/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by afe, Thu Jan 29 21:03:53 2004 UTC revision 1.15 by afe, Thu Mar 18 14:56:25 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed
20  to allow more flexible domain decomposition and parallelization.  Cube faces  sphere topology configuration to allow more flexible domain
21  (subdomains) may be divided into whatever number of tiles that divide evenly  decomposition and parallelization.  Cube faces (also called
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  subdomains) may be divided into any number of tiles that divide evenly
23  tiles may be run on separate processors in different combinations,  into the grid point dimensions of the subdomain.  Furthermore, the
24  and whether exchanges between particular tiles occur between different  individual tiles can run on separate processors in different
25  processors is determined at runtime.  combinations, and whether exchanges between particular tiles occur
26    between different processors is determined at runtime.  This
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  flexibility provides for manual compile-time load balancing across a
28  assigned in {\em w2\_e2setup.F}, both in the  relatively arbitrary number of processors. \\
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  The exchange parameters are declared in
31  Matlab scripts and  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32  should not be edited.  The default files provided in the release set up  and assigned in
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34  points, running on a single processor.    validity of the cube topology depends on the \file{SIZE.h} file as
35    detailed below.  The default files provided in the release configure a
36    cubed sphere topology of six tiles, one per subdomain, each with
37    32$\times$32 grid points, all running on a single processor.  Both
38    files are generated by Matlab scripts in
39    \file{utils/exch2/matlab-topology-generator}; see Section
40    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
41    for details on creating alternate topologies.  Pregenerated examples
42    of these files with alternate topologies are provided under
43    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44    file for single-processor execution.
45    
46    \subsection{Invoking exch2}
47    
48    To use exch2 with the cubed sphere, the following conditions must be
49    met: \\
50    
51    $\bullet$ The exch2 package is included when \file{genmake2} is run.
52      The easiest way to do this is to add the line \code{exch2} to the
53      \file{profile.conf} file -- see Section
54      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
55      details. \\
56    
57    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
58      \file{w2\_e2setup.F} must reside in a directory containing code
59      linked when \file{genmake2} runs.  The safest place to put these
60      is the directory indicated in the \code{-mods=DIR} command line
61      modifier (typically \file{../code}), or the build directory.  The
62      default versions of these files reside in \file{pkg/exch2} and are
63      linked automatically if no other versions exist elsewhere in the
64      link path, but they should be left untouched to avoid breaking
65      configurations other than the one you intend to modify.\\
66    
67    $\bullet$ Files containing grid parameters, named
68      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69      must be in the working directory when the MITgcm executable is run.
70      These files are provided in the example experiments for cubed sphere
71      configurations with 32$\times$32 cube sides and are non-trivial to
72      generate -- please contact MITgcm support if you want to generate
73      files for other configurations. \\
74    
75    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76      be placed where \file{genmake2} will find it.  In particular for
77      exch2, the domain decomposition specified in \file{SIZE.h} must
78      correspond with the particular configuration's topology specified in
79      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
80      decomposition issues particular to exch2 are addressed in Section
81      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
82      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
83      general background on the subject relevant to MITgcm is presented in
84      Section \ref{sect:specifying_a_decomposition}
85      \sectiontitle{Specifying a decomposition}.\\
86    
87    As of the time of writing the following examples use exch2 and may be
88    used for guidance:
89    
90    \begin{verbatim}
91    verification/adjust_nlfs.cs-32x32x1
92    verification/adjustment.cs-32x32x1
93    verification/aim.5l_cs
94    verification/global_ocean.cs32x15
95    verification/hs94.cs-32x32x5
96    \end{verbatim}
97    
98    
99    
100    
101    \subsection{Generating Topology Files for exch2}
102    \label{sec:topogen}
103    
104    Alternate cubed sphere topologies may be created using the Matlab
105    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
106    m-file
107    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
108    from the Matlab prompt (there are no parameters to pass) generates
109    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
110    \file{w2\_e2setup.F} in the working directory and displays a figure of
111    the topology via Matlab.  The other m-files in the directory are
112    subroutines of \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115    The parameters that determine the dimensions and topology of the
116    generated configuration are \code{nr}, \code{nb}, \code{ng},
117    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119    The first three determine the size of the subdomains and
120    hence the size of the overall domain.  Each one determines the number
121    of grid points, and therefore the resolution, along the subdomain
122    sides in a ``great circle'' around an axis of the cube.  At the time
123    of this writing MITgcm requires these three parameters to be equal,
124    but they provide for future releases  to accomodate different
125    resolutions around the axes to allow (for example) greater resolution
126    around the equator.\\
127    
128    The parameters \code{tnx} and \code{tny} determine the dimensions of
129    the tiles into which the subdomains are decomposed, and must evenly
130    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131    The result is a rectangular tiling of the subdomain.  Figure
132    \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134    
135    \begin{figure}
136    \begin{center}
137     \resizebox{4in}{!}{
138      \includegraphics{part6/s24t_16x16.ps}
139     }
140    \end{center}
141    
142    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143    divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144    (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145    } \label{fig:24tile}
146    \end{figure}
147    
148    \begin{figure}
149    \begin{center}
150     \resizebox{4in}{!}{
151      \includegraphics{part6/s12t_16x32.ps}
152     }
153    \end{center}
154    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155    divided into six 32$\times$32 subdomains of two tiles each
156     (\code{tnx=16, tny=32}).
157    } \label{fig:12tile}
158    \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s6t_32x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains with one tile each
168    (\code{tnx=32, tny=32}).  This is the default configuration.
169      }
170    \label{fig:6tile}
171    \end{figure}
172    
173    
174    Tiles can be selected from the topology to be omitted from being
175    allocated memory and processors.  This tuning is useful in ocean
176    modeling for omitting tiles that fall entirely on land.  The tiles
177    omitted are specified in the file
178    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
179    by their tile number in the topology, separated by a newline. \\
180    
181    
182    
183    
184    \subsection{exch2, SIZE.h, and multiprocessing}
185    \label{sec:exch2mpi}
186    
187    Once the topology configuration files are created, the Fortran
188    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190    a decomposition} provides a general description of domain
191    decomposition within MITgcm and its relation to \file{SIZE.h}. The
192    current section specifies certain constraints the exch2 package
193    imposes as well as describes how to enable parallel execution with
194    MPI. \\
195    
196    As in the general case, the parameters \varlink{sNx}{sNx} and
197    \varlink{sNy}{sNy} define the size of the individual tiles, and so
198    must be assigned the same respective values as \code{tnx} and
199    \code{tny} in \file{driver.m}.\\
200    
201    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
202    have no special bearing on exch2 and may be assigned as in the general
203    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
204    levels in the model.\\
205    
206    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
207    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
208    tiles and how they are distributed on processors.  When using exch2,
209    the tiles are stored in single dimension, and so
210    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
211    configured by exch2 cannot be split up accross processors without
212    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
213    
214    The number of tiles MITgcm allocates and how they are distributed
215    between processors depends on \varlink{nPx}{nPx} and
216    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
217    processor and \varlink{nPx}{nPx} the number of processors.  The total
218    number of tiles in the topology minus those listed in
219    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
220    
221    The following is an example of \file{SIZE.h} for the twelve-tile
222    configuration illustrated in figure \ref{fig:12tile} running on
223    one processor: \\
224    
225    \begin{verbatim}
226          PARAMETER (
227         &           sNx =  16,
228         &           sNy =  32,
229         &           OLx =   2,
230         &           OLy =   2,
231         &           nSx =  12,
232         &           nSy =   1,
233         &           nPx =   1,
234         &           nPy =   1,
235         &           Nx  = sNx*nSx*nPx,
236         &           Ny  = sNy*nSy*nPy,
237         &           Nr  =   5)
238    \end{verbatim}
239    
240    The following is an example for the twentyfour-tile topology in figure
241    \ref{fig:24tile} running on six processors:
242    
243    \begin{verbatim}
244          PARAMETER (
245         &           sNx =  16,
246         &           sNy =  16,
247         &           OLx =   2,
248         &           OLy =   2,
249         &           nSx =   4,
250         &           nSy =   1,
251         &           nPx =   6,
252         &           nPy =   1,
253         &           Nx  = sNx*nSx*nPx,
254         &           Ny  = sNy*nSy*nPy,
255         &           Nr  =   5)
256    \end{verbatim}
257    
258    
259    
260    
261    
262  \subsection{Key Variables}  \subsection{Key Variables}
263    
264  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
265  one-dimensional arrays indexed to the tile number, and two-dimensional  one-dimensional arrays indexed to the tile number, and two and three
266  arrays indexed to tile number and neighboring tile.  This division  dimensional arrays indexed to tile number and neighboring tile.  This
267  actually reflects  the functionality of these variables, not just the  division reflects the functionality of these variables: The
268  whim of some FORTRAN enthusiast.  scalars are common to every part of the topology, the tile-indexed
269    arrays to individual tiles, and the arrays indexed by tile and
270    neighbor to relationships between tiles and their neighbors. \\
271    
272  \subsubsection{Scalars}  \subsubsection{Scalars}
273    
274  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
275  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
276  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
277  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
278  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
279    generated by \file{driver.m}.\\
280  The scalar parameters {\em exch2\_domain\_nxt} and  
281  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
284  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
285  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
286  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
287  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
289  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout to allow global data files that are tile-layout-neutral
290    and have no bearing on the internal storage of the arrays.  The tiles
291  \subsubsection{One-Dimensional Arrays}  are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293  The following arrays are of size {\em NTILES}, are indexed to the tile number,  ignored within the package. \\
294  and the indices are omitted in their descriptions.  
295    \subsubsection{Arrays Indexed to Tile Number}
296  The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
297  express the x and y dimensions of each tile.  At present for each tile  The following arrays are of length \code{NTILES}and are indexed to the
298  {\em exch2\_tnx = sNx}  tile number, which is indicated in the diagrams with the notation
299  and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  \textsf{t}$n$.  The indices are omitted in the descriptions. \\
300  MITgcm are to allow varying tile sizes.  
301    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302  The location of the tiles' Cartesian origin within a subdomain are determined  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
303  by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
304  are used to relate the location of the edges of the tiles to each other.  As  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
305  an example, in the default six-tile topology (the degenerate case)  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
306  each index in these arrays are  multiprocessing}.  Future releases of MITgcm are to allow varying tile
307  set to 0.  The twenty-four, 32x32 cube face case discussed above will have  sizes. \\
308  values of 0 or 16, depending on the quadrant the tile falls within the  
309  subdomain.  {\em exch2\_myFace} contains the number of the  The location of the tiles' Cartesian origin within a subdomain are
310  cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311  cube topology.    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
312    relate the location of the edges of different tiles to each other.  As
313  The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314  {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  each index in these arrays is set to \code{0} since a tile occupies
315  the global address space, similar to that used by global files.    its entire subdomain.  The twentyfour-tile case discussed above will
316    have values of \code{0} or \code{16}, depending on the quadrant the
317  The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  tile falls within the subdomain.  The elements of the arrays
318  and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
319  of a subdomain, 0 if not.  The values are used within the topology generator  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
320  to determine the orientation of neighboring tiles and to indicate whether  \varlink{exch2\_tbasex}{exch2_tbasex} and
321  a tile lies on the corner of a subdomain.  The latter case indicates  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322  special exchange and numerical handling for the singularities at the eight  global address space, similar to that used by global files. \\
323  corners of the cube.  {\em exch2\_isNedge} contains a count of how many  
324  neighboring tiles each tile has, and is used for setting bounds for looping  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325  over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  the subdomain of each tile, in a range \code{(1:6)} in the case of the
326  and is used in interprocess communication.  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327    figures \ref{fig:12tile} and
328  \subsubsection{Two-Dimensional Arrays}  \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329    contains a count the  neighboring tiles each tile has, and is
330  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  used for setting bounds for looping over neighboring tiles.
331  describe the orientations between the the tiles.  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332    tile, and is used in interprocess communication.  \\
333  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  
334  {\em T}'s neighbor tile {\em a}, and {\em exch2\_opposingSend\_record(a,T)} holds  
335  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336  In other words,  \varlink{exch2\_isEedge}{exch2_isEedge},
337    \varlink{exch2\_isSedge}{exch2_isSedge}, and
338  \begin{verbatim}    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339  exch2_neighbourId( exch2_opposingSend_record(a,T), exch2_neighbourId(a,T) ) = T  indexed tile lies on the respective edge of a subdomain, \code{0} if
340  \end{verbatim}  not.  The values are used within the topology generator to determine
341    the orientation of neighboring tiles, and to indicate whether a tile
342  {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  lies on the corner of a subdomain.  The latter case requires special
343  This is to provide a backreference from the neighbor tiles.  exchange and numerical handling for the singularities at the eight
344    corners of the cube. \\
345    
346  //  
347    \subsubsection{Arrays Indexed to Tile Number and Neighbor}
348  \begin{verbatim}  
349    The following arrays are all of size
350    \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the
351  C      exch2_neighbourId :: Tile number for each neighbour entry.          orientations between the the tiles. \\
352  C      exch2_opposingSend_record :: Record for entry in target tile send  
353  C                                :: list that has this tile and face      The array \code{exch2\_neighbourId(a,T)} holds the tile number
354  C                                :: as its target.                        \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355  C      exch2_pi          :: X index row of target to source permutation  \code{a}.  The neighbor tiles are indexed
356  C                        :: matrix for each neighbour entry.              \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357  C      exch2_pj          :: Y index row of target to source permutation  north then south edges, and then top to bottom on the east and west
358  C                        :: matrix for each neighbour entry.              edges.  Maybe throw in a fig here, eh?  \\
359  C      exch2_oi          :: X index element of target to source  
360  C                        :: offset vector for cell-centered quantities    \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361  C                        :: of each neighbor entry.                      index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362  C      exch2_oj          :: Y index element of target to source  that holds the tile number \code{T}, given
363  C                        :: offset vector for cell-centered quantities    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
364  C                        :: of each neighbor entry.                      \begin{verbatim}
365  C      exch2_oi_f        :: X index element of target to source     exch2_neighbourId( exch2_opposingSend_record(a,T),
366  C                        :: offset vector for face quantities                                  exch2_neighbourId(a,T) ) = T
367  C                        :: of each neighbor entry.                      \end{verbatim}
368  C      exch2_oj_f        :: Y index element of target to source  This provides a back-reference from the neighbor tiles. \\
369  C                        :: offset vector for face quantities            
370  C                        :: of each neighbor entry.                      The arrays \varlink{exch2\_pi}{exch2_pi} and
371    \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372    in exchanges between the neighboring tiles.  These transformations are
373    necessary in exchanges between subdomains because the array index in
374    one dimension may map to the other index in an adjacent subdomain, and
375    may be have its indexing reversed. This swapping arises from the
376    ``folding'' of two-dimensional arrays into a three-dimensional cube.
377    
378    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379    are the neighbor ID \code{N} and the tile number \code{T} as explained
380    above, plus a vector of length \code{2} containing transformation
381    factors \code{t}.  The first element of the transformation vector
382    holds the factor to multiply the index in the same axis, and the
383    second element holds the the same for the orthogonal index.  To
384    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387    $x$ index to the neighbor \code{N}'s $y$ index. \\
388    
389    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391    the fact that the two axes are orthogonal.  The other element will be
392    \code{1} or \code{-1}, depending on whether the axes are indexed in
393    the same or opposite directions.  For example, the transform vector of
394    the arrays for all tile neighbors on the same subdomain will be
395    \code{(1,0)}, since all tiles on the same subdomain are oriented
396    identically.  An axis that corresponds to the orthogonal dimension
397    with the same index direction in a particular tile-neighbor
398    orientation will have \code{(0,1)}.  Those in the opposite index
399    direction will have \code{(0,-1)} in order to reverse the ordering. \\
400    
401    The arrays \varlink{exch2\_oi}{exch2_oi},
402    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404    neighbor and specify the relative offset within the subdomain of the
405    array index of a variable going from a neighboring tile $N$ to a local
406    tile $T$.  Consider the six-tile case (Fig. \ref{fig:6tile}), where
407    \code{exch2\_oi(1,1)=33}, \code{exch2\_oi(2,1)=0},
408    \code{exch2\_oi(3,1)=32}, and \code{exch2\_oi(4,1)=-32}.  Each of these
409    indicates the offset in the $x$ direction \\
410    
411    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
412    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
413    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
414    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
415    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
416    that gets exchanged with the local tile \code{T}.  To take the example
417    of tile \code{T=2} in the twelve-tile topology
418    (Fig. \ref{fig:12tile}): \\
419    
420    \begin{verbatim}
421           exch2_itlo_c(4,2)=17
422           exch2_ithi_c(4,2)=17
423           exch2_jtlo_c(4,2)=0
424           exch2_jthi_c(4,2)=33
425  \end{verbatim}  \end{verbatim}
426    
427    Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
428    \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
429    have the same orientation and the same $x$ and $y$ axes.  The $i$
430    component is orthogonal to the western edge and the tile is 16 points
431    wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
432    column beyond \code{Tn=1}'s eastern edge, in that tile's halo
433    region. Since the border of the tiles extends through the entire
434    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
435    \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
436    cover part of the halo. \\
437    
438    For the north edge of the same tile \code{T=2} where \code{N=1} and
439    the neighbor tile is \code{Tn=5}:
440    
441    \begin{verbatim}
442           exch2_itlo_c(1,2)=0
443           exch2_ithi_c(1,2)=0
444           exch2_jtlo_c(1,2)=0
445           exch2_jthi_c(1,2)=17
446    \end{verbatim}
447    
448    \code{T}'s northern edge is parallel to the $x$ axis, but since
449    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
450    \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
451    The western edge of the tiles corresponds to the lower bound of the
452    $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
453    range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
454    width of \code{T}'s northern edge, plus the halo. \\
455    
456    
457    
458    
459    
460    
461    
462    
463    
464    
465    
466    This needs some diagrams. \\
467    
468    
469    

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22