914 |
must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}). |
1915 |
A convenient method for incorporating all necessary COMMON files is to |
1916 |
include the GCM {\em vstate.com} file in the routine which employs the |
1917 |
user-defined diagnostics. |
1918 |
|
1919 |
\noindent |
1920 |
In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill |
1921 |
the QDIAG array with the desired quantity within the User's |
1922 |
application program or within modified GCM subroutines, as well as increment |
1923 |
the diagnostic counter at the time when the diagnostic is updated. |
1924 |
The QDIAG location index for {\bf SDIAG1} and its corresponding counter is |
1925 |
automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the |
1926 |
diagnostic has been enabled. |
1927 |
The syntax for its use is given by |
1928 |
\begin{verbatim} |
1929 |
do j=1,jm |
1930 |
do i=1,im |
1931 |
qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ... |
1932 |
enddo |
1933 |
enddo |
1934 |
|
1935 |
NSDIAG1 = NSDIAG1 + 1 |
1936 |
\end{verbatim} |
1937 |
The diagnostics defined in this manner will automatically be archived by the output routines. |
1938 |
\\ |
1939 |
|
1940 |
\noindent |
1941 |
{\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 } |
1942 |
|
1943 |
\noindent |
1944 |
The GCM provides Users with a built-in mechanism for archiving user-defined |
1945 |
diagnostics. For a complete description refer to Diagnostic \#84. |
1946 |
The syntax for using the surface SDIAG2 diagnostic is given by |
1947 |
\begin{verbatim} |
1948 |
do j=1,jm |
1949 |
do i=1,im |
1950 |
qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ... |
1951 |
enddo |
1952 |
enddo |
1953 |
|
1954 |
NSDIAG2 = NSDIAG2 + 1 |
1955 |
\end{verbatim} |
1956 |
The diagnostics defined in this manner will automatically be archived by the output routines. |
1957 |
\\ |
1958 |
|
1959 |
\noindent |
1960 |
{\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 } |
1961 |
|
1962 |
\noindent |
1963 |
The GCM provides Users with a built-in mechanism for archiving user-defined |
1964 |
diagnostics. For a complete description refer to Diagnostic \#84. |
1965 |
The syntax for using the upper-air UDIAG1 diagnostic is given by |
1966 |
\begin{verbatim} |
1967 |
do L=1,Nrphys |
1968 |
do j=1,jm |
1969 |
do i=1,im |
1970 |
qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ... |
1971 |
enddo |
1972 |
enddo |
1973 |
enddo |
1974 |
|
1975 |
NUDIAG1 = NUDIAG1 + 1 |
1976 |
\end{verbatim} |
1977 |
The diagnostics defined in this manner will automatically be archived by the |
1978 |
output programs. |
1979 |
\\ |
1980 |
|
1981 |
\noindent |
1982 |
{\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 } |
1983 |
|
1984 |
\noindent |
1985 |
The GCM provides Users with a built-in mechanism for archiving user-defined |
1986 |
diagnostics. For a complete description refer to Diagnostic \#84. |
1987 |
The syntax for using the upper-air UDIAG2 diagnostic is given by |
1988 |
\begin{verbatim} |
1989 |
do L=1,Nrphys |
1990 |
do j=1,jm |
1991 |
do i=1,im |
1992 |
qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ... |
1993 |
enddo |
1994 |
enddo |
1995 |
enddo |
1996 |
|
1997 |
NUDIAG2 = NUDIAG2 + 1 |
1998 |
\end{verbatim} |
1999 |
The diagnostics defined in this manner will automatically be archived by the |
2000 |
output programs. |
2001 |
\\ |
2002 |
|
2003 |
|
2004 |
\noindent |
2005 |
{\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) } |
2006 |
|
2007 |
\noindent |
2008 |
{\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes |
2009 |
and the Analysis forcing. |
2010 |
\[ |
2011 |
{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
2012 |
\] |
2013 |
\\ |
2014 |
|
2015 |
\noindent |
2016 |
{\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) } |
2017 |
|
2018 |
\noindent |
2019 |
{\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes |
2020 |
and the Analysis forcing. |
2021 |
\[ |
2022 |
{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
2023 |
\] |
2024 |
\\ |
2025 |
|
2026 |
\noindent |
2027 |
{\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) } |
2028 |
|
2029 |
\noindent |
2030 |
{\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes |
2031 |
and the Analysis forcing. |
2032 |
\begin{eqnarray*} |
2033 |
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
2034 |
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
2035 |
\end{eqnarray*} |
2036 |
\\ |
2037 |
If we define the time-tendency of Temperature due to Diabatic processes as |
2038 |
\begin{eqnarray*} |
2039 |
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
2040 |
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} |
2041 |
\end{eqnarray*} |
2042 |
then, since there are no surface pressure changes due to Diabatic processes, we may write |
2043 |
\[ |
2044 |
\pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic} |
2045 |
\] |
2046 |
where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as |
2047 |
\[ |
2048 |
{\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) |
2049 |
\] |
2050 |
\\ |
2051 |
|
2052 |
\noindent |
2053 |
{\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) } |
2054 |
|
2055 |
\noindent |
2056 |
{\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes |
2057 |
and the Analysis forcing. |
2058 |
\[ |
2059 |
{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
2060 |
\] |
2061 |
If we define the time-tendency of Specific Humidity due to Diabatic processes as |
2062 |
\[ |
2063 |
\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} |
2064 |
\] |
2065 |
then, since there are no surface pressure changes due to Diabatic processes, we may write |
2066 |
\[ |
2067 |
\pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic} |
2068 |
\] |
2069 |
Thus, {\bf DIABQ} may be written as |
2070 |
\[ |
2071 |
{\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) |
2072 |
\] |
2073 |
\\ |
2074 |
|
2075 |
\noindent |
2076 |
{\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
2077 |
|
2078 |
\noindent |
2079 |
The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating |
2080 |
$u q$ over the depth of the atmosphere at each model timestep, |
2081 |
and dividing by the total mass of the column. |
2082 |
\[ |
2083 |
{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz } |
2084 |
\] |
2085 |
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2086 |
\[ |
2087 |
{\bf VINTUQ} = { \int_0^1 u q dp } |
2088 |
\] |
2089 |
\\ |
2090 |
|
2091 |
|
2092 |
\noindent |
2093 |
{\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
2094 |
|
2095 |
\noindent |
2096 |
The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating |
2097 |
$v q$ over the depth of the atmosphere at each model timestep, |
2098 |
and dividing by the total mass of the column. |
2099 |
\[ |
2100 |
{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz } |
2101 |
\] |
2102 |
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2103 |
\[ |
2104 |
{\bf VINTVQ} = { \int_0^1 v q dp } |
2105 |
\] |
2106 |
\\ |
2107 |
|
2108 |
|
2109 |
\noindent |
2110 |
{\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2111 |
|
2112 |
\noindent |
2113 |
The vertically integrated heat flux due to the zonal u-wind is obtained by integrating |
2114 |
$u T$ over the depth of the atmosphere at each model timestep, |
2115 |
and dividing by the total mass of the column. |
2116 |
\[ |
2117 |
{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz } |
2118 |
\] |
2119 |
Or, |
2120 |
\[ |
2121 |
{\bf VINTUT} = { \int_0^1 u T dp } |
2122 |
\] |
2123 |
\\ |
2124 |
|
2125 |
\noindent |
2126 |
{\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2127 |
|
2128 |
\noindent |
2129 |
The vertically integrated heat flux due to the meridional v-wind is obtained by integrating |
2130 |
$v T$ over the depth of the atmosphere at each model timestep, |
2131 |
and dividing by the total mass of the column. |
2132 |
\[ |
2133 |
{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz } |
2134 |
\] |
2135 |
Using $\rho \delta z = -{\delta p \over g} $, we have |
2136 |
\[ |
2137 |
{\bf VINTVT} = { \int_0^1 v T dp } |
2138 |
\] |
2139 |
\\ |
2140 |
|
2141 |
\noindent |
2142 |
{\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) } |
2143 |
|
2144 |
If we define the |
2145 |
time-averaged random and maximum overlapped cloudiness as CLRO and |
2146 |
CLMO respectively, then the probability of clear sky associated |
2147 |
with random overlapped clouds at any level is (1-CLRO) while the probability of |
2148 |
clear sky associated with maximum overlapped clouds at any level is (1-CLMO). |
2149 |
The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus |
2150 |
the total cloud fraction at each level may be obtained by |
2151 |
1-(1-CLRO)*(1-CLMO). |
2152 |
|
2153 |
At any given level, we may define the clear line-of-site probability by |
2154 |
appropriately accounting for the maximum and random overlap |
2155 |
cloudiness. The clear line-of-site probability is defined to be |
2156 |
equal to the product of the clear line-of-site probabilities |
2157 |
associated with random and maximum overlap cloudiness. The clear |
2158 |
line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds, |
2159 |
from the current pressure $p$ |
2160 |
to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$, |
2161 |
is simply 1.0 minus the largest maximum overlap cloud value along the |
2162 |
line-of-site, ie. |
2163 |
|
2164 |
$$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$ |
2165 |
|
2166 |
Thus, even in the time-averaged sense it is assumed that the |
2167 |
maximum overlap clouds are correlated in the vertical. The clear |
2168 |
line-of-site probability associated with random overlap clouds is |
2169 |
defined to be the product of the clear sky probabilities at each |
2170 |
level along the line-of-site, ie. |
2171 |
|
2172 |
$$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2173 |
|
2174 |
The total cloud fraction at a given level associated with a line- |
2175 |
of-site calculation is given by |
2176 |
|
2177 |
$$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right) |
2178 |
\prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2179 |
|
2180 |
|
2181 |
\noindent |
2182 |
The 2-dimensional net cloud fraction as seen from the top of the |
2183 |
atmosphere is given by |
2184 |
\[ |
2185 |
{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right) |
2186 |
\prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right) |
2187 |
\] |
2188 |
\\ |
2189 |
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2190 |
|
2191 |
|
2192 |
\noindent |
2193 |
{\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) } |
2194 |
|
2195 |
\noindent |
2196 |
The Total Precipitable Water is defined as the vertical integral of the specific humidity, |
2197 |
given by: |
2198 |
\begin{eqnarray*} |
2199 |
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ |
2200 |
& = & {\pi \over g} \int_0^1 q dp |
2201 |
\end{eqnarray*} |
2202 |
where we have used the hydrostatic relation |
2203 |
$\rho \delta z = -{\delta p \over g} $. |
2204 |
\\ |
2205 |
|
2206 |
|
2207 |
\noindent |
2208 |
{\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) } |
2209 |
|
2210 |
\noindent |
2211 |
The u-wind at the 2-meter depth is determined from the similarity theory: |
2212 |
\[ |
2213 |
{\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} = |
2214 |
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl} |
2215 |
\] |
2216 |
|
2217 |
\noindent |
2218 |
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2219 |
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2220 |
is above two meters, ${\bf U2M}$ is undefined. |
2221 |
\\ |
2222 |
|
2223 |
\noindent |
2224 |
{\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) } |
2225 |
|
2226 |
\noindent |
2227 |
The v-wind at the 2-meter depth is a determined from the similarity theory: |
2228 |
\[ |
2229 |
{\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} = |
2230 |
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl} |
2231 |
\] |
2232 |
|
2233 |
\noindent |
2234 |
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2235 |
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2236 |
is above two meters, ${\bf V2M}$ is undefined. |
2237 |
\\ |
2238 |
|
2239 |
\noindent |
2240 |
{\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) } |
2241 |
|
2242 |
\noindent |
2243 |
The temperature at the 2-meter depth is a determined from the similarity theory: |
2244 |
\[ |
2245 |
{\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = |
2246 |
P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2247 |
(\theta_{sl} - \theta_{surf})) |
2248 |
\] |
2249 |
where: |
2250 |
\[ |
2251 |
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2252 |
\] |
2253 |
|
2254 |
\noindent |
2255 |
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2256 |
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2257 |
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2258 |
is above two meters, ${\bf T2M}$ is undefined. |
2259 |
\\ |
2260 |
|
2261 |
\noindent |
2262 |
{\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) } |
2263 |
|
2264 |
\noindent |
2265 |
The specific humidity at the 2-meter depth is determined from the similarity theory: |
2266 |
\[ |
2267 |
{\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = |
2268 |
P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2269 |
(q_{sl} - q_{surf})) |
2270 |
\] |
2271 |
where: |
2272 |
\[ |
2273 |
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2274 |
\] |
2275 |
|
2276 |
\noindent |
2277 |
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2278 |
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2279 |
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2280 |
is above two meters, ${\bf Q2M}$ is undefined. |
2281 |
\\ |
2282 |
|
2283 |
\noindent |
2284 |
{\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) } |
2285 |
|
2286 |
\noindent |
2287 |
The u-wind at the 10-meter depth is an interpolation between the surface wind |
2288 |
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2289 |
at the two levels: |
2290 |
\[ |
2291 |
{\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} = |
2292 |
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl} |
2293 |
\] |
2294 |
|
2295 |
\noindent |
2296 |
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2297 |
$sl$ refers to the height of the top of the surface layer. |
2298 |
\\ |
2299 |
|
2300 |
\noindent |
2301 |
{\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) } |
2302 |
|
2303 |
\noindent |
2304 |
The v-wind at the 10-meter depth is an interpolation between the surface wind |
2305 |
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2306 |
at the two levels: |
2307 |
\[ |
2308 |
{\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} = |
2309 |
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl} |
2310 |
\] |
2311 |
|
2312 |
\noindent |
2313 |
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2314 |
$sl$ refers to the height of the top of the surface layer. |
2315 |
\\ |
2316 |
|
2317 |
\noindent |
2318 |
{\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) } |
2319 |
|
2320 |
\noindent |
2321 |
The temperature at the 10-meter depth is an interpolation between the surface potential |
2322 |
temperature and the model lowest level potential temperature using the ratio of the |
2323 |
non-dimensional temperature gradient at the two levels: |
2324 |
\[ |
2325 |
{\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = |
2326 |
P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2327 |
(\theta_{sl} - \theta_{surf})) |
2328 |
\] |
2329 |
where: |
2330 |
\[ |
2331 |
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2332 |
\] |
2333 |
|
2334 |
\noindent |
2335 |
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2336 |
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2337 |
$sl$ refers to the height of the top of the surface layer. |
2338 |
\\ |
2339 |
|
2340 |
\noindent |
2341 |
{\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) } |
2342 |
|
2343 |
\noindent |
2344 |
The specific humidity at the 10-meter depth is an interpolation between the surface specific |
2345 |
humidity and the model lowest level specific humidity using the ratio of the |
2346 |
non-dimensional temperature gradient at the two levels: |
2347 |
\[ |
2348 |
{\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = |
2349 |
P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2350 |
(q_{sl} - q_{surf})) |
2351 |
\] |
2352 |
where: |
2353 |
\[ |
2354 |
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2355 |
\] |
2356 |
|
2357 |
\noindent |
2358 |
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2359 |
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2360 |
$sl$ refers to the height of the top of the surface layer. |
2361 |
\\ |
2362 |
|
2363 |
\noindent |
2364 |
{\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) } |
2365 |
|
2366 |
The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written: |
2367 |
\[ |
2368 |
{\bf DTRAIN} = \eta_{r_D}m_B |
2369 |
\] |
2370 |
\noindent |
2371 |
where $r_D$ is the detrainment level, |
2372 |
$m_B$ is the cloud base mass flux, and $\eta$ |
2373 |
is the entrainment, defined in Section \ref{sec:fizhi:mc}. |
2374 |
\\ |
2375 |
|
2376 |
\noindent |
2377 |
{\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) } |
2378 |
|
2379 |
\noindent |
2380 |
Due to computational errors associated with the numerical scheme used for |
2381 |
the advection of moisture, negative values of specific humidity may be generated. The |
2382 |
specific humidity is checked for negative values after every dynamics timestep. If negative |
2383 |
values have been produced, a filling algorithm is invoked which redistributes moisture from |
2384 |
below. Diagnostic {\bf QFILL} is equal to the net filling needed |
2385 |
to eliminate negative specific humidity, scaled to a per-day rate: |
2386 |
\[ |
2387 |
{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial} |
2388 |
\] |
2389 |
where |
2390 |
\[ |
2391 |
q^{n+1} = (\pi q)^{n+1} / \pi^{n+1} |
2392 |
\] |
2393 |
|
2394 |
\subsection{Dos and Donts} |
2395 |
|
2396 |
\subsection{Diagnostics Reference} |
2397 |
|