/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (hide annotations) (download) (as text)
Mon May 10 21:39:11 2004 UTC (21 years, 2 months ago) by afe
Branch: MAIN
Changes since 1.18: +50 -45 lines
File MIME type: application/x-tex
more obsessiveness

1 afe 1.19 % $Header: /u/gcmpack/manual/part6/exch2.tex,v 1.18 2004/05/06 15:21:01 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 afe 1.10 \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17     \subsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26     number of processors. \\
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35 afe 1.18 32$\times$32 grid points, with all tiles running on a single processor. Both
36 afe 1.12 files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44     \subsection{Invoking exch2}
45    
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47     met: \\
48 afe 1.9
49 afe 1.11 $\bullet$ The exch2 package is included when \file{genmake2} is run.
50     The easiest way to do this is to add the line \code{exch2} to the
51     \file{profile.conf} file -- see Section
52 afe 1.12 \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53 afe 1.11 details. \\
54    
55     $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
57 afe 1.19 symbolically linked by the \file{genmake2} script. The safest place to
58 afe 1.17 put these is the directory indicated in the \code{-mods=DIR} command
59     line modifier (typically \file{../code}), or the build directory.
60     The default versions of these files reside in \file{pkg/exch2} and
61     are linked automatically if no other versions exist elsewhere in the
62     build path, but they should be left untouched to avoid breaking
63 afe 1.10 configurations other than the one you intend to modify.\\
64    
65     $\bullet$ Files containing grid parameters, named
66 afe 1.13 \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67     must be in the working directory when the MITgcm executable is run.
68 afe 1.12 These files are provided in the example experiments for cubed sphere
69 afe 1.18 configurations with 32$\times$32 cube sides
70     -- please contact MITgcm support if you want to generate
71 afe 1.12 files for other configurations. \\
72    
73     $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74 afe 1.13 be placed where \file{genmake2} will find it. In particular for
75 afe 1.12 exch2, the domain decomposition specified in \file{SIZE.h} must
76     correspond with the particular configuration's topology specified in
77     \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
78     decomposition issues particular to exch2 are addressed in Section
79     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80 afe 1.19 and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more
81 afe 1.12 general background on the subject relevant to MITgcm is presented in
82     Section \ref{sect:specifying_a_decomposition}
83     \sectiontitle{Specifying a decomposition}.\\
84 afe 1.9
85 afe 1.17 At the time of this writing the following examples use exch2 and may
86     be used for guidance:
87 afe 1.9
88     \begin{verbatim}
89     verification/adjust_nlfs.cs-32x32x1
90     verification/adjustment.cs-32x32x1
91     verification/aim.5l_cs
92     verification/global_ocean.cs32x15
93     verification/hs94.cs-32x32x5
94     \end{verbatim}
95    
96    
97    
98    
99 afe 1.10 \subsection{Generating Topology Files for exch2}
100     \label{sec:topogen}
101    
102     Alternate cubed sphere topologies may be created using the Matlab
103 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104 afe 1.12 m-file
105     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106     from the Matlab prompt (there are no parameters to pass) generates
107     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108     \file{w2\_e2setup.F} in the working directory and displays a figure of
109 afe 1.18 the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110 afe 1.19 and \ref{fig:24tile} are examples of the generated diagrams. The other
111     m-files in the directory are
112     subroutines called from \file{driver.m} and should not be run ``bare'' except
113 afe 1.12 for development purposes. \\
114 afe 1.10
115     The parameters that determine the dimensions and topology of the
116 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
117 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118 afe 1.10
119 afe 1.19 The first three determine the height and width of the subdomains and
120 afe 1.10 hence the size of the overall domain. Each one determines the number
121     of grid points, and therefore the resolution, along the subdomain
122 afe 1.18 sides in a ``great circle'' around each the three spatial axes of the cube. At the time
123 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
124 afe 1.12 but they provide for future releases to accomodate different
125 afe 1.19 resolutions around the axes to allow subdomains with differing resolutions.\\
126 afe 1.10
127 afe 1.18 The parameters \code{tnx} and \code{tny} determine the width and height of
128 afe 1.11 the tiles into which the subdomains are decomposed, and must evenly
129     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130     The result is a rectangular tiling of the subdomain. Figure
131 afe 1.17 \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133 afe 1.10
134     \begin{figure}
135     \begin{center}
136     \resizebox{4in}{!}{
137     \includegraphics{part6/s24t_16x16.ps}
138     }
139     \end{center}
140 afe 1.12
141 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
143 afe 1.18 into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144     total of twenty-four tiles. The colored borders of the subdomains
145     represent the parameters \code{nr} (red), \code{nb} (blue), and
146     \code{ng} (green). } \label{fig:24tile}
147 afe 1.10 \end{figure}
148    
149     \begin{figure}
150     \begin{center}
151     \resizebox{4in}{!}{
152     \includegraphics{part6/s12t_16x32.ps}
153     }
154     \end{center}
155 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158 afe 1.10 } \label{fig:12tile}
159     \end{figure}
160    
161 afe 1.13 \begin{figure}
162     \begin{center}
163     \resizebox{4in}{!}{
164     \includegraphics{part6/s6t_32x32.ps}
165     }
166     \end{center}
167     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168     divided into six 32$\times$32 subdomains with one tile each
169     (\code{tnx=32, tny=32}). This is the default configuration.
170     }
171     \label{fig:6tile}
172     \end{figure}
173    
174    
175 afe 1.10 Tiles can be selected from the topology to be omitted from being
176 afe 1.12 allocated memory and processors. This tuning is useful in ocean
177     modeling for omitting tiles that fall entirely on land. The tiles
178     omitted are specified in the file
179     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180     by their tile number in the topology, separated by a newline. \\
181    
182 afe 1.10
183    
184    
185 afe 1.19 \subsection{exch2, SIZE.h, and Multiprocessing}
186 afe 1.12 \label{sec:exch2mpi}
187    
188     Once the topology configuration files are created, the Fortran
189 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191     a decomposition} provides a general description of domain
192     decomposition within MITgcm and its relation to \file{SIZE.h}. The
193 afe 1.19 current section specifies constraints that the exch2 package
194     imposes and describes how to enable parallel execution with
195 afe 1.13 MPI. \\
196 afe 1.12
197     As in the general case, the parameters \varlink{sNx}{sNx} and
198     \varlink{sNy}{sNy} define the size of the individual tiles, and so
199     must be assigned the same respective values as \code{tnx} and
200     \code{tny} in \file{driver.m}.\\
201    
202     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203     have no special bearing on exch2 and may be assigned as in the general
204     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205     levels in the model.\\
206    
207     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209     tiles and how they are distributed on processors. When using exch2,
210 afe 1.19 the tiles are stored in the $x$ dimension, and so
211 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
212     configured by exch2 cannot be split up accross processors without
213     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215     The number of tiles MITgcm allocates and how they are distributed
216     between processors depends on \varlink{nPx}{nPx} and
217     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
218 afe 1.19 processor and \varlink{nPx}{nPx} is the number of processors. The total
219 afe 1.12 number of tiles in the topology minus those listed in
220 afe 1.19 \file{blanklist.txt} must equal \code{nSx*nPx}. Note that in order to
221     obtain maximum usage from a given number of processors in some cases,
222     this restriction might entail sharing a processor with a tile that would
223     otherwise be excluded. \\
224 afe 1.12
225     The following is an example of \file{SIZE.h} for the twelve-tile
226     configuration illustrated in figure \ref{fig:12tile} running on
227     one processor: \\
228    
229     \begin{verbatim}
230     PARAMETER (
231     & sNx = 16,
232     & sNy = 32,
233     & OLx = 2,
234     & OLy = 2,
235     & nSx = 12,
236     & nSy = 1,
237     & nPx = 1,
238     & nPy = 1,
239     & Nx = sNx*nSx*nPx,
240     & Ny = sNy*nSy*nPy,
241     & Nr = 5)
242     \end{verbatim}
243    
244 afe 1.17 The following is an example for the twenty-four-tile topology in
245     figure \ref{fig:24tile} running on six processors:
246 afe 1.12
247     \begin{verbatim}
248     PARAMETER (
249     & sNx = 16,
250     & sNy = 16,
251     & OLx = 2,
252     & OLy = 2,
253     & nSx = 4,
254     & nSy = 1,
255     & nPx = 6,
256     & nPy = 1,
257     & Nx = sNx*nSx*nPx,
258     & Ny = sNy*nSy*nPy,
259     & Nr = 5)
260     \end{verbatim}
261    
262    
263 afe 1.10
264    
265 afe 1.4
266     \subsection{Key Variables}
267    
268     The descriptions of the variables are divided up into scalars,
269 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
270     three-dimensional arrays indexed to tile number and neighboring tile.
271     This division reflects the functionality of these variables: The
272 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
273 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
274     neighbor to relationships between tiles and their neighbors. \\
275 afe 1.4
276     \subsubsection{Scalars}
277    
278     The number of tiles in a particular topology is set with the parameter
279 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
280     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
281 edhill 1.8 size of the various one and two dimensional arrays that store tile
282 afe 1.12 parameters indexed to the tile number and are assigned in the files
283     generated by \file{driver.m}.\\
284 edhill 1.8
285     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
286     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
287 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
288 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
289     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
290     topology of twenty-four square tiles, four per subdomain (as in figure
291     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
292     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
293 afe 1.19 tile layout in order to allow global data files that are tile-layout-neutral.
294     They have no bearing on the internal storage of the arrays. The tiles
295     are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
296 afe 1.18 $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
297     equal \code{1} throughout the package. \\
298 afe 1.4
299 afe 1.19 \subsubsection{Arrays indexed to tile number}
300 afe 1.4
301 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
302     the tile number, which is indicated in the diagrams with the notation
303 afe 1.15 \textsf{t}$n$. The indices are omitted in the descriptions. \\
304 afe 1.4
305 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
306 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
307     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
308     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
309 afe 1.19 Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
310     Multiprocessing}. Future releases of MITgcm may allow varying tile
311 afe 1.12 sizes. \\
312 edhill 1.8
313 afe 1.19 The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
314     \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
315     Cartesian origin within a subdomain
316     and locate the edges of different tiles relative to each other. As
317 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
318     each index in these arrays is set to \code{0} since a tile occupies
319 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
320 afe 1.19 have values of \code{0} or \code{16}, depending on the quadrant of the
321     tile within the subdomain. The elements of the arrays
322 afe 1.13 \varlink{exch2\_txglobalo}{exch2_txglobalo} and
323     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
324 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
325 afe 1.19 \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
326 afe 1.17 global address space, similar to that used by global output and input
327     files. \\
328 edhill 1.8
329 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
330     the subdomain of each tile, in a range \code{(1:6)} in the case of the
331     standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
332     figures \ref{fig:12tile} and
333     \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
334 afe 1.19 contains a count of the neighboring tiles each tile has, and sets
335     the bounds for looping over neighboring tiles.
336 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
337     tile, and is used in interprocess communication. \\
338    
339    
340 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
341     \varlink{exch2\_isEedge}{exch2_isEedge},
342     \varlink{exch2\_isSedge}{exch2_isSedge}, and
343 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
344 afe 1.19 indexed tile lies on the edge of its subdomain, \code{0} if
345 afe 1.15 not. The values are used within the topology generator to determine
346     the orientation of neighboring tiles, and to indicate whether a tile
347     lies on the corner of a subdomain. The latter case requires special
348 afe 1.12 exchange and numerical handling for the singularities at the eight
349 afe 1.13 corners of the cube. \\
350    
351 afe 1.4
352 afe 1.6 \subsubsection{Arrays Indexed to Tile Number and Neighbor}
353 afe 1.4
354 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
355     \code{NTILES} and describe the orientations between the the tiles. \\
356 afe 1.12
357     The array \code{exch2\_neighbourId(a,T)} holds the tile number
358     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
359 afe 1.15 \code{a}. The neighbor tiles are indexed
360 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
361     north then south edges, and then top to bottom on the east then west
362     edges. \\
363 afe 1.15
364 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
365 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
366     that holds the tile number \code{T}, given
367     \code{Tn=exch2\_neighborId(a,T)}. In other words,
368 edhill 1.8 \begin{verbatim}
369     exch2_neighbourId( exch2_opposingSend_record(a,T),
370     exch2_neighbourId(a,T) ) = T
371 afe 1.5 \end{verbatim}
372 afe 1.12 This provides a back-reference from the neighbor tiles. \\
373 afe 1.5
374 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
375 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
376 afe 1.13 in exchanges between the neighboring tiles. These transformations are
377 afe 1.19 necessary in exchanges between subdomains because a horizontal dimension
378     in one subdomain
379     may map to other horizonal dimension in an adjacent subdomain, and
380     may also have its indexing reversed. This swapping arises from the
381 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
382     cube. \\
383 afe 1.13
384     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
385     are the neighbor ID \code{N} and the tile number \code{T} as explained
386 afe 1.15 above, plus a vector of length \code{2} containing transformation
387     factors \code{t}. The first element of the transformation vector
388 afe 1.19 holds the factor to multiply the index in the same dimension, and the
389     second element holds the the same for the orthogonal dimension. To
390 afe 1.15 clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
391     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
392     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
393     $x$ index to the neighbor \code{N}'s $y$ index. \\
394 afe 1.12
395 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
396     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
397     the fact that the two axes are orthogonal. The other element will be
398     \code{1} or \code{-1}, depending on whether the axes are indexed in
399     the same or opposite directions. For example, the transform vector of
400     the arrays for all tile neighbors on the same subdomain will be
401 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
402 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
403     with the same index direction in a particular tile-neighbor
404 afe 1.19 orientation will have \code{(0,1)}. Those with the opposite index
405 afe 1.15 direction will have \code{(0,-1)} in order to reverse the ordering. \\
406 afe 1.13
407 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
408     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
409     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
410     neighbor and specify the relative offset within the subdomain of the
411 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
412     local tile \code{T}. Consider \code{T=1} in the six-tile topology
413 afe 1.16 (Fig. \ref{fig:6tile}), where
414    
415     \begin{verbatim}
416     exch2_oi(1,1)=33
417     exch2_oi(2,1)=0
418     exch2_oi(3,1)=32
419     exch2_oi(4,1)=-32
420     \end{verbatim}
421    
422     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
423     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
424     same orientation and their $x$ axes have the same origin, and so an
425     exchange between the two requires no changes to the $x$ index. For
426     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
427     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
428     \code{Tn}. The eastern edge of \code{T} shows the reverse case
429 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
430     with \code{x=0} on \code{Tn=2}. \\
431    
432     The most interesting case, where \code{exch2\_oi(1,1)=33} and
433     \code{Tn=3}, involves a reversal of indices. As in every case, the
434     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
435     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
436     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
437     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
438     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
439     index is reversed. The result is that the index of the northern edge
440     of \code{T}, which runs \code{(1:32)}, is transformed to
441 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
442 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
443     relative to \code{T}. This transformation may seem overly convoluted
444     for the six-tile case, but it is necessary to provide a general
445     solution for various topologies. \\
446 afe 1.16
447    
448 afe 1.14
449     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
450     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
451     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
452     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
453     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
454     that gets exchanged with the local tile \code{T}. To take the example
455     of tile \code{T=2} in the twelve-tile topology
456     (Fig. \ref{fig:12tile}): \\
457    
458     \begin{verbatim}
459     exch2_itlo_c(4,2)=17
460     exch2_ithi_c(4,2)=17
461     exch2_jtlo_c(4,2)=0
462     exch2_jthi_c(4,2)=33
463     \end{verbatim}
464    
465 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
466     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
467     the tiles have the same orientation and the same $x$ and $y$ axes.
468     The $x$ axis is orthogonal to the western edge and the tile is 16
469     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
470     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
471     halo region. Since the border of the tiles extends through the entire
472 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
473 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
474     either direction to cover part of the halo. \\
475 afe 1.14
476     For the north edge of the same tile \code{T=2} where \code{N=1} and
477     the neighbor tile is \code{Tn=5}:
478    
479     \begin{verbatim}
480     exch2_itlo_c(1,2)=0
481     exch2_ithi_c(1,2)=0
482     exch2_jtlo_c(1,2)=0
483     exch2_jthi_c(1,2)=17
484     \end{verbatim}
485    
486     \code{T}'s northern edge is parallel to the $x$ axis, but since
487 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
488     northern edge exchanges with \code{Tn}'s western edge. The western
489     edge of the tiles corresponds to the lower bound of the $x$ axis, so
490 afe 1.19 \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
491     western halo region of \code{Tn}. The range of
492 afe 1.17 \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
493 afe 1.19 width of \code{T}'s northern edge, expanded by one into the halo. \\
494 afe 1.14
495    
496 afe 1.1 \subsection{Key Routines}
497    
498 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
499     themselves and are of the same format as those described in
500     \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
501     communication}. Like the original routines, they are written as
502 afe 1.19 templates which the local Makefile converts from \code{RX} into
503     \code{RL} and \code{RS} forms. \\
504 afe 1.16
505     The interfaces with the core model subroutines are
506 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
507     \code{EXCH\_XY\_RX}. They override the standard exchange routines
508     when \code{genmake2} is run with \code{exch2} option. They in turn
509     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
510     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
511     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
512     and three-dimensional scalar quantities. These subroutines set the
513     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
514     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
515     the singularities at the cube corners. \\
516 afe 1.16
517     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
518 afe 1.19 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
519     needs to pass both the $u$ and $v$ components of the physical vectors.
520     This swapping arises from the topological folding discussed above, where the
521     $x$ and $y$ axes get swapped in some cases, and is not an
522     issue with the scalar case. These subroutines call
523 afe 1.17 \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
524     the work using the variables discussed above. \\
525 afe 1.1

  ViewVC Help
Powered by ViewVC 1.1.22