/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (hide annotations) (download) (as text)
Thu Mar 18 14:56:25 2004 UTC (21 years, 4 months ago) by afe
Branch: MAIN
Changes since 1.14: +51 -54 lines
File MIME type: application/x-tex
o more of the same

1 afe 1.15 % $Header: /u/u3/gcmpack/manual/part6/exch2.tex,v 1.14 2004/03/17 21:44:02 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 afe 1.10 \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17     \subsection{Introduction}
18 afe 1.2
19 afe 1.12 The \texttt{exch2} package extends the original cubed
20     sphere topology configuration to allow more flexible domain
21 afe 1.9 decomposition and parallelization. Cube faces (also called
22     subdomains) may be divided into any number of tiles that divide evenly
23     into the grid point dimensions of the subdomain. Furthermore, the
24 afe 1.13 individual tiles can run on separate processors in different
25 afe 1.9 combinations, and whether exchanges between particular tiles occur
26     between different processors is determined at runtime. This
27 afe 1.10 flexibility provides for manual compile-time load balancing across a
28     relatively arbitrary number of processors. \\
29 edhill 1.8
30     The exchange parameters are declared in
31     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32     and assigned in
33 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
35 afe 1.12 detailed below. The default files provided in the release configure a
36     cubed sphere topology of six tiles, one per subdomain, each with
37     32$\times$32 grid points, all running on a single processor. Both
38     files are generated by Matlab scripts in
39 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
40     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
41 afe 1.12 for details on creating alternate topologies. Pregenerated examples
42     of these files with alternate topologies are provided under
43 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44     file for single-processor execution.
45 afe 1.9
46     \subsection{Invoking exch2}
47    
48 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
49     met: \\
50 afe 1.9
51 afe 1.11 $\bullet$ The exch2 package is included when \file{genmake2} is run.
52     The easiest way to do this is to add the line \code{exch2} to the
53     \file{profile.conf} file -- see Section
54 afe 1.12 \ref{sect:buildingCode} \sectiontitle{Building the code} for general
55 afe 1.11 details. \\
56    
57     $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
58     \file{w2\_e2setup.F} must reside in a directory containing code
59     linked when \file{genmake2} runs. The safest place to put these
60     is the directory indicated in the \code{-mods=DIR} command line
61     modifier (typically \file{../code}), or the build directory. The
62     default versions of these files reside in \file{pkg/exch2} and are
63 afe 1.10 linked automatically if no other versions exist elsewhere in the
64     link path, but they should be left untouched to avoid breaking
65     configurations other than the one you intend to modify.\\
66    
67     $\bullet$ Files containing grid parameters, named
68 afe 1.13 \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69     must be in the working directory when the MITgcm executable is run.
70 afe 1.12 These files are provided in the example experiments for cubed sphere
71     configurations with 32$\times$32 cube sides and are non-trivial to
72     generate -- please contact MITgcm support if you want to generate
73     files for other configurations. \\
74    
75     $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76 afe 1.13 be placed where \file{genmake2} will find it. In particular for
77 afe 1.12 exch2, the domain decomposition specified in \file{SIZE.h} must
78     correspond with the particular configuration's topology specified in
79     \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
80     decomposition issues particular to exch2 are addressed in Section
81     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
82     and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
83     general background on the subject relevant to MITgcm is presented in
84     Section \ref{sect:specifying_a_decomposition}
85     \sectiontitle{Specifying a decomposition}.\\
86 afe 1.9
87     As of the time of writing the following examples use exch2 and may be
88     used for guidance:
89    
90     \begin{verbatim}
91     verification/adjust_nlfs.cs-32x32x1
92     verification/adjustment.cs-32x32x1
93     verification/aim.5l_cs
94     verification/global_ocean.cs32x15
95     verification/hs94.cs-32x32x5
96     \end{verbatim}
97    
98    
99    
100    
101 afe 1.10 \subsection{Generating Topology Files for exch2}
102     \label{sec:topogen}
103    
104     Alternate cubed sphere topologies may be created using the Matlab
105 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
106 afe 1.12 m-file
107     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
108     from the Matlab prompt (there are no parameters to pass) generates
109     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
110     \file{w2\_e2setup.F} in the working directory and displays a figure of
111     the topology via Matlab. The other m-files in the directory are
112     subroutines of \file{driver.m} and should not be run ``bare'' except
113     for development purposes. \\
114 afe 1.10
115     The parameters that determine the dimensions and topology of the
116 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
117 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118 afe 1.10
119 afe 1.12 The first three determine the size of the subdomains and
120 afe 1.10 hence the size of the overall domain. Each one determines the number
121     of grid points, and therefore the resolution, along the subdomain
122 afe 1.13 sides in a ``great circle'' around an axis of the cube. At the time
123 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
124 afe 1.12 but they provide for future releases to accomodate different
125 afe 1.10 resolutions around the axes to allow (for example) greater resolution
126     around the equator.\\
127    
128 afe 1.11 The parameters \code{tnx} and \code{tny} determine the dimensions of
129     the tiles into which the subdomains are decomposed, and must evenly
130     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131     The result is a rectangular tiling of the subdomain. Figure
132 afe 1.13 \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134 afe 1.10
135     \begin{figure}
136     \begin{center}
137     \resizebox{4in}{!}{
138     \includegraphics{part6/s24t_16x16.ps}
139     }
140     \end{center}
141 afe 1.12
142 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143 afe 1.12 divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144 afe 1.13 (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145 afe 1.10 } \label{fig:24tile}
146     \end{figure}
147    
148     \begin{figure}
149     \begin{center}
150     \resizebox{4in}{!}{
151     \includegraphics{part6/s12t_16x32.ps}
152     }
153     \end{center}
154 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
156     (\code{tnx=16, tny=32}).
157 afe 1.10 } \label{fig:12tile}
158     \end{figure}
159    
160 afe 1.13 \begin{figure}
161     \begin{center}
162     \resizebox{4in}{!}{
163     \includegraphics{part6/s6t_32x32.ps}
164     }
165     \end{center}
166     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167     divided into six 32$\times$32 subdomains with one tile each
168     (\code{tnx=32, tny=32}). This is the default configuration.
169     }
170     \label{fig:6tile}
171     \end{figure}
172    
173    
174 afe 1.10 Tiles can be selected from the topology to be omitted from being
175 afe 1.12 allocated memory and processors. This tuning is useful in ocean
176     modeling for omitting tiles that fall entirely on land. The tiles
177     omitted are specified in the file
178     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
179     by their tile number in the topology, separated by a newline. \\
180    
181 afe 1.10
182    
183    
184 afe 1.12 \subsection{exch2, SIZE.h, and multiprocessing}
185     \label{sec:exch2mpi}
186    
187     Once the topology configuration files are created, the Fortran
188 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190     a decomposition} provides a general description of domain
191     decomposition within MITgcm and its relation to \file{SIZE.h}. The
192     current section specifies certain constraints the exch2 package
193     imposes as well as describes how to enable parallel execution with
194     MPI. \\
195 afe 1.12
196     As in the general case, the parameters \varlink{sNx}{sNx} and
197     \varlink{sNy}{sNy} define the size of the individual tiles, and so
198     must be assigned the same respective values as \code{tnx} and
199     \code{tny} in \file{driver.m}.\\
200    
201     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
202     have no special bearing on exch2 and may be assigned as in the general
203     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
204     levels in the model.\\
205    
206     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
207     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
208     tiles and how they are distributed on processors. When using exch2,
209     the tiles are stored in single dimension, and so
210     \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
211     configured by exch2 cannot be split up accross processors without
212     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
213    
214     The number of tiles MITgcm allocates and how they are distributed
215     between processors depends on \varlink{nPx}{nPx} and
216     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
217     processor and \varlink{nPx}{nPx} the number of processors. The total
218     number of tiles in the topology minus those listed in
219     \file{blanklist.txt} must equal \code{nSx*nPx}. \\
220    
221     The following is an example of \file{SIZE.h} for the twelve-tile
222     configuration illustrated in figure \ref{fig:12tile} running on
223     one processor: \\
224    
225     \begin{verbatim}
226     PARAMETER (
227     & sNx = 16,
228     & sNy = 32,
229     & OLx = 2,
230     & OLy = 2,
231     & nSx = 12,
232     & nSy = 1,
233     & nPx = 1,
234     & nPy = 1,
235     & Nx = sNx*nSx*nPx,
236     & Ny = sNy*nSy*nPy,
237     & Nr = 5)
238     \end{verbatim}
239    
240     The following is an example for the twentyfour-tile topology in figure
241     \ref{fig:24tile} running on six processors:
242    
243     \begin{verbatim}
244     PARAMETER (
245     & sNx = 16,
246     & sNy = 16,
247     & OLx = 2,
248     & OLy = 2,
249     & nSx = 4,
250     & nSy = 1,
251     & nPx = 6,
252     & nPy = 1,
253     & Nx = sNx*nSx*nPx,
254     & Ny = sNy*nSy*nPy,
255     & Nr = 5)
256     \end{verbatim}
257    
258    
259 afe 1.10
260    
261 afe 1.4
262     \subsection{Key Variables}
263    
264     The descriptions of the variables are divided up into scalars,
265 edhill 1.8 one-dimensional arrays indexed to the tile number, and two and three
266     dimensional arrays indexed to tile number and neighboring tile. This
267 afe 1.12 division reflects the functionality of these variables: The
268 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
269 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
270     neighbor to relationships between tiles and their neighbors. \\
271 afe 1.4
272     \subsubsection{Scalars}
273    
274     The number of tiles in a particular topology is set with the parameter
275 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
276     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
277 edhill 1.8 size of the various one and two dimensional arrays that store tile
278 afe 1.12 parameters indexed to the tile number and are assigned in the files
279     generated by \file{driver.m}.\\
280 edhill 1.8
281     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
284 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
285     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
286     topology of twenty-four square tiles, four per subdomain (as in figure
287     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
289     tile layout to allow global data files that are tile-layout-neutral
290     and have no bearing on the internal storage of the arrays. The tiles
291     are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292     $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293     ignored within the package. \\
294 afe 1.4
295 afe 1.6 \subsubsection{Arrays Indexed to Tile Number}
296 afe 1.4
297 afe 1.15 The following arrays are of length \code{NTILES}and are indexed to the
298     tile number, which is indicated in the diagrams with the notation
299     \textsf{t}$n$. The indices are omitted in the descriptions. \\
300 afe 1.4
301 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
303     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
304     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
305     section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
306     multiprocessing}. Future releases of MITgcm are to allow varying tile
307     sizes. \\
308 edhill 1.8
309     The location of the tiles' Cartesian origin within a subdomain are
310     determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311     \varlink{exch2\_tbasey}{exch2_tbasey}. These variables are used to
312 afe 1.12 relate the location of the edges of different tiles to each other. As
313 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314     each index in these arrays is set to \code{0} since a tile occupies
315     its entire subdomain. The twentyfour-tile case discussed above will
316     have values of \code{0} or \code{16}, depending on the quadrant the
317     tile falls within the subdomain. The elements of the arrays
318     \varlink{exch2\_txglobalo}{exch2_txglobalo} and
319     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
320 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
321     \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322 afe 1.12 global address space, similar to that used by global files. \\
323 edhill 1.8
324 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325     the subdomain of each tile, in a range \code{(1:6)} in the case of the
326     standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327     figures \ref{fig:12tile} and
328     \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329 afe 1.15 contains a count the neighboring tiles each tile has, and is
330 afe 1.13 used for setting bounds for looping over neighboring tiles.
331     \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332     tile, and is used in interprocess communication. \\
333    
334    
335 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336     \varlink{exch2\_isEedge}{exch2_isEedge},
337     \varlink{exch2\_isSedge}{exch2_isSedge}, and
338 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339 afe 1.15 indexed tile lies on the respective edge of a subdomain, \code{0} if
340     not. The values are used within the topology generator to determine
341     the orientation of neighboring tiles, and to indicate whether a tile
342     lies on the corner of a subdomain. The latter case requires special
343 afe 1.12 exchange and numerical handling for the singularities at the eight
344 afe 1.13 corners of the cube. \\
345    
346 afe 1.4
347 afe 1.6 \subsubsection{Arrays Indexed to Tile Number and Neighbor}
348 afe 1.4
349 afe 1.12 The following arrays are all of size
350     \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the
351     orientations between the the tiles. \\
352    
353     The array \code{exch2\_neighbourId(a,T)} holds the tile number
354     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355 afe 1.15 \code{a}. The neighbor tiles are indexed
356     \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357     north then south edges, and then top to bottom on the east and west
358     edges. Maybe throw in a fig here, eh? \\
359    
360     \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361     index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362     that holds the tile number \code{T}, given
363     \code{Tn=exch2\_neighborId(a,T)}. In other words,
364 edhill 1.8 \begin{verbatim}
365     exch2_neighbourId( exch2_opposingSend_record(a,T),
366     exch2_neighbourId(a,T) ) = T
367 afe 1.5 \end{verbatim}
368 afe 1.12 This provides a back-reference from the neighbor tiles. \\
369 afe 1.5
370 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
371 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372 afe 1.13 in exchanges between the neighboring tiles. These transformations are
373 afe 1.15 necessary in exchanges between subdomains because the array index in
374     one dimension may map to the other index in an adjacent subdomain, and
375     may be have its indexing reversed. This swapping arises from the
376     ``folding'' of two-dimensional arrays into a three-dimensional cube.
377 afe 1.13
378     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379     are the neighbor ID \code{N} and the tile number \code{T} as explained
380 afe 1.15 above, plus a vector of length \code{2} containing transformation
381     factors \code{t}. The first element of the transformation vector
382     holds the factor to multiply the index in the same axis, and the
383     second element holds the the same for the orthogonal index. To
384     clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387     $x$ index to the neighbor \code{N}'s $y$ index. \\
388 afe 1.12
389 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391     the fact that the two axes are orthogonal. The other element will be
392     \code{1} or \code{-1}, depending on whether the axes are indexed in
393     the same or opposite directions. For example, the transform vector of
394     the arrays for all tile neighbors on the same subdomain will be
395 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
396 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
397     with the same index direction in a particular tile-neighbor
398     orientation will have \code{(0,1)}. Those in the opposite index
399     direction will have \code{(0,-1)} in order to reverse the ordering. \\
400 afe 1.13
401 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
402     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404     neighbor and specify the relative offset within the subdomain of the
405     array index of a variable going from a neighboring tile $N$ to a local
406     tile $T$. Consider the six-tile case (Fig. \ref{fig:6tile}), where
407     \code{exch2\_oi(1,1)=33}, \code{exch2\_oi(2,1)=0},
408     \code{exch2\_oi(3,1)=32}, and \code{exch2\_oi(4,1)=-32}. Each of these
409     indicates the offset in the $x$ direction \\
410    
411     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
412     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
413     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
414     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
415     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
416     that gets exchanged with the local tile \code{T}. To take the example
417     of tile \code{T=2} in the twelve-tile topology
418     (Fig. \ref{fig:12tile}): \\
419    
420     \begin{verbatim}
421     exch2_itlo_c(4,2)=17
422     exch2_ithi_c(4,2)=17
423     exch2_jtlo_c(4,2)=0
424     exch2_jthi_c(4,2)=33
425     \end{verbatim}
426    
427     Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
428     \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
429     have the same orientation and the same $x$ and $y$ axes. The $i$
430     component is orthogonal to the western edge and the tile is 16 points
431     wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
432     column beyond \code{Tn=1}'s eastern edge, in that tile's halo
433     region. Since the border of the tiles extends through the entire
434     height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
435     \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
436     cover part of the halo. \\
437    
438     For the north edge of the same tile \code{T=2} where \code{N=1} and
439     the neighbor tile is \code{Tn=5}:
440    
441     \begin{verbatim}
442     exch2_itlo_c(1,2)=0
443     exch2_ithi_c(1,2)=0
444     exch2_jtlo_c(1,2)=0
445     exch2_jthi_c(1,2)=17
446     \end{verbatim}
447    
448     \code{T}'s northern edge is parallel to the $x$ axis, but since
449     \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
450     \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
451     The western edge of the tiles corresponds to the lower bound of the
452     $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
453     range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
454     width of \code{T}'s northern edge, plus the halo. \\
455    
456    
457    
458    
459 afe 1.13
460    
461    
462    
463    
464 afe 1.5
465 afe 1.4
466 afe 1.14 This needs some diagrams. \\
467 afe 1.1
468    
469    
470     \subsection{Key Routines}
471    
472    
473    
474     \subsection{References}

  ViewVC Help
Powered by ViewVC 1.1.22