/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.18 - (hide annotations) (download) (as text)
Thu May 6 15:21:01 2004 UTC (21 years, 2 months ago) by afe
Branch: MAIN
Changes since 1.17: +15 -12 lines
File MIME type: application/x-tex
tweaks

1 afe 1.18 % $Header: /u/gcmpack/manual/part6/exch2.tex,v 1.17 2004/03/19 21:25:45 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 afe 1.10 \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17     \subsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26     number of processors. \\
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35 afe 1.18 32$\times$32 grid points, with all tiles running on a single processor. Both
36 afe 1.12 files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44     \subsection{Invoking exch2}
45    
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47     met: \\
48 afe 1.9
49 afe 1.11 $\bullet$ The exch2 package is included when \file{genmake2} is run.
50     The easiest way to do this is to add the line \code{exch2} to the
51     \file{profile.conf} file -- see Section
52 afe 1.12 \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53 afe 1.11 details. \\
54    
55     $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
57     symbolically linked when \file{genmake2} runs. The safest place to
58     put these is the directory indicated in the \code{-mods=DIR} command
59     line modifier (typically \file{../code}), or the build directory.
60     The default versions of these files reside in \file{pkg/exch2} and
61     are linked automatically if no other versions exist elsewhere in the
62     build path, but they should be left untouched to avoid breaking
63 afe 1.10 configurations other than the one you intend to modify.\\
64    
65     $\bullet$ Files containing grid parameters, named
66 afe 1.13 \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67     must be in the working directory when the MITgcm executable is run.
68 afe 1.12 These files are provided in the example experiments for cubed sphere
69 afe 1.18 configurations with 32$\times$32 cube sides
70     -- please contact MITgcm support if you want to generate
71 afe 1.12 files for other configurations. \\
72    
73     $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74 afe 1.13 be placed where \file{genmake2} will find it. In particular for
75 afe 1.12 exch2, the domain decomposition specified in \file{SIZE.h} must
76     correspond with the particular configuration's topology specified in
77     \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
78     decomposition issues particular to exch2 are addressed in Section
79     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80     and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
81     general background on the subject relevant to MITgcm is presented in
82     Section \ref{sect:specifying_a_decomposition}
83     \sectiontitle{Specifying a decomposition}.\\
84 afe 1.9
85 afe 1.17 At the time of this writing the following examples use exch2 and may
86     be used for guidance:
87 afe 1.9
88     \begin{verbatim}
89     verification/adjust_nlfs.cs-32x32x1
90     verification/adjustment.cs-32x32x1
91     verification/aim.5l_cs
92     verification/global_ocean.cs32x15
93     verification/hs94.cs-32x32x5
94     \end{verbatim}
95    
96    
97    
98    
99 afe 1.10 \subsection{Generating Topology Files for exch2}
100     \label{sec:topogen}
101    
102     Alternate cubed sphere topologies may be created using the Matlab
103 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104 afe 1.12 m-file
105     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106     from the Matlab prompt (there are no parameters to pass) generates
107     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108     \file{w2\_e2setup.F} in the working directory and displays a figure of
109 afe 1.18 the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110     and \ref{fig:24tile} are examples. The other m-files in the directory are
111 afe 1.12 subroutines of \file{driver.m} and should not be run ``bare'' except
112     for development purposes. \\
113 afe 1.10
114     The parameters that determine the dimensions and topology of the
115 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
116 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
117 afe 1.10
118 afe 1.12 The first three determine the size of the subdomains and
119 afe 1.10 hence the size of the overall domain. Each one determines the number
120     of grid points, and therefore the resolution, along the subdomain
121 afe 1.18 sides in a ``great circle'' around each the three spatial axes of the cube. At the time
122 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
123 afe 1.12 but they provide for future releases to accomodate different
124 afe 1.10 resolutions around the axes to allow (for example) greater resolution
125     around the equator.\\
126    
127 afe 1.18 The parameters \code{tnx} and \code{tny} determine the width and height of
128 afe 1.11 the tiles into which the subdomains are decomposed, and must evenly
129     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130     The result is a rectangular tiling of the subdomain. Figure
131 afe 1.17 \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133 afe 1.10
134     \begin{figure}
135     \begin{center}
136     \resizebox{4in}{!}{
137     \includegraphics{part6/s24t_16x16.ps}
138     }
139     \end{center}
140 afe 1.12
141 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
143 afe 1.18 into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144     total of twenty-four tiles. The colored borders of the subdomains
145     represent the parameters \code{nr} (red), \code{nb} (blue), and
146     \code{ng} (green). } \label{fig:24tile}
147 afe 1.10 \end{figure}
148    
149     \begin{figure}
150     \begin{center}
151     \resizebox{4in}{!}{
152     \includegraphics{part6/s12t_16x32.ps}
153     }
154     \end{center}
155 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158 afe 1.10 } \label{fig:12tile}
159     \end{figure}
160    
161 afe 1.13 \begin{figure}
162     \begin{center}
163     \resizebox{4in}{!}{
164     \includegraphics{part6/s6t_32x32.ps}
165     }
166     \end{center}
167     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168     divided into six 32$\times$32 subdomains with one tile each
169     (\code{tnx=32, tny=32}). This is the default configuration.
170     }
171     \label{fig:6tile}
172     \end{figure}
173    
174    
175 afe 1.10 Tiles can be selected from the topology to be omitted from being
176 afe 1.12 allocated memory and processors. This tuning is useful in ocean
177     modeling for omitting tiles that fall entirely on land. The tiles
178     omitted are specified in the file
179     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180     by their tile number in the topology, separated by a newline. \\
181    
182 afe 1.10
183    
184    
185 afe 1.12 \subsection{exch2, SIZE.h, and multiprocessing}
186     \label{sec:exch2mpi}
187    
188     Once the topology configuration files are created, the Fortran
189 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191     a decomposition} provides a general description of domain
192     decomposition within MITgcm and its relation to \file{SIZE.h}. The
193     current section specifies certain constraints the exch2 package
194     imposes as well as describes how to enable parallel execution with
195     MPI. \\
196 afe 1.12
197     As in the general case, the parameters \varlink{sNx}{sNx} and
198     \varlink{sNy}{sNy} define the size of the individual tiles, and so
199     must be assigned the same respective values as \code{tnx} and
200     \code{tny} in \file{driver.m}.\\
201    
202     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203     have no special bearing on exch2 and may be assigned as in the general
204     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205     levels in the model.\\
206    
207     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209     tiles and how they are distributed on processors. When using exch2,
210 afe 1.17 the tiles are stored in a single dimension, and so
211 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
212     configured by exch2 cannot be split up accross processors without
213     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215     The number of tiles MITgcm allocates and how they are distributed
216     between processors depends on \varlink{nPx}{nPx} and
217     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
218     processor and \varlink{nPx}{nPx} the number of processors. The total
219     number of tiles in the topology minus those listed in
220     \file{blanklist.txt} must equal \code{nSx*nPx}. \\
221    
222     The following is an example of \file{SIZE.h} for the twelve-tile
223     configuration illustrated in figure \ref{fig:12tile} running on
224     one processor: \\
225    
226     \begin{verbatim}
227     PARAMETER (
228     & sNx = 16,
229     & sNy = 32,
230     & OLx = 2,
231     & OLy = 2,
232     & nSx = 12,
233     & nSy = 1,
234     & nPx = 1,
235     & nPy = 1,
236     & Nx = sNx*nSx*nPx,
237     & Ny = sNy*nSy*nPy,
238     & Nr = 5)
239     \end{verbatim}
240    
241 afe 1.17 The following is an example for the twenty-four-tile topology in
242     figure \ref{fig:24tile} running on six processors:
243 afe 1.12
244     \begin{verbatim}
245     PARAMETER (
246     & sNx = 16,
247     & sNy = 16,
248     & OLx = 2,
249     & OLy = 2,
250     & nSx = 4,
251     & nSy = 1,
252     & nPx = 6,
253     & nPy = 1,
254     & Nx = sNx*nSx*nPx,
255     & Ny = sNy*nSy*nPy,
256     & Nr = 5)
257     \end{verbatim}
258    
259    
260 afe 1.10
261    
262 afe 1.4
263     \subsection{Key Variables}
264    
265     The descriptions of the variables are divided up into scalars,
266 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
267     three-dimensional arrays indexed to tile number and neighboring tile.
268     This division reflects the functionality of these variables: The
269 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
270 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
271     neighbor to relationships between tiles and their neighbors. \\
272 afe 1.4
273     \subsubsection{Scalars}
274    
275     The number of tiles in a particular topology is set with the parameter
276 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
277     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
278 edhill 1.8 size of the various one and two dimensional arrays that store tile
279 afe 1.12 parameters indexed to the tile number and are assigned in the files
280     generated by \file{driver.m}.\\
281 edhill 1.8
282     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
283     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
284 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
285 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
286     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
287     topology of twenty-four square tiles, four per subdomain (as in figure
288     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
289     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
290     tile layout to allow global data files that are tile-layout-neutral
291     and have no bearing on the internal storage of the arrays. The tiles
292 afe 1.17 are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
293 afe 1.18 $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
294     equal \code{1} throughout the package. \\
295 afe 1.4
296 afe 1.6 \subsubsection{Arrays Indexed to Tile Number}
297 afe 1.4
298 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
299     the tile number, which is indicated in the diagrams with the notation
300 afe 1.15 \textsf{t}$n$. The indices are omitted in the descriptions. \\
301 afe 1.4
302 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
303 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
304     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
305     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
306     section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
307 afe 1.18 multiprocessing}. Future releases of MITgcm may allow varying tile
308 afe 1.12 sizes. \\
309 edhill 1.8
310     The location of the tiles' Cartesian origin within a subdomain are
311     determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
312     \varlink{exch2\_tbasey}{exch2_tbasey}. These variables are used to
313 afe 1.12 relate the location of the edges of different tiles to each other. As
314 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
315     each index in these arrays is set to \code{0} since a tile occupies
316 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
317 afe 1.13 have values of \code{0} or \code{16}, depending on the quadrant the
318     tile falls within the subdomain. The elements of the arrays
319     \varlink{exch2\_txglobalo}{exch2_txglobalo} and
320     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
321 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
322     \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
323 afe 1.17 global address space, similar to that used by global output and input
324     files. \\
325 edhill 1.8
326 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
327     the subdomain of each tile, in a range \code{(1:6)} in the case of the
328     standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
329     figures \ref{fig:12tile} and
330     \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
331 afe 1.17 contains a count of the neighboring tiles each tile has, and is used
332     for setting bounds for looping over neighboring tiles.
333 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
334     tile, and is used in interprocess communication. \\
335    
336    
337 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
338     \varlink{exch2\_isEedge}{exch2_isEedge},
339     \varlink{exch2\_isSedge}{exch2_isSedge}, and
340 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
341 afe 1.15 indexed tile lies on the respective edge of a subdomain, \code{0} if
342     not. The values are used within the topology generator to determine
343     the orientation of neighboring tiles, and to indicate whether a tile
344     lies on the corner of a subdomain. The latter case requires special
345 afe 1.12 exchange and numerical handling for the singularities at the eight
346 afe 1.13 corners of the cube. \\
347    
348 afe 1.4
349 afe 1.6 \subsubsection{Arrays Indexed to Tile Number and Neighbor}
350 afe 1.4
351 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
352     \code{NTILES} and describe the orientations between the the tiles. \\
353 afe 1.12
354     The array \code{exch2\_neighbourId(a,T)} holds the tile number
355     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
356 afe 1.15 \code{a}. The neighbor tiles are indexed
357 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
358     north then south edges, and then top to bottom on the east then west
359     edges. \\
360 afe 1.15
361 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
362 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
363     that holds the tile number \code{T}, given
364     \code{Tn=exch2\_neighborId(a,T)}. In other words,
365 edhill 1.8 \begin{verbatim}
366     exch2_neighbourId( exch2_opposingSend_record(a,T),
367     exch2_neighbourId(a,T) ) = T
368 afe 1.5 \end{verbatim}
369 afe 1.12 This provides a back-reference from the neighbor tiles. \\
370 afe 1.5
371 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
372 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
373 afe 1.13 in exchanges between the neighboring tiles. These transformations are
374 afe 1.15 necessary in exchanges between subdomains because the array index in
375     one dimension may map to the other index in an adjacent subdomain, and
376     may be have its indexing reversed. This swapping arises from the
377 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
378     cube. \\
379 afe 1.13
380     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
381     are the neighbor ID \code{N} and the tile number \code{T} as explained
382 afe 1.15 above, plus a vector of length \code{2} containing transformation
383     factors \code{t}. The first element of the transformation vector
384     holds the factor to multiply the index in the same axis, and the
385     second element holds the the same for the orthogonal index. To
386     clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
387     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
388     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
389     $x$ index to the neighbor \code{N}'s $y$ index. \\
390 afe 1.12
391 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
392     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
393     the fact that the two axes are orthogonal. The other element will be
394     \code{1} or \code{-1}, depending on whether the axes are indexed in
395     the same or opposite directions. For example, the transform vector of
396     the arrays for all tile neighbors on the same subdomain will be
397 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
398 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
399     with the same index direction in a particular tile-neighbor
400     orientation will have \code{(0,1)}. Those in the opposite index
401     direction will have \code{(0,-1)} in order to reverse the ordering. \\
402 afe 1.13
403 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
404     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
405     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
406     neighbor and specify the relative offset within the subdomain of the
407 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
408     local tile \code{T}. Consider \code{T=1} in the six-tile topology
409 afe 1.16 (Fig. \ref{fig:6tile}), where
410    
411     \begin{verbatim}
412     exch2_oi(1,1)=33
413     exch2_oi(2,1)=0
414     exch2_oi(3,1)=32
415     exch2_oi(4,1)=-32
416     \end{verbatim}
417    
418     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
419     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
420     same orientation and their $x$ axes have the same origin, and so an
421     exchange between the two requires no changes to the $x$ index. For
422     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
423     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
424     \code{Tn}. The eastern edge of \code{T} shows the reverse case
425 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
426     with \code{x=0} on \code{Tn=2}. \\
427    
428     The most interesting case, where \code{exch2\_oi(1,1)=33} and
429     \code{Tn=3}, involves a reversal of indices. As in every case, the
430     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
431     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
432     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
433     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
434     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
435     index is reversed. The result is that the index of the northern edge
436     of \code{T}, which runs \code{(1:32)}, is transformed to
437 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
438 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
439     relative to \code{T}. This transformation may seem overly convoluted
440     for the six-tile case, but it is necessary to provide a general
441     solution for various topologies. \\
442 afe 1.16
443    
444 afe 1.14
445     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
446     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
447     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
448     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
449     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
450     that gets exchanged with the local tile \code{T}. To take the example
451     of tile \code{T=2} in the twelve-tile topology
452     (Fig. \ref{fig:12tile}): \\
453    
454     \begin{verbatim}
455     exch2_itlo_c(4,2)=17
456     exch2_ithi_c(4,2)=17
457     exch2_jtlo_c(4,2)=0
458     exch2_jthi_c(4,2)=33
459     \end{verbatim}
460    
461 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
462     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
463     the tiles have the same orientation and the same $x$ and $y$ axes.
464     The $x$ axis is orthogonal to the western edge and the tile is 16
465     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
466     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
467     halo region. Since the border of the tiles extends through the entire
468 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
469 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
470     either direction to cover part of the halo. \\
471 afe 1.14
472     For the north edge of the same tile \code{T=2} where \code{N=1} and
473     the neighbor tile is \code{Tn=5}:
474    
475     \begin{verbatim}
476     exch2_itlo_c(1,2)=0
477     exch2_ithi_c(1,2)=0
478     exch2_jtlo_c(1,2)=0
479     exch2_jthi_c(1,2)=17
480     \end{verbatim}
481    
482     \code{T}'s northern edge is parallel to the $x$ axis, but since
483 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
484     northern edge exchanges with \code{Tn}'s western edge. The western
485     edge of the tiles corresponds to the lower bound of the $x$ axis, so
486     \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
487     \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
488 afe 1.14 width of \code{T}'s northern edge, plus the halo. \\
489    
490    
491 afe 1.1 \subsection{Key Routines}
492    
493 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
494     themselves and are of the same format as those described in
495     \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
496     communication}. Like the original routines, they are written as
497     templates which the local Makefile converts from RX into RL and RS
498     forms. \\
499    
500     The interfaces with the core model subroutines are
501 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
502     \code{EXCH\_XY\_RX}. They override the standard exchange routines
503     when \code{genmake2} is run with \code{exch2} option. They in turn
504     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
505     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
506     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
507     and three-dimensional scalar quantities. These subroutines set the
508     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
509     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
510     the singularities at the cube corners. \\
511 afe 1.16
512     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
513 afe 1.17 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
514     needs to pass both the $u$ and $v$ components of the phsical vectors.
515     This arises from the topological folding discussed above, where the
516     $x$ and $y$ axes get swapped in some cases. This swapping is not an
517     issue with the scalar version. These subroutines call
518     \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
519     the work using the variables discussed above. \\
520 afe 1.1

  ViewVC Help
Powered by ViewVC 1.1.22