/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by afe, Tue Feb 3 19:43:38 2004 UTC revision 1.16 by afe, Thu Mar 18 22:20:38 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed
20  to allow more flexible domain decomposition and parallelization.  Cube faces  sphere topology configuration to allow more flexible domain
21  (subdomains) may be divided into whatever number of tiles that divide evenly  decomposition and parallelization.  Cube faces (also called
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  subdomains) may be divided into any number of tiles that divide evenly
23  tiles may be run on separate processors in different combinations,  into the grid point dimensions of the subdomain.  Furthermore, the
24  and whether exchanges between particular tiles occur between different  individual tiles can run on separate processors in different
25  processors is determined at runtime.  combinations, and whether exchanges between particular tiles occur
26    between different processors is determined at runtime.  This
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  flexibility provides for manual compile-time load balancing across a
28  assigned in {\em w2\_e2setup.F}, both in the  relatively arbitrary number of processors. \\
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  The exchange parameters are declared in
31  Matlab scripts and  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32  should not be edited.  The default files provided in the release set up  and assigned in
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34  points, running on a single processor.    validity of the cube topology depends on the \file{SIZE.h} file as
35    detailed below.  The default files provided in the release configure a
36    cubed sphere topology of six tiles, one per subdomain, each with
37    32$\times$32 grid points, all running on a single processor.  Both
38    files are generated by Matlab scripts in
39    \file{utils/exch2/matlab-topology-generator}; see Section
40    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
41    for details on creating alternate topologies.  Pregenerated examples
42    of these files with alternate topologies are provided under
43    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44    file for single-processor execution.
45    
46    \subsection{Invoking exch2}
47    
48    To use exch2 with the cubed sphere, the following conditions must be
49    met: \\
50    
51    $\bullet$ The exch2 package is included when \file{genmake2} is run.
52      The easiest way to do this is to add the line \code{exch2} to the
53      \file{profile.conf} file -- see Section
54      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
55      details. \\
56    
57    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
58      \file{w2\_e2setup.F} must reside in a directory containing code
59      linked when \file{genmake2} runs.  The safest place to put these
60      is the directory indicated in the \code{-mods=DIR} command line
61      modifier (typically \file{../code}), or the build directory.  The
62      default versions of these files reside in \file{pkg/exch2} and are
63      linked automatically if no other versions exist elsewhere in the
64      link path, but they should be left untouched to avoid breaking
65      configurations other than the one you intend to modify.\\
66    
67    $\bullet$ Files containing grid parameters, named
68      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69      must be in the working directory when the MITgcm executable is run.
70      These files are provided in the example experiments for cubed sphere
71      configurations with 32$\times$32 cube sides and are non-trivial to
72      generate -- please contact MITgcm support if you want to generate
73      files for other configurations. \\
74    
75    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76      be placed where \file{genmake2} will find it.  In particular for
77      exch2, the domain decomposition specified in \file{SIZE.h} must
78      correspond with the particular configuration's topology specified in
79      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
80      decomposition issues particular to exch2 are addressed in Section
81      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
82      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
83      general background on the subject relevant to MITgcm is presented in
84      Section \ref{sect:specifying_a_decomposition}
85      \sectiontitle{Specifying a decomposition}.\\
86    
87    As of the time of writing the following examples use exch2 and may be
88    used for guidance:
89    
90    \begin{verbatim}
91    verification/adjust_nlfs.cs-32x32x1
92    verification/adjustment.cs-32x32x1
93    verification/aim.5l_cs
94    verification/global_ocean.cs32x15
95    verification/hs94.cs-32x32x5
96    \end{verbatim}
97    
98    
99    
100    
101    \subsection{Generating Topology Files for exch2}
102    \label{sec:topogen}
103    
104    Alternate cubed sphere topologies may be created using the Matlab
105    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
106    m-file
107    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
108    from the Matlab prompt (there are no parameters to pass) generates
109    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
110    \file{w2\_e2setup.F} in the working directory and displays a figure of
111    the topology via Matlab.  The other m-files in the directory are
112    subroutines of \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115    The parameters that determine the dimensions and topology of the
116    generated configuration are \code{nr}, \code{nb}, \code{ng},
117    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119    The first three determine the size of the subdomains and
120    hence the size of the overall domain.  Each one determines the number
121    of grid points, and therefore the resolution, along the subdomain
122    sides in a ``great circle'' around an axis of the cube.  At the time
123    of this writing MITgcm requires these three parameters to be equal,
124    but they provide for future releases  to accomodate different
125    resolutions around the axes to allow (for example) greater resolution
126    around the equator.\\
127    
128    The parameters \code{tnx} and \code{tny} determine the dimensions of
129    the tiles into which the subdomains are decomposed, and must evenly
130    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131    The result is a rectangular tiling of the subdomain.  Figure
132    \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134    
135    \begin{figure}
136    \begin{center}
137     \resizebox{4in}{!}{
138      \includegraphics{part6/s24t_16x16.ps}
139     }
140    \end{center}
141    
142    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143    divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144    (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145    } \label{fig:24tile}
146    \end{figure}
147    
148    \begin{figure}
149    \begin{center}
150     \resizebox{4in}{!}{
151      \includegraphics{part6/s12t_16x32.ps}
152     }
153    \end{center}
154    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155    divided into six 32$\times$32 subdomains of two tiles each
156     (\code{tnx=16, tny=32}).
157    } \label{fig:12tile}
158    \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s6t_32x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains with one tile each
168    (\code{tnx=32, tny=32}).  This is the default configuration.
169      }
170    \label{fig:6tile}
171    \end{figure}
172    
173    
174    Tiles can be selected from the topology to be omitted from being
175    allocated memory and processors.  This tuning is useful in ocean
176    modeling for omitting tiles that fall entirely on land.  The tiles
177    omitted are specified in the file
178    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
179    by their tile number in the topology, separated by a newline. \\
180    
181    
182    
183    
184    \subsection{exch2, SIZE.h, and multiprocessing}
185    \label{sec:exch2mpi}
186    
187    Once the topology configuration files are created, the Fortran
188    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190    a decomposition} provides a general description of domain
191    decomposition within MITgcm and its relation to \file{SIZE.h}. The
192    current section specifies certain constraints the exch2 package
193    imposes as well as describes how to enable parallel execution with
194    MPI. \\
195    
196    As in the general case, the parameters \varlink{sNx}{sNx} and
197    \varlink{sNy}{sNy} define the size of the individual tiles, and so
198    must be assigned the same respective values as \code{tnx} and
199    \code{tny} in \file{driver.m}.\\
200    
201    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
202    have no special bearing on exch2 and may be assigned as in the general
203    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
204    levels in the model.\\
205    
206    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
207    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
208    tiles and how they are distributed on processors.  When using exch2,
209    the tiles are stored in single dimension, and so
210    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
211    configured by exch2 cannot be split up accross processors without
212    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
213    
214    The number of tiles MITgcm allocates and how they are distributed
215    between processors depends on \varlink{nPx}{nPx} and
216    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
217    processor and \varlink{nPx}{nPx} the number of processors.  The total
218    number of tiles in the topology minus those listed in
219    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
220    
221    The following is an example of \file{SIZE.h} for the twelve-tile
222    configuration illustrated in figure \ref{fig:12tile} running on
223    one processor: \\
224    
225    \begin{verbatim}
226          PARAMETER (
227         &           sNx =  16,
228         &           sNy =  32,
229         &           OLx =   2,
230         &           OLy =   2,
231         &           nSx =  12,
232         &           nSy =   1,
233         &           nPx =   1,
234         &           nPy =   1,
235         &           Nx  = sNx*nSx*nPx,
236         &           Ny  = sNy*nSy*nPy,
237         &           Nr  =   5)
238    \end{verbatim}
239    
240    The following is an example for the twentyfour-tile topology in figure
241    \ref{fig:24tile} running on six processors:
242    
243    \begin{verbatim}
244          PARAMETER (
245         &           sNx =  16,
246         &           sNy =  16,
247         &           OLx =   2,
248         &           OLy =   2,
249         &           nSx =   4,
250         &           nSy =   1,
251         &           nPx =   6,
252         &           nPy =   1,
253         &           Nx  = sNx*nSx*nPx,
254         &           Ny  = sNy*nSy*nPy,
255         &           Nr  =   5)
256    \end{verbatim}
257    
258    
259    
260    
261    
262  \subsection{Key Variables}  \subsection{Key Variables}
263    
264  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
265  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and three
266  dimensional  dimensional arrays indexed to tile number and neighboring tile.  This
267  arrays indexed to tile number and neighboring tile.  This division  division reflects the functionality of these variables: The
268  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
269  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
270  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
271    
272  \subsubsection{Scalars}  \subsubsection{Scalars}
273    
274  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
275  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
276  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
277  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
278  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
279    generated by \file{driver.m}.\\
280  The scalar parameters {\em exch2\_domain\_nxt} and  
281  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
284  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
285  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
286  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
287  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
289  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout to allow global data files that are tile-layout-neutral
290    and have no bearing on the internal storage of the arrays.  The tiles
291    are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293    ignored within the package. \\
294    
295  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
296    
297  The following arrays are of size {\em NTILES}, are indexed to the tile number,  The following arrays are of length \code{NTILES}and are indexed to the
298  and the indices are omitted in their descriptions.  tile number, which is indicated in the diagrams with the notation
299    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
300    
301    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302    \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
303    each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
304    \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
305    section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
306    multiprocessing}.  Future releases of MITgcm are to allow varying tile
307    sizes. \\
308    
309    The location of the tiles' Cartesian origin within a subdomain are
310    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
312    relate the location of the edges of different tiles to each other.  As
313    an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314    each index in these arrays is set to \code{0} since a tile occupies
315    its entire subdomain.  The twentyfour-tile case discussed above will
316    have values of \code{0} or \code{16}, depending on the quadrant the
317    tile falls within the subdomain.  The elements of the arrays
318    \varlink{exch2\_txglobalo}{exch2_txglobalo} and
319    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
320    \varlink{exch2\_tbasex}{exch2_tbasex} and
321    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322    global address space, similar to that used by global files. \\
323    
324    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325    the subdomain of each tile, in a range \code{(1:6)} in the case of the
326    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327    figures \ref{fig:12tile} and
328    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329    contains a count the  neighboring tiles each tile has, and is
330    used for setting bounds for looping over neighboring tiles.
331    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332    tile, and is used in interprocess communication.  \\
333    
334    
335    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336    \varlink{exch2\_isEedge}{exch2_isEedge},
337    \varlink{exch2\_isSedge}{exch2_isSedge}, and
338    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339    indexed tile lies on the respective edge of a subdomain, \code{0} if
340    not.  The values are used within the topology generator to determine
341    the orientation of neighboring tiles, and to indicate whether a tile
342    lies on the corner of a subdomain.  The latter case requires special
343    exchange and numerical handling for the singularities at the eight
344    corners of the cube. \\
345    
 The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
 express the x and y dimensions of each tile.  At present for each tile  
 {\em exch2\_tnx = sNx}  
 and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  
 MITgcm are to allow varying tile sizes.  
   
 The location of the tiles' Cartesian origin within a subdomain are determined  
 by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  
 are used to relate the location of the edges of the tiles to each other.  As  
 an example, in the default six-tile topology (the degenerate case)  
 each index in these arrays are  
 set to 0.  The twenty-four, 32x32 cube face case discussed above will have  
 values of 0 or 16, depending on the quadrant the tile falls within the  
 subdomain.  {\em exch2\_myFace} contains the number of the  
 cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  
 cube topology.    
   
 The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  
 {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  
 the global address space, similar to that used by global files.    
   
 The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  
 and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  
 of a subdomain, 0 if not.  The values are used within the topology generator  
 to determine the orientation of neighboring tiles and to indicate whether  
 a tile lies on the corner of a subdomain.  The latter case indicates  
 special exchange and numerical handling for the singularities at the eight  
 corners of the cube.  {\em exch2\_isNedge} contains a count of how many  
 neighboring tiles each tile has, and is used for setting bounds for looping  
 over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  
 and is used in interprocess communication.  
346    
347  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
348    
349  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays are all of size
350  describe the orientations between the the tiles.  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the
351    orientations between the the tiles. \\
352    
353    The array \code{exch2\_neighbourId(a,T)} holds the tile number
354    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355    \code{a}.  The neighbor tiles are indexed
356    \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357    north then south edges, and then top to bottom on the east and west
358    edges.  Maybe throw in a fig here, eh?  \\
359    
360    \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362    that holds the tile number \code{T}, given
363    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
364    \begin{verbatim}
365       exch2_neighbourId( exch2_opposingSend_record(a,T),
366                          exch2_neighbourId(a,T) ) = T
367    \end{verbatim}
368    This provides a back-reference from the neighbor tiles. \\
369    
370  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The arrays \varlink{exch2\_pi}{exch2_pi} and
371  {\em T}'s neighbor tile {\em a}, and {\em exch2\_opposingSend\_record(a,T)} holds  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  in exchanges between the neighboring tiles.  These transformations are
373  In other words,  necessary in exchanges between subdomains because the array index in
374    one dimension may map to the other index in an adjacent subdomain, and
375    may be have its indexing reversed. This swapping arises from the
376    ``folding'' of two-dimensional arrays into a three-dimensional cube.
377    
378    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379    are the neighbor ID \code{N} and the tile number \code{T} as explained
380    above, plus a vector of length \code{2} containing transformation
381    factors \code{t}.  The first element of the transformation vector
382    holds the factor to multiply the index in the same axis, and the
383    second element holds the the same for the orthogonal index.  To
384    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387    $x$ index to the neighbor \code{N}'s $y$ index. \\
388    
389    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391    the fact that the two axes are orthogonal.  The other element will be
392    \code{1} or \code{-1}, depending on whether the axes are indexed in
393    the same or opposite directions.  For example, the transform vector of
394    the arrays for all tile neighbors on the same subdomain will be
395    \code{(1,0)}, since all tiles on the same subdomain are oriented
396    identically.  An axis that corresponds to the orthogonal dimension
397    with the same index direction in a particular tile-neighbor
398    orientation will have \code{(0,1)}.  Those in the opposite index
399    direction will have \code{(0,-1)} in order to reverse the ordering. \\
400    
401    The arrays \varlink{exch2\_oi}{exch2_oi},
402    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404    neighbor and specify the relative offset within the subdomain of the
405    array index of a variable going from a neighboring tile $N$ to a local
406    tile $T$.  Consider \code{T=1} in the six-tile topology
407    (Fig. \ref{fig:6tile}), where
408    
409  \begin{verbatim}    \begin{verbatim}
410  exch2_neighbourId( exch2_opposingSend_record(a,T), exch2_neighbourId(a,T) ) = T         exch2_oi(1,1)=33
411           exch2_oi(2,1)=0
412           exch2_oi(3,1)=32
413           exch2_oi(4,1)=-32
414  \end{verbatim}  \end{verbatim}
415    
416  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
417  % alternate version  which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
418    same orientation and their $x$ axes have the same origin, and so an
419    exchange between the two requires no changes to the $x$ index.  For
420    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
421    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
422    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
423    (\code{exch2\_oi(4,1)=-32)}, where \code{x=32} on \code{T} exchanges
424    with \code{x=0} on \code{Tn=2}.  The most interesting case, where
425    \code{exch2\_oi(1,1)=33} and \code{Tn=3}, involves a reversal of
426    indices.  As in every case, the offset \code{exch2\_oi} is added to
427    the original $x$ index of \code{T} multiplied by the transformation
428    factor \code{exch2\_pi(t,N,T)}.  Here \code{exch2\_pi(1,1,1)=0} since
429    the $x$ axis of \code{T} is orthogonal to the $x$ axis of \code{Tn}.
430    \code{exch2\_pi(2,1,1)=-1} since the $x$ axis of \code{T} corresponds
431    to the $y$ axis of \code{Tn}, but the axes are reversed.  The result
432    is that the index of the northern edge of \code{T}, which runs
433    \code{(1:32)}, is transformed to
434    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
435    get back \code{(1:32)} -- the index of the $y$ axis of \code{Tn}.
436    This transformation may seem overly convoluted for the six-tile case,
437    but it is necessary to provide a general solution for various
438    topologies. \\
439    
 This is to provide a backreference from the neighbor tiles.  
440    
441    
442  //  Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
443    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
444    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
445    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
446    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
447    that gets exchanged with the local tile \code{T}.  To take the example
448    of tile \code{T=2} in the twelve-tile topology
449    (Fig. \ref{fig:12tile}): \\
450    
451  \begin{verbatim}  \begin{verbatim}
452           exch2_itlo_c(4,2)=17
453           exch2_ithi_c(4,2)=17
454           exch2_jtlo_c(4,2)=0
455           exch2_jthi_c(4,2)=33
456    \end{verbatim}
457    
458    Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
459    \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
460    have the same orientation and the same $x$ and $y$ axes.  The $i$
461    component is orthogonal to the western edge and the tile is 16 points
462    wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
463    column beyond \code{Tn=1}'s eastern edge, in that tile's halo
464    region. Since the border of the tiles extends through the entire
465    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
466    \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
467    cover part of the halo. \\
468    
469    For the north edge of the same tile \code{T=2} where \code{N=1} and
470    the neighbor tile is \code{Tn=5}:
471    
472    \begin{verbatim}
473  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(1,2)=0
474  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(1,2)=0
475  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(1,2)=0
476  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(1,2)=17
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
477  \end{verbatim}  \end{verbatim}
478    
479    \code{T}'s northern edge is parallel to the $x$ axis, but since
480    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
481    \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
482    The western edge of the tiles corresponds to the lower bound of the
483    $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
484    range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
485    width of \code{T}'s northern edge, plus the halo. \\
486    
487    
488    
489    
490    
 \subsection{Key Routines}  
491    
492    
493    
494  \subsection{References}  
495    
496    
497    This needs some diagrams. \\
498    
499    
500    
501    \subsection{Key Routines}
502    
503    Most of the subroutines particular to exch2 handle the exchanges
504    themselves and are of the same format as those described in
505    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
506    communication}.  Like the original routines, they are written as
507    templates which the local Makefile converts from RX into RL and RS
508    forms. \\
509    
510    The interfaces with the core model subroutines are
511    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and \code{EXCH\_XY\_RX}.
512    They override the standard exchange routines when \code{genmake2} is
513    run with \code{exch2} option.  They in turn call the local exch2
514    subroutines \code{EXCH2\_UV\_XY\_RX} and \code{EXCH2\_UV\_XYZ\_RX} for two
515    and three dimensional vector quantities, and \code{EXCH2\_XY\_RX} and
516    \code{EXCH2\_XYZ\_RX} for two and three dimensional scalar quantities.
517    These subroutines set the dimensions of the area to be exchanged, call
518    \code{EXCH2\_RX1\_CUBE} for scalars and \code{EXCH2\_RX2\_CUBE} for
519    vectors, and then handle the singularities at the cube corners. \\
520    
521    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
522    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine needs
523    to pass both the $x$ and $y$ components of the vectors.  This arises
524    from the topological folding discussed above, where the $x$ and $y$
525    axes get swapped in some cases.  This swapping is not an issue with
526    the scalar version. These subroutines call \code{EXCH2\_SEND\_RX1} and
527    \code{EXCH2\_SEND\_RX2}, which do most of the work using the variables
528    discussed above. \\
529    

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22