/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.20 - (hide annotations) (download) (as text)
Tue Oct 12 15:47:40 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
Changes since 1.19: +50 -39 lines
File MIME type: application/x-tex
 o minor formatting changes

1 edhill 1.20 % $Header: /u/gcmpack/manual/part6/exch2.tex,v 1.19 2004/05/10 21:39:11 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 afe 1.10 \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17     \subsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26     number of processors. \\
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35 afe 1.18 32$\times$32 grid points, with all tiles running on a single processor. Both
36 afe 1.12 files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44     \subsection{Invoking exch2}
45    
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47 edhill 1.20 met:
48 afe 1.9
49 edhill 1.20 \begin{itemize}
50     \item The exch2 package is included when \file{genmake2} is run. The
51     easiest way to do this is to add the line \code{exch2} to the
52     \file{profile.conf} file -- see Section \ref{sect:buildingCode}
53     \sectiontitle{Building the code} for general details.
54    
55     \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
57 edhill 1.20 symbolically linked by the \file{genmake2} script. The safest place
58     to put these is the directory indicated in the \code{-mods=DIR}
59     command line modifier (typically \file{../code}), or the build
60     directory. The default versions of these files reside in
61     \file{pkg/exch2} and are linked automatically if no other versions
62     exist elsewhere in the build path, but they should be left untouched
63     to avoid breaking configurations other than the one you intend to
64     modify.
65    
66     \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
67     where $n$=\code{(1:6)} (one per subdomain), must be in the working
68     directory when the MITgcm executable is run. These files are
69     provided in the example experiments for cubed sphere configurations
70     with 32$\times$32 cube sides -- please contact
71     \begin{rawhtml}
72     <A href=''mailto:mitgcm-support@dev.mitgcm.org">
73     \end{rawhtml}
74     \begin{verbatim}
75     MITgcm-support@mitgcm.org
76     \end{verbatim}
77     \begin{rawhtml} </A> \end{rawhtml}
78     if you want to generate files for other configurations.
79    
80     \item As always when compiling MITgcm, the file \file{SIZE.h} must be
81     placed where \file{genmake2} will find it. In particular for exch2,
82     the domain decomposition specified in \file{SIZE.h} must correspond
83     with the particular configuration's topology specified in
84 afe 1.12 \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
85     decomposition issues particular to exch2 are addressed in Section
86     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
87 edhill 1.20 and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
88     Multiprocessing}; a more general background on the subject
89     relevant to MITgcm is presented in Section
90     \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a
91     decomposition}.
92     \end{itemize}
93    
94    
95 afe 1.9
96 afe 1.17 At the time of this writing the following examples use exch2 and may
97     be used for guidance:
98 afe 1.9
99     \begin{verbatim}
100     verification/adjust_nlfs.cs-32x32x1
101     verification/adjustment.cs-32x32x1
102     verification/aim.5l_cs
103     verification/global_ocean.cs32x15
104     verification/hs94.cs-32x32x5
105     \end{verbatim}
106    
107    
108    
109    
110 afe 1.10 \subsection{Generating Topology Files for exch2}
111     \label{sec:topogen}
112    
113     Alternate cubed sphere topologies may be created using the Matlab
114 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
115 afe 1.12 m-file
116     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
117     from the Matlab prompt (there are no parameters to pass) generates
118     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
119     \file{w2\_e2setup.F} in the working directory and displays a figure of
120 afe 1.18 the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
121 afe 1.19 and \ref{fig:24tile} are examples of the generated diagrams. The other
122     m-files in the directory are
123     subroutines called from \file{driver.m} and should not be run ``bare'' except
124 afe 1.12 for development purposes. \\
125 afe 1.10
126     The parameters that determine the dimensions and topology of the
127 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
128 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
129 afe 1.10
130 afe 1.19 The first three determine the height and width of the subdomains and
131 afe 1.10 hence the size of the overall domain. Each one determines the number
132     of grid points, and therefore the resolution, along the subdomain
133 afe 1.18 sides in a ``great circle'' around each the three spatial axes of the cube. At the time
134 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
135 afe 1.12 but they provide for future releases to accomodate different
136 afe 1.19 resolutions around the axes to allow subdomains with differing resolutions.\\
137 afe 1.10
138 afe 1.18 The parameters \code{tnx} and \code{tny} determine the width and height of
139 afe 1.11 the tiles into which the subdomains are decomposed, and must evenly
140     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
141     The result is a rectangular tiling of the subdomain. Figure
142 afe 1.17 \ref{fig:24tile} shows one possible topology for a twenty-four-tile
143 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
144 afe 1.10
145     \begin{figure}
146     \begin{center}
147     \resizebox{4in}{!}{
148     \includegraphics{part6/s24t_16x16.ps}
149     }
150     \end{center}
151 afe 1.12
152 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
153 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
154 afe 1.18 into four tiles of width \code{tnx=16} and height \code{tny=16} for a
155     total of twenty-four tiles. The colored borders of the subdomains
156     represent the parameters \code{nr} (red), \code{nb} (blue), and
157     \code{ng} (green). } \label{fig:24tile}
158 afe 1.10 \end{figure}
159    
160     \begin{figure}
161     \begin{center}
162     \resizebox{4in}{!}{
163     \includegraphics{part6/s12t_16x32.ps}
164     }
165     \end{center}
166 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
168     (\code{tnx=16, tny=32}).
169 afe 1.10 } \label{fig:12tile}
170     \end{figure}
171    
172 afe 1.13 \begin{figure}
173     \begin{center}
174     \resizebox{4in}{!}{
175     \includegraphics{part6/s6t_32x32.ps}
176     }
177     \end{center}
178     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
179     divided into six 32$\times$32 subdomains with one tile each
180     (\code{tnx=32, tny=32}). This is the default configuration.
181     }
182     \label{fig:6tile}
183     \end{figure}
184    
185    
186 afe 1.10 Tiles can be selected from the topology to be omitted from being
187 afe 1.12 allocated memory and processors. This tuning is useful in ocean
188     modeling for omitting tiles that fall entirely on land. The tiles
189     omitted are specified in the file
190     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
191     by their tile number in the topology, separated by a newline. \\
192    
193 afe 1.10
194    
195    
196 afe 1.19 \subsection{exch2, SIZE.h, and Multiprocessing}
197 afe 1.12 \label{sec:exch2mpi}
198    
199     Once the topology configuration files are created, the Fortran
200 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
201     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
202     a decomposition} provides a general description of domain
203     decomposition within MITgcm and its relation to \file{SIZE.h}. The
204 afe 1.19 current section specifies constraints that the exch2 package
205     imposes and describes how to enable parallel execution with
206 afe 1.13 MPI. \\
207 afe 1.12
208     As in the general case, the parameters \varlink{sNx}{sNx} and
209     \varlink{sNy}{sNy} define the size of the individual tiles, and so
210     must be assigned the same respective values as \code{tnx} and
211     \code{tny} in \file{driver.m}.\\
212    
213     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214     have no special bearing on exch2 and may be assigned as in the general
215     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216     levels in the model.\\
217    
218     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220     tiles and how they are distributed on processors. When using exch2,
221 afe 1.19 the tiles are stored in the $x$ dimension, and so
222 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
223     configured by exch2 cannot be split up accross processors without
224     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
225    
226     The number of tiles MITgcm allocates and how they are distributed
227     between processors depends on \varlink{nPx}{nPx} and
228     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
229 afe 1.19 processor and \varlink{nPx}{nPx} is the number of processors. The total
230 afe 1.12 number of tiles in the topology minus those listed in
231 afe 1.19 \file{blanklist.txt} must equal \code{nSx*nPx}. Note that in order to
232     obtain maximum usage from a given number of processors in some cases,
233     this restriction might entail sharing a processor with a tile that would
234     otherwise be excluded. \\
235 afe 1.12
236     The following is an example of \file{SIZE.h} for the twelve-tile
237     configuration illustrated in figure \ref{fig:12tile} running on
238     one processor: \\
239    
240     \begin{verbatim}
241     PARAMETER (
242     & sNx = 16,
243     & sNy = 32,
244     & OLx = 2,
245     & OLy = 2,
246     & nSx = 12,
247     & nSy = 1,
248     & nPx = 1,
249     & nPy = 1,
250     & Nx = sNx*nSx*nPx,
251     & Ny = sNy*nSy*nPy,
252     & Nr = 5)
253     \end{verbatim}
254    
255 afe 1.17 The following is an example for the twenty-four-tile topology in
256     figure \ref{fig:24tile} running on six processors:
257 afe 1.12
258     \begin{verbatim}
259     PARAMETER (
260     & sNx = 16,
261     & sNy = 16,
262     & OLx = 2,
263     & OLy = 2,
264     & nSx = 4,
265     & nSy = 1,
266     & nPx = 6,
267     & nPy = 1,
268     & Nx = sNx*nSx*nPx,
269     & Ny = sNy*nSy*nPy,
270     & Nr = 5)
271     \end{verbatim}
272    
273    
274 afe 1.10
275    
276 afe 1.4
277     \subsection{Key Variables}
278    
279     The descriptions of the variables are divided up into scalars,
280 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
281     three-dimensional arrays indexed to tile number and neighboring tile.
282     This division reflects the functionality of these variables: The
283 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
284 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
285     neighbor to relationships between tiles and their neighbors. \\
286 afe 1.4
287     \subsubsection{Scalars}
288    
289     The number of tiles in a particular topology is set with the parameter
290 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
291     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
292 edhill 1.8 size of the various one and two dimensional arrays that store tile
293 afe 1.12 parameters indexed to the tile number and are assigned in the files
294     generated by \file{driver.m}.\\
295 edhill 1.8
296     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
297     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
298 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
299 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
300     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
301     topology of twenty-four square tiles, four per subdomain (as in figure
302     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
303     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
304 afe 1.19 tile layout in order to allow global data files that are tile-layout-neutral.
305     They have no bearing on the internal storage of the arrays. The tiles
306     are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
307 afe 1.18 $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
308     equal \code{1} throughout the package. \\
309 afe 1.4
310 afe 1.19 \subsubsection{Arrays indexed to tile number}
311 afe 1.4
312 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
313     the tile number, which is indicated in the diagrams with the notation
314 edhill 1.20 \code{tn}. The indices are omitted in the descriptions. \\
315 afe 1.4
316 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
317 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
318     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
319     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
320 afe 1.19 Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
321     Multiprocessing}. Future releases of MITgcm may allow varying tile
322 afe 1.12 sizes. \\
323 edhill 1.8
324 afe 1.19 The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
325     \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
326     Cartesian origin within a subdomain
327     and locate the edges of different tiles relative to each other. As
328 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
329     each index in these arrays is set to \code{0} since a tile occupies
330 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
331 afe 1.19 have values of \code{0} or \code{16}, depending on the quadrant of the
332     tile within the subdomain. The elements of the arrays
333 afe 1.13 \varlink{exch2\_txglobalo}{exch2_txglobalo} and
334     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
335 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
336 afe 1.19 \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
337 afe 1.17 global address space, similar to that used by global output and input
338     files. \\
339 edhill 1.8
340 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
341     the subdomain of each tile, in a range \code{(1:6)} in the case of the
342 edhill 1.20 standard cube topology and indicated by \textbf{\textsf{fn}} in
343     figures \ref{fig:12tile} and \ref{fig:24tile}. The
344     \varlink{exch2\_nNeighbours}{exch2_nNeighbours} variable contains a
345     count of the neighboring tiles each tile has, and sets the bounds for
346     looping over neighboring tiles. And
347 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
348     tile, and is used in interprocess communication. \\
349    
350    
351 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
352     \varlink{exch2\_isEedge}{exch2_isEedge},
353     \varlink{exch2\_isSedge}{exch2_isSedge}, and
354 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
355 afe 1.19 indexed tile lies on the edge of its subdomain, \code{0} if
356 afe 1.15 not. The values are used within the topology generator to determine
357     the orientation of neighboring tiles, and to indicate whether a tile
358     lies on the corner of a subdomain. The latter case requires special
359 afe 1.12 exchange and numerical handling for the singularities at the eight
360 afe 1.13 corners of the cube. \\
361    
362 afe 1.4
363 afe 1.6 \subsubsection{Arrays Indexed to Tile Number and Neighbor}
364 afe 1.4
365 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
366     \code{NTILES} and describe the orientations between the the tiles. \\
367 afe 1.12
368     The array \code{exch2\_neighbourId(a,T)} holds the tile number
369     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
370 afe 1.15 \code{a}. The neighbor tiles are indexed
371 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
372     north then south edges, and then top to bottom on the east then west
373     edges. \\
374 afe 1.15
375 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
376 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
377     that holds the tile number \code{T}, given
378     \code{Tn=exch2\_neighborId(a,T)}. In other words,
379 edhill 1.8 \begin{verbatim}
380     exch2_neighbourId( exch2_opposingSend_record(a,T),
381     exch2_neighbourId(a,T) ) = T
382 afe 1.5 \end{verbatim}
383 afe 1.12 This provides a back-reference from the neighbor tiles. \\
384 afe 1.5
385 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
386 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
387 afe 1.13 in exchanges between the neighboring tiles. These transformations are
388 afe 1.19 necessary in exchanges between subdomains because a horizontal dimension
389     in one subdomain
390     may map to other horizonal dimension in an adjacent subdomain, and
391     may also have its indexing reversed. This swapping arises from the
392 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
393     cube. \\
394 afe 1.13
395     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
396     are the neighbor ID \code{N} and the tile number \code{T} as explained
397 afe 1.15 above, plus a vector of length \code{2} containing transformation
398     factors \code{t}. The first element of the transformation vector
399 afe 1.19 holds the factor to multiply the index in the same dimension, and the
400     second element holds the the same for the orthogonal dimension. To
401 afe 1.15 clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
402     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
403     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
404     $x$ index to the neighbor \code{N}'s $y$ index. \\
405 afe 1.12
406 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
407     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
408     the fact that the two axes are orthogonal. The other element will be
409     \code{1} or \code{-1}, depending on whether the axes are indexed in
410     the same or opposite directions. For example, the transform vector of
411     the arrays for all tile neighbors on the same subdomain will be
412 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
413 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
414     with the same index direction in a particular tile-neighbor
415 afe 1.19 orientation will have \code{(0,1)}. Those with the opposite index
416 afe 1.15 direction will have \code{(0,-1)} in order to reverse the ordering. \\
417 afe 1.13
418 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
419     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
420     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
421     neighbor and specify the relative offset within the subdomain of the
422 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
423     local tile \code{T}. Consider \code{T=1} in the six-tile topology
424 afe 1.16 (Fig. \ref{fig:6tile}), where
425    
426     \begin{verbatim}
427     exch2_oi(1,1)=33
428     exch2_oi(2,1)=0
429     exch2_oi(3,1)=32
430     exch2_oi(4,1)=-32
431     \end{verbatim}
432    
433     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
434     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
435     same orientation and their $x$ axes have the same origin, and so an
436     exchange between the two requires no changes to the $x$ index. For
437     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
438     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
439     \code{Tn}. The eastern edge of \code{T} shows the reverse case
440 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
441     with \code{x=0} on \code{Tn=2}. \\
442    
443     The most interesting case, where \code{exch2\_oi(1,1)=33} and
444     \code{Tn=3}, involves a reversal of indices. As in every case, the
445     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
446     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
447     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
448     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
449     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
450     index is reversed. The result is that the index of the northern edge
451     of \code{T}, which runs \code{(1:32)}, is transformed to
452 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
453 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
454     relative to \code{T}. This transformation may seem overly convoluted
455     for the six-tile case, but it is necessary to provide a general
456     solution for various topologies. \\
457 afe 1.16
458    
459 afe 1.14
460     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
461     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
462     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
463     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
464     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
465     that gets exchanged with the local tile \code{T}. To take the example
466     of tile \code{T=2} in the twelve-tile topology
467     (Fig. \ref{fig:12tile}): \\
468    
469     \begin{verbatim}
470     exch2_itlo_c(4,2)=17
471     exch2_ithi_c(4,2)=17
472     exch2_jtlo_c(4,2)=0
473     exch2_jthi_c(4,2)=33
474     \end{verbatim}
475    
476 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
477     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
478     the tiles have the same orientation and the same $x$ and $y$ axes.
479     The $x$ axis is orthogonal to the western edge and the tile is 16
480     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
481     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
482     halo region. Since the border of the tiles extends through the entire
483 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
484 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
485     either direction to cover part of the halo. \\
486 afe 1.14
487     For the north edge of the same tile \code{T=2} where \code{N=1} and
488     the neighbor tile is \code{Tn=5}:
489    
490     \begin{verbatim}
491     exch2_itlo_c(1,2)=0
492     exch2_ithi_c(1,2)=0
493     exch2_jtlo_c(1,2)=0
494     exch2_jthi_c(1,2)=17
495     \end{verbatim}
496    
497     \code{T}'s northern edge is parallel to the $x$ axis, but since
498 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
499     northern edge exchanges with \code{Tn}'s western edge. The western
500     edge of the tiles corresponds to the lower bound of the $x$ axis, so
501 afe 1.19 \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
502     western halo region of \code{Tn}. The range of
503 afe 1.17 \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
504 afe 1.19 width of \code{T}'s northern edge, expanded by one into the halo. \\
505 afe 1.14
506    
507 afe 1.1 \subsection{Key Routines}
508    
509 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
510     themselves and are of the same format as those described in
511     \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
512     communication}. Like the original routines, they are written as
513 afe 1.19 templates which the local Makefile converts from \code{RX} into
514     \code{RL} and \code{RS} forms. \\
515 afe 1.16
516     The interfaces with the core model subroutines are
517 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
518     \code{EXCH\_XY\_RX}. They override the standard exchange routines
519     when \code{genmake2} is run with \code{exch2} option. They in turn
520     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
521     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
522     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
523     and three-dimensional scalar quantities. These subroutines set the
524     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
525     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
526     the singularities at the cube corners. \\
527 afe 1.16
528     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
529 afe 1.19 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
530     needs to pass both the $u$ and $v$ components of the physical vectors.
531     This swapping arises from the topological folding discussed above, where the
532     $x$ and $y$ axes get swapped in some cases, and is not an
533     issue with the scalar case. These subroutines call
534 afe 1.17 \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
535     the work using the variables discussed above. \\
536 afe 1.1

  ViewVC Help
Powered by ViewVC 1.1.22