/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by afe, Wed Jan 28 17:55:15 2004 UTC revision 1.9 by afe, Fri Mar 12 20:58:19 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{Extended Cubed Sphere Exchange}
14    \label{sec:exch2}
 \subsection{Introduction}  
   
15    
16    
17    \subsection{Introduction}
18    
19    The \texttt{exch2} package is an extension to the original cubed
20    sphere topological configuration that allows more flexible domain
21    decomposition and parallelization.  Cube faces (also called
22    subdomains) may be divided into any number of tiles that divide evenly
23    into the grid point dimensions of the subdomain.  Furthermore, the
24    individual tiles may be run on separate processors in different
25    combinations, and whether exchanges between particular tiles occur
26    between different processors is determined at runtime.  This
27    flexibility provides for manual load balancing across a relatively
28    arbitrary number of processors.
29    
30    The exchange parameters are declared in
31    \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32    and assigned in
33    \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34    validity of the cube topology depends on the \texttt{SIZE.h} file as
35    detailed below.  Both files are generated by Matlab scripts in ??
36    check these in already! and should not be edited.  The default files
37    provided in the release configure a cubed sphere arrangement of six
38    tiles, one per subdomain, each with 32$\times$32 grid points, all
39    running on a single processor.  Pregenerated examples of these files
40    with alternate topologies are provided in ??.
41    
42    \subsection{Invoking exch2}
43    
44    To use exch2 with the cubed sphere, the following conditions must be met:
45    
46    - the exch2 package is included when \texttt{genmake2} is run.  The
47      easiest way to do this is to add the line \texttt{exch2} to the
48      \texttt{profile.conf} file -- see Section \ref{sect:buildingCode}
49      for general details. \\
50    
51    - an example of \texttt{W2\_EXCH2\_TOPOLOGY.h} and
52      \texttt{w2\_e2setup.F} must reside in a directory containing code
53      linked when \texttt{genmake2} runs.  The safest place to put these
54      is the directory indicated in the \texttt{-mods=DIR} command line
55      modifier (typically \texttt{../code}), or the build directory.  The
56      default versions of these files reside in \texttt{pkg/exch2}, but
57      they should be left untouched to avoid breaking configurations other
58      than the one you intend to modify.\\
59    
60    - files containing grid parameters, named
61      \texttt{tile}xxx\texttt{.mitgrid} where xxx is \texttt{001} through
62      \texttt{006}, must be in the working directory when the MITgcm
63      executable is run.  These files are provided in the example
64      experiments for cubed sphere configurations with 32$\times$32 cube
65      sides and are non-trivial to generate -- please contact MITgcm
66      support if you want to generate files for other configurations.
67      This is lame. ?? \\
68    
69    As of the time of writing the following examples use exch2 and may be
70    used for guidance:
71    
72    \begin{verbatim}
73    verification/adjust_nlfs.cs-32x32x1
74    verification/adjustment.cs-32x32x1
75    verification/aim.5l_cs
76    verification/global_ocean.cs32x15
77    verification/hs94.cs-32x32x5
78    \end{verbatim}
79    
80    
81    
82    
83    \subsection{Generating Topology Files}
84    
85    \subsection{Key Variables}
86    
87    The descriptions of the variables are divided up into scalars,
88    one-dimensional arrays indexed to the tile number, and two and three
89    dimensional arrays indexed to tile number and neighboring tile.  This
90    division actually reflects the functionality of these variables: the
91    scalars are common to every part of the topology, the tile-indexed
92    arrays to individual tiles, and the arrays indexed to tile and
93    neighbor to relationships between tiles and their neighbors.
94    
95    \subsubsection{Scalars}
96    
97    The number of tiles in a particular topology is set with the parameter
98    \texttt{NTILES}, and the maximum number of neighbors of any tiles by
99    \texttt{MAX\_NEIGHBOURS}.  These parameters are used for defining the
100    size of the various one and two dimensional arrays that store tile
101    parameters indexed to the tile number.\\
102    
103    The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
104    and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
105    of tiles in the x and y global indices.  For example, the default
106    setup of six tiles has \texttt{exch2\_domain\_nxt=6} and
107    \texttt{exch2\_domain\_nyt=1}.  A topology of twenty-four square (in
108    gridpoints) tiles, four (2x2) per subdomain, will have
109    \texttt{exch2\_domain\_nxt=12} and \texttt{exch2\_domain\_nyt=2}.
110    Note that these parameters express the tile layout to allow global
111    data files that are tile-layout-neutral and have no bearing on the
112    internal storage of the arrays.  The tiles are internally stored in a
113    range from \texttt{1,bi} (in the x axis) and y-axis variable
114    \texttt{bj} is generally ignored within the package.
115    
116    \subsubsection{Arrays Indexed to Tile Number}
117    
118    The following arrays are of size \texttt{NTILES}, are indexed to the
119    tile number, and the indices are omitted in their descriptions.
120    
121    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
122    \varlink{exch2\_tny}{exch2_tny} express the x and y dimensions of each
123    tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
124    \texttt{exch2\_tny=sNy}, as assigned in \texttt{SIZE.h}.  Future
125    releases of MITgcm are to allow varying tile sizes.
126    
127    The location of the tiles' Cartesian origin within a subdomain are
128    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
129    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
130    relate the location of the edges of the tiles to each other.  As an
131    example, in the default six-tile topology (the degenerate case) each
132    index in these arrays are set to 0.  The twenty-four, 32x32 cube face
133    case discussed above will have values of 0 or 16, depending on the
134    quadrant the tile falls within the subdomain.  The array
135    \varlink{exch2\_myFace}{exch2_myFace} contains the number of the
136    cubeface/subdomain of each tile, numbered 1-6 in the case of the
137    standard cube topology.
138    
139    The arrays \varlink{exch2\_txglobalo}{exch2_txglobalo} and
140    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
141    \varlink{exch2\_tbasex}{exch2_tbasex} and
142    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
143    global address space, similar to that used by global files.
144    
145    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
146    \varlink{exch2\_isEedge}{exch2_isEedge},
147    \varlink{exch2\_isSedge}{exch2_isSedge}, and
148    \varlink{exch2\_isNedge}{exch2_isNedge} are set to 1 if the indexed
149    tile lies on the edge of a subdomain, 0 if not.  The values are used
150    within the topology generator to determine the orientation of
151    neighboring tiles and to indicate whether a tile lies on the corner of
152    a subdomain.  The latter case indicates special exchange and numerical
153    handling for the singularities at the eight corners of the cube.
154    \varlink{exch2\_nNeighbours}{exch2_nNeighbours} contains a count of
155    how many neighboring tiles each tile has, and is used for setting
156    bounds for looping over neighboring tiles.
157    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
158    tile, and is used in interprocess communication.
159    
160    \subsubsection{Arrays Indexed to Tile Number and Neighbor}
161    
162    The following arrays are all of size \texttt{MAX\_NEIGHBOURS} $\times$
163    \texttt{NTILES} and describe the orientations between the the tiles.
164    
165    The array \texttt{exch2\_neighbourId(a,T)} holds the tile number for
166    each of the $n$ neighboring tiles.  The neighbor tiles are indexed
167    \texttt{(1,MAX\_NEIGHBOURS} in the order right to left on the north
168    then south edges, and then top to bottom on the east and west edges.
169    Maybe throw in a fig here, eh?
170    
171    The \texttt{exch2\_opposingSend\_record(a,T)} array holds the index c
172    in \texttt{exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.
173    In other words,
174    \begin{verbatim}
175       exch2_neighbourId( exch2_opposingSend_record(a,T),
176                          exch2_neighbourId(a,T) ) = T
177    \end{verbatim}
178    and this provides a back-reference from the neighbor tiles.
179    
180    The arrays \varlink{exch2\_pi}{exch2_pi},
181    \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},
182    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
183    \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in
184    exchanges between the neighboring tiles.  The dimensions of
185    \texttt{exch2\_pi(t,N,T)} and \texttt{exch2\_pj(t,N,T)} are the
186    neighbor ID \textit{N} and the tile number \textit{T} as explained
187    above, plus the transformation vector {\em t }, of length two.  The
188    first element of the transformation vector indicates the factor by
189    which variables representing the same vector component of a tile will
190    be multiplied, and the second element indicates the transform to the
191    variable in the other direction.  As an example,
192    \texttt{exch2\_pi(1,N,T)} holds the transform of the i-component of a
193    vector variable in tile \texttt{T} to the i-component of tile
194    \texttt{T}'s neighbor \texttt{N}, and \texttt{exch2\_pi(2,N,T)} hold
195    the component of neighbor \texttt{N}'s j-component.
196    
197    Under the current cube topology, one of the two elements of
198    \texttt{exch2\_pi} or \texttt{exch2\_pj} for a given tile \texttt{T}
199    and neighbor \texttt{N} will be 0, reflecting the fact that the vector
200    components are orthogonal.  The other element will be 1 or -1,
201    depending on whether the components are indexed in the same or
202    opposite directions.  For example, the transform dimension of the
203    arrays for all tile neighbors on the same subdomain will be [1,0],
204    since all tiles on the same subdomain are oriented identically.
205    Vectors that correspond to the orthogonal dimension with the same
206    index direction will have [0,1], whereas those in the opposite index
207    direction will have [0,-1].
208    
209    
210    {\footnotesize
211    \begin{verbatim}
212    C      exch2_pi          :: X index row of target to source permutation
213    C                        :: matrix for each neighbour entry.            
214    C      exch2_pj          :: Y index row of target to source permutation
215    C                        :: matrix for each neighbour entry.            
216    C      exch2_oi          :: X index element of target to source
217    C                        :: offset vector for cell-centered quantities  
218    C                        :: of each neighbor entry.                    
219    C      exch2_oj          :: Y index element of target to source
220    C                        :: offset vector for cell-centered quantities  
221    C                        :: of each neighbor entry.                    
222    C      exch2_oi_f        :: X index element of target to source
223    C                        :: offset vector for face quantities          
224    C                        :: of each neighbor entry.                    
225    C      exch2_oj_f        :: Y index element of target to source
226    C                        :: offset vector for face quantities          
227    C                        :: of each neighbor entry.                    
228    \end{verbatim}
229    }
230    
231    
232    

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22