/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by afe, Wed Mar 17 19:49:22 2004 UTC revision 1.27 by jmc, Sat May 2 02:13:18 2009 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere \mbox{Topology}}  \subsection{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsubsection{Introduction}
18    
19  The \texttt{exch2} package extends the original cubed  The \texttt{exch2} package extends the original cubed sphere topology
20  sphere topology configuration to allow more flexible domain  configuration to allow more flexible domain decomposition and
21  decomposition and parallelization.  Cube faces (also called  parallelization.  Cube faces (also called subdomains) may be divided
22  subdomains) may be divided into any number of tiles that divide evenly  into any number of tiles that divide evenly into the grid point
23  into the grid point dimensions of the subdomain.  Furthermore, the  dimensions of the subdomain.  Furthermore, the tiles can run on
24  individual tiles can run on separate processors in different  separate processors individually or in groups, which provides for
25  combinations, and whether exchanges between particular tiles occur  manual compile-time load balancing across a relatively arbitrary
26  between different processors is determined at runtime.  This  number of processors.
 flexibility provides for manual compile-time load balancing across a  
 relatively arbitrary number of processors. \\  
27    
28  The exchange parameters are declared in  The exchange parameters are declared in
29  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
# Line 34  and assigned in Line 32  and assigned in
32  validity of the cube topology depends on the \file{SIZE.h} file as  validity of the cube topology depends on the \file{SIZE.h} file as
33  detailed below.  The default files provided in the release configure a  detailed below.  The default files provided in the release configure a
34  cubed sphere topology of six tiles, one per subdomain, each with  cubed sphere topology of six tiles, one per subdomain, each with
35  32$\times$32 grid points, all running on a single processor.  Both  32$\times$32 grid points, with all tiles running on a single processor.  Both
36  files are generated by Matlab scripts in  files are generated by Matlab scripts in
37  \file{utils/exch2/matlab-topology-generator}; see Section  \file{utils/exch2/matlab-topology-generator}; see Section
38  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
# Line 43  of these files with alternate topologies Line 41  of these files with alternate topologies
41  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42  file for single-processor execution.  file for single-processor execution.
43    
44  \subsection{Invoking exch2}  \subsubsection{Invoking exch2}
45    
46  To use exch2 with the cubed sphere, the following conditions must be  To use exch2 with the cubed sphere, the following conditions must be
47  met: \\  met:
48    
49  $\bullet$ The exch2 package is included when \file{genmake2} is run.  \begin{itemize}
50    The easiest way to do this is to add the line \code{exch2} to the  \item The exch2 package is included when \file{genmake2} is run.  The
51    \file{profile.conf} file -- see Section    easiest way to do this is to add the line \code{exch2} to the
52    \ref{sect:buildingCode} \sectiontitle{Building the code} for general    \file{packages.conf} file -- see Section \ref{sect:buildingCode}
53    details. \\    \sectiontitle{Building the code} for general
54      details.
55  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and  
56    \file{w2\_e2setup.F} must reside in a directory containing code  \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
57    linked when \file{genmake2} runs.  The safest place to put these    \file{w2\_e2setup.F} must reside in a directory containing files
58    is the directory indicated in the \code{-mods=DIR} command line    symbolically linked by the \file{genmake2} script.  The safest place
59    modifier (typically \file{../code}), or the build directory.  The    to put these is the directory indicated in the \code{-mods=DIR}
60    default versions of these files reside in \file{pkg/exch2} and are    command line modifier (typically \file{../code}), or the build
61    linked automatically if no other versions exist elsewhere in the    directory.  The default versions of these files reside in
62    link path, but they should be left untouched to avoid breaking    \file{pkg/exch2} and are linked automatically if no other versions
63    configurations other than the one you intend to modify.\\    exist elsewhere in the build path, but they should be left untouched
64      to avoid breaking configurations other than the one you intend to
65  $\bullet$ Files containing grid parameters, named    modify.
66    \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),  
67    must be in the working directory when the MITgcm executable is run.  \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
68    These files are provided in the example experiments for cubed sphere    where $n$=\code{(1:6)} (one per subdomain), must be in the working
69    configurations with 32$\times$32 cube sides and are non-trivial to    directory when the MITgcm executable is run.  These files are
70    generate -- please contact MITgcm support if you want to generate    provided in the example experiments for cubed sphere configurations
71    files for other configurations. \\    with 32$\times$32 cube sides -- please contact MITgcm support if you
72      want to generate files for other configurations.
73  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must  
74    be placed where \file{genmake2} will find it.  In particular for  \item As always when compiling MITgcm, the file \file{SIZE.h} must be
75    exch2, the domain decomposition specified in \file{SIZE.h} must    placed where \file{genmake2} will find it.  In particular for exch2,
76    correspond with the particular configuration's topology specified in    the domain decomposition specified in \file{SIZE.h} must correspond
77      with the particular configuration's topology specified in
78    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
79    decomposition issues particular to exch2 are addressed in Section    decomposition issues particular to exch2 are addressed in Section
80    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
81    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
82    general background on the subject relevant to MITgcm is presented in      Multiprocessing}; a more general background on the subject
83    Section \ref{sect:specifying_a_decomposition}    relevant to MITgcm is presented in Section
84    \sectiontitle{Specifying a decomposition}.\\    \ref{sect:specifying_a_decomposition}
85      \sectiontitle{Specifying a decomposition}.
86    \end{itemize}
87    
88  As of the time of writing the following examples use exch2 and may be  At the time of this writing the following examples use exch2 and may
89  used for guidance:  be used for guidance:
90    
91  \begin{verbatim}  \begin{verbatim}
92  verification/adjust_nlfs.cs-32x32x1  verification/adjust_nlfs.cs-32x32x1
# Line 98  verification/hs94.cs-32x32x5 Line 99  verification/hs94.cs-32x32x5
99    
100    
101    
102  \subsection{Generating Topology Files for exch2}  \subsubsection{Generating Topology Files for exch2}
103  \label{sec:topogen}  \label{sec:topogen}
104    
105  Alternate cubed sphere topologies may be created using the Matlab  Alternate cubed sphere topologies may be created using the Matlab
# Line 108  m-file Line 109  m-file
109  from the Matlab prompt (there are no parameters to pass) generates  from the Matlab prompt (there are no parameters to pass) generates
110  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
111  \file{w2\_e2setup.F} in the working directory and displays a figure of  \file{w2\_e2setup.F} in the working directory and displays a figure of
112  the topology via Matlab.  The other m-files in the directory are  the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:18tile},
113  subroutines of \file{driver.m} and should not be run ``bare'' except  and \ref{fig:48tile} are examples of the generated diagrams.  The other
114    m-files in the directory are
115    subroutines called from \file{driver.m} and should not be run ``bare'' except
116  for development purposes. \\  for development purposes. \\
117    
118  The parameters that determine the dimensions and topology of the  The parameters that determine the dimensions and topology of the
119  generated configuration are \code{nr}, \code{nb}, \code{ng},  generated configuration are \code{nr}, \code{nb}, \code{ng},
120  \code{tnx} and \code{tny}, and all are assigned early in the script. \\  \code{tnx} and \code{tny}, and all are assigned early in the script. \\
121    
122  The first three determine the size of the subdomains and  The first three determine the height and width of the subdomains and
123  hence the size of the overall domain.  Each one determines the number  hence the size of the overall domain.  Each one determines the number
124  of grid points, and therefore the resolution, along the subdomain  of grid points, and therefore the resolution, along the subdomain
125  sides in a ``great circle'' around an axis of the cube.  At the time  sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
126  of this writing MITgcm requires these three parameters to be equal,  of this writing MITgcm requires these three parameters to be equal,
127  but they provide for future releases  to accomodate different  but they provide for future releases  to accomodate different
128  resolutions around the axes to allow (for example) greater resolution  resolutions around the axes to allow subdomains with differing resolutions.\\
 around the equator.\\  
129    
130  The parameters \code{tnx} and \code{tny} determine the dimensions of  The parameters \code{tnx} and \code{tny} determine the width and height of
131  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
132  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
133  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
134  \ref{fig:24tile} shows one possible topology for a twentyfour-tile  \ref{fig:48tile} shows one possible topology for a twenty-four-tile
135  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:6tile} shows one for six tiles. \\
136    
137  \begin{figure}  \begin{figure}
138  \begin{center}  \begin{center}
139   \resizebox{4in}{!}{   \resizebox{6in}{!}{
140    \includegraphics{part6/s24t_16x16.ps}  % \includegraphics{part6/s24t_16x16.ps}
141      \includegraphics{part6/adjust_cs.ps}
142   }   }
143  \end{center}  \end{center}
144    
145  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
146  divided into six 32$\times$32 subdomains, each of which is divided into four tiles  divided into six 32$\times$32 subdomains, each of which is divided
147  (\code{tnx=16, tny=16}) for a total of twentyfour tiles.  into eight tiles of width \code{tnx=16} and height \code{tny=8} for a
148  } \label{fig:24tile}  total of forty-eight tiles. The colored borders of the subdomains
149    represent the parameters \code{nr} (red), \code{ng} (green), and
150    \code{nb} (blue).
151    This tiling is used in the example
152    verification/adjustment.cs-32x32x1/
153    with the option (blanklist.txt) to remove the land-only 4 tiles
154    (11,12,13,14) which are filled in red on the plot.
155    } \label{fig:48tile}
156  \end{figure}  \end{figure}
157    
158  \begin{figure}  \begin{figure}
159  \begin{center}  \begin{center}
160   \resizebox{4in}{!}{   \resizebox{6in}{!}{
161    \includegraphics{part6/s12t_16x32.ps}  % \includegraphics{part6/s12t_16x32.ps}
162      \includegraphics{part6/polarcap.ps}
163   }   }
164  \end{center}  \end{center}
165  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a non-square cubed sphere topology with
166  divided into six 32$\times$32 subdomains of two tiles each  6 subdomains of different size (nr=90,ng=360,nb=90),
167   (\code{tnx=16, tny=32}).  divided into one to four tiles each
168  } \label{fig:12tile}   (\code{tnx=90, tny=90}), resulting in a total of 18 tiles.
169    } \label{fig:18tile}
170  \end{figure}  \end{figure}
171    
172  \begin{figure}  \begin{figure}
173  \begin{center}  \begin{center}
174   \resizebox{4in}{!}{   \resizebox{4in}{!}{
175    % \includegraphics{part6/s6t_32x32.ps}
176    \includegraphics{part6/s6t_32x32.ps}    \includegraphics{part6/s6t_32x32.ps}
177   }   }
178  \end{center}  \end{center}
# Line 181  by their tile number in the topology, se Line 194  by their tile number in the topology, se
194    
195    
196    
197  \subsection{exch2, SIZE.h, and multiprocessing}  \subsubsection{exch2, SIZE.h, and Multiprocessing}
198  \label{sec:exch2mpi}  \label{sec:exch2mpi}
199    
200  Once the topology configuration files are created, the Fortran  Once the topology configuration files are created, the Fortran
201  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
202  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
203  a decomposition} provides a general description of domain    a decomposition} provides a general description of domain
204  decomposition within MITgcm and its relation to \file{SIZE.h}. The  decomposition within MITgcm and its relation to \file{SIZE.h}. The
205  current section specifies certain constraints the exch2 package  current section specifies constraints that the exch2 package imposes
206  imposes as well as describes how to enable parallel execution with  and describes how to enable parallel execution with MPI.
 MPI. \\  
207    
208  As in the general case, the parameters \varlink{sNx}{sNx} and  As in the general case, the parameters \varlink{sNx}{sNx} and
209  \varlink{sNy}{sNy} define the size of the individual tiles, and so  \varlink{sNy}{sNy} define the size of the individual tiles, and so
210  must be assigned the same respective values as \code{tnx} and  must be assigned the same respective values as \code{tnx} and
211  \code{tny} in \file{driver.m}.\\  \code{tny} in \file{driver.m}.
212    
213  The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}  The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214  have no special bearing on exch2 and may be assigned as in the general  have no special bearing on exch2 and may be assigned as in the general
215  case. The same holds for \varlink{Nr}{Nr}, the number of vertical  case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216  levels in the model.\\  levels in the model.
217    
218  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220  tiles and how they are distributed on processors.  When using exch2,  tiles and how they are distributed on processors.  When using exch2,
221  the tiles are stored in single dimension, and so  the tiles are stored in the $x$ dimension, and so
222  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
223  configured by exch2 cannot be split up accross processors without  configured by exch2 cannot be split up accross processors without
224  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well.
225    
226  The number of tiles MITgcm allocates and how they are distributed  The number of tiles MITgcm allocates and how they are distributed
227  between processors depends on \varlink{nPx}{nPx} and  between processors depends on \varlink{nPx}{nPx} and
228  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
229  processor and \varlink{nPx}{nPx} the number of processors.  The total  processor and \varlink{nPx}{nPx} is the number of processors.  The
230  number of tiles in the topology minus those listed in  total number of tiles in the topology minus those listed in
231  \file{blanklist.txt} must equal \code{nSx*nPx}. \\  \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
232    obtain maximum usage from a given number of processors in some cases,
233  The following is an example of \file{SIZE.h} for the twelve-tile  this restriction might entail sharing a processor with a tile that
234  configuration illustrated in figure \ref{fig:12tile} running on  would otherwise be excluded because it is topographically outside of
235  one processor: \\  the domain and therefore in \file{blanklist.txt}.  For example,
236    suppose you have five processors and a domain decomposition of
237    thirty-six tiles that allows you to exclude seven tiles.  To evenly
238    distribute the remaining twenty-nine tiles among five processors, you
239    would have to run one ``dummy'' tile to make an even six tiles per
240    processor.  Such dummy tiles are \emph{not} listed in
241    \file{blanklist.txt}.
242    
243    The following is an example of \file{SIZE.h} for the six-tile
244    configuration illustrated in figure \ref{fig:6tile}
245    running on one processor:
246    
247  \begin{verbatim}  \begin{verbatim}
248        PARAMETER (        PARAMETER (
249       &           sNx =  16,       &           sNx =  32,
250       &           sNy =  32,       &           sNy =  32,
251       &           OLx =   2,       &           OLx =   2,
252       &           OLy =   2,       &           OLy =   2,
253       &           nSx =  12,       &           nSx =   6,
254       &           nSy =   1,       &           nSy =   1,
255       &           nPx =   1,       &           nPx =   1,
256       &           nPy =   1,       &           nPy =   1,
# Line 237  one processor: \\ Line 259  one processor: \\
259       &           Nr  =   5)       &           Nr  =   5)
260  \end{verbatim}  \end{verbatim}
261    
262  The following is an example for the twentyfour-tile topology in figure  The following is an example for the forty-eight-tile topology in
263  \ref{fig:24tile} running on six processors:  figure \ref{fig:48tile} running on six processors:
264    
265  \begin{verbatim}  \begin{verbatim}
266        PARAMETER (        PARAMETER (
267       &           sNx =  16,       &           sNx =  16,
268       &           sNy =  16,       &           sNy =   8,
269       &           OLx =   2,       &           OLx =   2,
270       &           OLy =   2,       &           OLy =   2,
271       &           nSx =   4,       &           nSx =   8,
272       &           nSy =   1,       &           nSy =   1,
273       &           nPx =   6,       &           nPx =   6,
274       &           nPy =   1,       &           nPy =   1,
# Line 256  The following is an example for the twen Line 278  The following is an example for the twen
278  \end{verbatim}  \end{verbatim}
279    
280    
281    \subsubsection{Key Variables}
   
   
 \subsection{Key Variables}  
282    
283  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
284  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
285  dimensional arrays indexed to tile number and neighboring tile.  This  three-dimensional arrays indexed to tile number and neighboring tile.
286  division reflects the functionality of these variables: The  This division reflects the functionality of these variables: The
287  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
288  arrays to individual tiles, and the arrays indexed by tile and  arrays to individual tiles, and the arrays indexed by tile and
289  neighbor to relationships between tiles and their neighbors. \\  neighbor to relationships between tiles and their neighbors. \\
290    
291  \subsubsection{Scalars}  Scalars:
292    
293  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
294  \code{NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
# Line 281  generated by \file{driver.m}.\\ Line 300  generated by \file{driver.m}.\\
300  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
301  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
302  of tiles in the $x$ and $y$ global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
303  setup of six tiles (Fig. \ref{fig:6tile}) has \code{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
304  \code{exch2\_domain\_nyt=1}.  A topology of twenty-four square tiles,  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
305  four per subdomain (as in figure \ref{fig:24tile}), will have  topology of forty-eight tiles, eight per subdomain (as in figure
306  \code{exch2\_domain\_nxt=12} and \code{exch2\_domain\_nyt=2}.  Note  \ref{fig:48tile}), will have \code{exch2\_domain\_nxt=12} and
307  that these parameters express the tile layout to allow global data  \code{exch2\_domain\_nyt=4}.  Note that these parameters express the
308  files that are tile-layout-neutral and have no bearing on the internal  tile layout in order to allow global data files that are tile-layout-neutral.
309  storage of the arrays.  The tiles are internally stored in a range  They have no bearing on the internal storage of the arrays.  The tiles
310  from \code{(1:\varlink{bi}{bi})} the $x$ axis, and $y$ axis variable  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
311  \varlink{bj}{bj} is generally ignored within the package. \\  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
312    equal \code{1} throughout the package. \\
313  \subsubsection{Arrays Indexed to Tile Number}  
314    Arrays indexed to tile number:
315  The following arrays are of length \code{NTILES}, are indexed to the  
316  tile number, and the indices are omitted in their descriptions. \\  The following arrays are of length \code{NTILES} and are indexed to
317    the tile number, which is indicated in the diagrams with the notation
318    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
319    
320  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
321  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
322  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
323  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
324  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
325  multiprocessing}.  Future releases of MITgcm are to allow varying tile  Multiprocessing}.  Future releases of MITgcm may allow varying tile
326  sizes. \\  sizes. \\
327    
328  The location of the tiles' Cartesian origin within a subdomain are  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
329  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
330  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  Cartesian origin within a subdomain  
331  relate the location of the edges of different tiles to each other.  As  and locate the edges of different tiles relative to each other.  As
332  an example, in the default six-tile topology (Fig. \ref{fig:6tile})  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
333  each index in these arrays is set to \code{0} since a tile occupies  each index in these arrays is set to \code{0} since a tile occupies
334  its entire subdomain.  The twentyfour-tile case discussed above will  its entire subdomain.  The twenty-four-tile case discussed above will
335  have values of \code{0} or \code{16}, depending on the quadrant the  have values of \code{0} or \code{16}, depending on the quadrant of the
336  tile falls within the subdomain.  The elements of the arrays  tile within the subdomain.  The elements of the arrays
337  \varlink{exch2\_txglobalo}{exch2_txglobalo} and  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
338  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
339  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
340  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
341  global address space, similar to that used by global files. \\  global address space, similar to that used by global output and input
342    files. \\
343    
344  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
345  the subdomain of each tile, in a range \code{(1:6)} in the case of the  the subdomain of each tile, in a range \code{(1:6)} in the case of the
346  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
347  figures \ref{fig:12tile} and  figures \ref{fig:6tile} and
348  \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}  \ref{fig:48tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
349  contains a count of how many neighboring tiles each tile has, and is  contains a count of the neighboring tiles each tile has, and sets
350  used for setting bounds for looping over neighboring tiles.  the bounds for looping over neighboring tiles.
351  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
352  tile, and is used in interprocess communication.  \\  tile, and is used in interprocess communication.  \\
353    
# Line 334  The arrays \varlink{exch2\_isWedge}{exch Line 356  The arrays \varlink{exch2\_isWedge}{exch
356  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
357  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
358  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
359  indexed tile lies on the edge of a subdomain, \code{0} if not.  The  indexed tile lies on the edge of its subdomain, \code{0} if
360  values are used within the topology generator to determine the  not.  The values are used within the topology generator to determine
361  orientation of neighboring tiles, and to indicate whether a tile lies  the orientation of neighboring tiles, and to indicate whether a tile
362  on the corner of a subdomain.  The latter case requires special  lies on the corner of a subdomain.  The latter case requires special
363  exchange and numerical handling for the singularities at the eight  exchange and numerical handling for the singularities at the eight
364  corners of the cube. \\  corners of the cube. \\
365    
366    
367  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  Arrays Indexed to Tile Number and Neighbor:
368    
369  The following arrays are all of size  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
370  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the  \code{NTILES} and describe the orientations between the the tiles. \\
 orientations between the the tiles. \\  
371    
372  The array \code{exch2\_neighbourId(a,T)} holds the tile number  The array \code{exch2\_neighbourId(a,T)} holds the tile number
373  \code{Tn} for each of the tile number \code{T}'s neighboring tiles  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
374  \code{a}.  The neighbor tiles are indexed \code{(1:MAX\_NEIGHBOURS)}  \code{a}.  The neighbor tiles are indexed
375  in the order right to left on the north then south edges, and then top  \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
376  to bottom on the east and west edges.  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east then west
377  \\  edges.  \\
378    
379  \sloppy   The \code{exch2\_opposingSend\_record(a,T)} array holds the
380  The \code{exch2\_opposingSend\_record(a,T)} array holds the index  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
381  \code{b} in \texttt{exch2\_neighbourId(b,Tn)} that holds the tile  that holds the tile number \code{T}, given
382  number \code{T}.  In other words,  \code{Tn=exch2\_neighborId(a,T)}.  In other words,
383  \begin{verbatim}  \begin{verbatim}
384     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
385                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
# Line 366  number \code{T}.  In other words, Line 387  number \code{T}.  In other words,
387  This provides a back-reference from the neighbor tiles. \\  This provides a back-reference from the neighbor tiles. \\
388    
389  The arrays \varlink{exch2\_pi}{exch2_pi} and  The arrays \varlink{exch2\_pi}{exch2_pi} and
390  \varlink{exch2\_pj}{exch2_pj} specify the transformations of variables  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
391  in exchanges between the neighboring tiles.  These transformations are  in exchanges between the neighboring tiles.  These transformations are
392  necessary in exchanges between subdomains because a physical vector  necessary in exchanges between subdomains because a horizontal dimension
393  component in one direction may map to one in a different direction in  in one subdomain
394  an adjacent subdomain, and may be have its indexing reversed. This  may map to other horizonal dimension in an adjacent subdomain, and
395  swapping arises from the ``folding'' of two-dimensional arrays into a  may also have its indexing reversed. This swapping arises from the
396  three-dimensional cube.  ``folding'' of two-dimensional arrays into a three-dimensional
397    cube. \\
398    
399  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
400  are the neighbor ID \code{N} and the tile number \code{T} as explained  are the neighbor ID \code{N} and the tile number \code{T} as explained
401  above, plus a vector of length 2 containing transformation factors  above, plus a vector of length \code{2} containing transformation
402  \code{t}.  The first element of the transformation vector indicates  factors \code{t}.  The first element of the transformation vector
403  the factor \code{t} by which variables representing the same  holds the factor to multiply the index in the same dimension, and the
404  \emph{physical} vector component of a tile \code{T} will be multiplied  second element holds the the same for the orthogonal dimension.  To
405  in exchanges with neighbor \code{N}, and the second element indicates  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
406  the transform to the physical vector in the other direction.  To  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
407  clarify (hopefully), \code{exch2\_pi(1,N,T)} holds the transform of  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
408  the $i$ component of a vector variable in tile \code{T} to the $i$  $x$ index to the neighbor \code{N}'s $y$ index. \\
 component of tile \code{T}'s neighbor \code{N}, and  
 \code{exch2\_pi(2,N,T)} holds the transform of \code{T}'s $i$  
 components to the neighbor \code{N}'s $j$ component. \\  
409    
410  Under the current cube topology, one of the two elements of  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
411  \code{exch2\_pi} or \code{exch2\_pj} for a given tile \code{T} and  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
412  neighbor \code{N} will be \code{0}, reflecting the fact that the two  the fact that the two axes are orthogonal.  The other element will be
413  vector components are orthogonal.  The other element will be \code{1}  \code{1} or \code{-1}, depending on whether the axes are indexed in
414  or \code{-1}, depending on whether the components are indexed in the  the same or opposite directions.  For example, the transform vector of
415  same or opposite directions.  For example, the transform vector of the  the arrays for all tile neighbors on the same subdomain will be
 arrays for all tile neighbors on the same subdomain will be  
416  \code{(1,0)}, since all tiles on the same subdomain are oriented  \code{(1,0)}, since all tiles on the same subdomain are oriented
417  identically.  A vector direction that corresponds to the orthogonal  identically.  An axis that corresponds to the orthogonal dimension
418  dimension with the same index direction in a particular tile-neighbor  with the same index direction in a particular tile-neighbor
419  orientation will have \code{(0,1)}, whereas those in the opposite  orientation will have \code{(0,1)}.  Those with the opposite index
420  index direction will have \code{(0,-1)}. \\  direction will have \code{(0,-1)} in order to reverse the ordering. \\
   
421    
422  \varlink{exch2\_oi}{exch2_oi},  The arrays \varlink{exch2\_oi}{exch2_oi},
423  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
424  \varlink{exch2\_oj\_f}{exch2_oj_f}  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
425    neighbor and specify the relative offset within the subdomain of the
426    array index of a variable going from a neighboring tile \code{N} to a
427    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
428    (Fig. \ref{fig:6tile}), where
429    
430    \begin{verbatim}
431           exch2_oi(1,1)=33
432           exch2_oi(2,1)=0
433           exch2_oi(3,1)=32
434           exch2_oi(4,1)=-32
435    \end{verbatim}
436    
437    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
438    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
439    same orientation and their $x$ axes have the same origin, and so an
440    exchange between the two requires no changes to the $x$ index.  For
441    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
442    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
443    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
444    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
445    with \code{x=0} on \code{Tn=2}. \\
446    
447     The most interesting case, where \code{exch2\_oi(1,1)=33} and
448    \code{Tn=3}, involves a reversal of indices.  As in every case, the
449    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
450    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
451    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
452    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
453    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
454    index is reversed.  The result is that the index of the northern edge
455    of \code{T}, which runs \code{(1:32)}, is transformed to
456    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
457    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
458    relative to \code{T}.  This transformation may seem overly convoluted
459    for the six-tile case, but it is necessary to provide a general
460    solution for various topologies. \\
461    
462    
 This needs some diagrams. \\  
463    
464    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
465    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
466    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
467    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
468    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
469    that gets exchanged with the local tile \code{T}.  To take the example
470    of tile \code{T=2} in the forty-eight-tile topology
471    (Fig. \ref{fig:48tile}): \\
472    
 {\footnotesize  
473  \begin{verbatim}  \begin{verbatim}
474  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(4,2)=17
475  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(4,2)=17
476  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(4,2)=0
477  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(4,2)=33
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
478  \end{verbatim}  \end{verbatim}
479  }  
480    Here \code{N=4}, indicating the western neighbor, which is
481    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
482    the tiles have the same orientation and the same $x$ and $y$ axes.
483  \subsection{Key Routines}  The $x$ axis is orthogonal to the western edge and the tile is 16
484    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
485    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
486    halo region. Since the border of the tiles extends through the entire
487    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
488    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
489    either direction to cover part of the halo. \\
490    
491    For the north edge of the same tile \code{T=2} where \code{N=1} and
492    the neighbor tile is \code{Tn=5}:
493    
494  \subsection{References}  \begin{verbatim}
495           exch2_itlo_c(1,2)=0
496           exch2_ithi_c(1,2)=0
497           exch2_jtlo_c(1,2)=0
498           exch2_jthi_c(1,2)=17
499    \end{verbatim}
500    
501    \code{T}'s northern edge is parallel to the $x$ axis, but since
502    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
503    northern edge exchanges with \code{Tn}'s western edge.  The western
504    edge of the tiles corresponds to the lower bound of the $x$ axis, so
505    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
506    western halo region of \code{Tn}. The range of
507    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
508    width of \code{T}'s northern edge, expanded by one into the halo. \\
509    
510    
511    \subsubsection{Key Routines}
512    
513    Most of the subroutines particular to exch2 handle the exchanges
514    themselves and are of the same format as those described in
515    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
516    communication}.  Like the original routines, they are written as
517    templates which the local Makefile converts from \code{RX} into
518    \code{RL} and \code{RS} forms. \\
519    
520    The interfaces with the core model subroutines are
521    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
522    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
523    when \code{genmake2} is run with \code{exch2} option.  They in turn
524    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
525    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
526    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
527    and three-dimensional scalar quantities.  These subroutines set the
528    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
529    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
530    the singularities at the cube corners. \\
531    
532    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
533    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
534    needs to pass both the $u$ and $v$ components of the physical vectors.
535    This swapping arises from the topological folding discussed above, where the
536    $x$ and $y$ axes get swapped in some cases, and is not an
537    issue with the scalar case. These subroutines call
538    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
539    the work using the variables discussed above. \\
540    
541    \subsubsection{Experiments and tutorials that use exch2}
542    \label{sec:pkg:exch2:experiments}
543    
544    \begin{itemize}
545    \item{Held Suarez tutorial, in tutorial\_held\_suarez\_cs verification directory,
546    described in section \ref{sect:eg-hs} }
547    \end{itemize}

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22