/[MITgcm]/manual/s_phys_pkgs/text/exf.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Jul 14 21:04:52 2005 UTC (20 years ago) by heimbach
Branch: MAIN
File MIME type: application/x-tex
Move cal, exf to part6 and modify a few titles.

1 heimbach 1.1 \section{EXF: The external forcing package
2     \label{sec:pkg:exf}}
3     \begin{rawhtml}
4     <!-- CMIREDIR:sectionexf: -->
5     \end{rawhtml}
6    
7    
8     \subsection{Introduction
9     \label{sec:pkg:exf:intro}}
10    
11     The external forcing package, in conjunction with the
12     calendar package (cal), enables the handling of real-time
13     (or ``model-time'') forcing
14     fields of differing temporal forcing patterns.
15     It comprises climatological restoring and relaxation.
16     Bulk formulae are implemented to convert atmospheric fields
17     to surface fluxes.
18     An interpolation routine provides on-the-fly interpolation of
19     forcing fields an arbitrary grid onto the model grid.
20    
21     CPP options enable or disable different aspects of the package
22     (Section \ref{sec:pkg:exf:config}).
23     Runtime options, flags, filenames and field-related dates/times are
24     set in \texttt{data.exf} and \texttt{data.exf\_clim}
25     (Section \ref{sec:pkg:exf:runtime}).
26     A description of key subroutines is given in Section
27     \ref{sec:pkg:exf:subroutines}.
28     Input fields, units and sign conventions are summarized in
29     Section \ref{sec:pkg:exf:fields_units}, and available diagnostics
30     output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}.
31    
32     %----------------------------------------------------------------------
33    
34     \subsection{EXF configuration \& compiling
35     \label{sec:pkg:exf:config}}
36    
37     As with all MITgcm packages, EXF can be turned on or off at compile time
38     using the \texttt{packages.conf} file or the \texttt{genmake2}
39     \texttt{-enable=exf} or \texttt{-disable=exf} switches.
40    
41     Parts of the exf code can be enabled or disabled at compile time
42     via CPP preprocessor flags. These options are set in either
43     \texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.
44     Table \ref{tab:pkg:exf:cpp} summarizes these options.
45    
46     \begin{table}[b!]
47     \label{tab:pkg:exf:cpp}
48     {\footnotesize
49     \begin{tabular}{|l|l|}
50     \hline
51     \textbf{CPP option} & \textbf{Description} \\
52     \hline
53     \texttt{EXF\_VERBOSE} &
54     verbose mode (recommended only for testing) \\
55     \texttt{ALLOW\_ATM\_TEMP} &
56     compute heat/freshwater fluxes from atmos. state input \\
57     \texttt{ALLOW\_ATM\_WIND} &
58     compute wind stress from wind speed input\\
59     \texttt{ALLOW\_BULKFORMULAE} &
60     is used if either ALLOW\_ATM\_TEMP or ALLOW\_ATM\_WIND is enabled \\
61     \texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\
62     \texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\
63     \texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\
64     \texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\
65     \hline
66     \texttt{ALLOW\_CLIMTEMP\_RELAXATION} &
67     relaxation to 3-D potential temperature field \\
68     \texttt{ALLOW\_CLIMSALT\_RELAXATION} &
69     relaxation to 3-D salinity field \\
70     \texttt{ALLOW\_CLIMSST\_RELAXATION} &
71     relaxation to 2-D SST relaxation \\
72     \texttt{ALLOW\_CLIMSSS\_RELAXATION} &
73     relaxation to 2-D SSS relaxation \\
74     \hline
75     \texttt{SHORTWAVE\_HEATING} & in \texttt{CPP\_OPTIONS.h}: enable shortwave radiation \\
76     \texttt{ATMOSPHERIC\_LOADING} & in \texttt{CPP\_OPTIONS.h}: enable surface pressure forcing \\
77     \hline
78     \end{tabular}
79     }
80     \caption{~}
81     \end{table}
82    
83    
84     %----------------------------------------------------------------------
85    
86     \subsection{EXF runtime parameters
87     \label{sec:pkg:exf:runtime}}
88    
89     %----------------------------------------------------------------------
90    
91     \subsection{EXF fields and units
92     \label{sec:pkg:exf:fields_units}}
93    
94     The following list is taken from the header file \texttt{exf\_fields.h}.
95    
96     {\footnotesize
97     \begin{verbatim}
98    
99    
100    
101     c ustress :: Zonal surface wind stress in N/m^2
102     c > 0 for increase in uVel, which is west to
103     c east for cartesian and spherical polar grids
104     c Typical range: -0.5 < ustress < 0.5
105     c Southwest C-grid U point
106     c Input field
107     c
108     c vstress :: Meridional surface wind stress in N/m^2
109     c > 0 for increase in vVel, which is south to
110     c north for cartesian and spherical polar grids
111     c Typical range: -0.5 < vstress < 0.5
112     c Southwest C-grid V point
113     c Input field
114     c
115     c hflux :: Net upward surface heat flux in W/m^2
116     c excluding shortwave (on input)
117     c hflux = latent + sensible + lwflux
118     c > 0 for decrease in theta (ocean cooling)
119     c Typical range: -250 < hflux < 600
120     c Southwest C-grid tracer point
121     c Input field
122     c
123     c sflux :: Net upward freshwater flux in m/s
124     c sflux = evap - precip - runoff
125     c > 0 for increase in salt (ocean salinity)
126     c Typical range: -1e-7 < sflux < 1e-7
127     c Southwest C-grid tracer point
128     c Input field
129     c
130     c swflux :: Net upward shortwave radiation in W/m^2
131     c swflux = - ( swdown - ice and snow absorption - reflected )
132     c > 0 for decrease in theta (ocean cooling)
133     c Typical range: -350 < swflux < 0
134     c Southwest C-grid tracer point
135     c Input field
136     c
137     c uwind :: Surface (10-m) zonal wind velocity in m/s
138     c > 0 for increase in uVel, which is west to
139     c east for cartesian and spherical polar grids
140     c Typical range: -10 < uwind < 10
141     c Southwest C-grid U point
142     c Input or input/output field
143     c
144     c vwind :: Surface (10-m) meridional wind velocity in m/s
145     c > 0 for increase in vVel, which is south to
146     c north for cartesian and spherical polar grids
147     c Typical range: -10 < vwind < 10
148     c Southwest C-grid V point
149     c Input or input/output field
150     c
151     c atemp :: Surface (2-m) air temperature in deg K
152     c Typical range: 200 < atemp < 300
153     c Southwest C-grid tracer point
154     c Input or input/output field
155     c
156     c aqh :: Surface (2m) specific humidity in kg/kg
157     c Typical range: 0 < aqh < 0.02
158     c Southwest C-grid tracer point
159     c Input or input/output field
160     c
161     c lwflux :: Net upward longwave radiation in W/m^2
162     c lwflux = - ( lwdown - ice and snow absorption - emitted )
163     c > 0 for decrease in theta (ocean cooling)
164     c Typical range: -20 < lwflux < 170
165     c Southwest C-grid tracer point
166     c Input field
167     c
168     c evap :: Evaporation in m/s
169     c > 0 for increase in salt (ocean salinity)
170     c Typical range: 0 < evap < 2.5e-7
171     c Southwest C-grid tracer point
172     c Input, input/output, or output field
173     c
174     c precip :: Precipitation in m/s
175     c > 0 for decrease in salt (ocean salinity)
176     c Typical range: 0 < precip < 5e-7
177     c Southwest C-grid tracer point
178     c Input or input/output field
179     c
180     c runoff :: River and glacier runoff in m/s
181     c > 0 for decrease in salt (ocean salinity)
182     c Typical range: 0 < runoff < ????
183     c Southwest C-grid tracer point
184     c Input or input/output field
185     c !!! WATCH OUT: Default exf_inscal_runoff !!!
186     c !!! in exf_readparms.F is not 1.0 !!!
187     c
188     c swdown :: Downward shortwave radiation in W/m^2
189     c > 0 for increase in theta (ocean warming)
190     c Typical range: 0 < swdown < 450
191     c Southwest C-grid tracer point
192     c Input/output field
193     c
194     c lwdown :: Downward longwave radiation in W/m^2
195     c > 0 for increase in theta (ocean warming)
196     c Typical range: 50 < lwdown < 450
197     c Southwest C-grid tracer point
198     c Input/output field
199     c
200     c apressure :: Atmospheric pressure field in N/m^2
201     c > 0 for ????
202     c Typical range: ???? < apressure < ????
203     c Southwest C-grid tracer point
204     c Input field
205     C
206     C
207     c NOTES:
208     c ======
209     c
210     c Input and output units and sign conventions can be customized
211     c using variables exf_inscal_* and exf_outscal_*, which are set
212     c by exf_readparms.F
213     c
214     c Output fields fu, fv, Qnet, Qsw, and EmPmR are
215     c defined in FFIELDS.h
216     c
217     c #ifndef SHORTWAVE_HEATING, hflux includes shortwave,
218     c that is, hflux = latent + sensible + lwflux +swflux
219     c
220     c If (EXFwindOnBgrid .EQ. .TRUE.), uwind and vwind are
221     c defined on northeast B-grid U and V points, respectively.
222     c
223     c Arrays *0 and *1 below are used for temporal interpolation.
224     \end{verbatim}
225     }
226    
227     %----------------------------------------------------------------------
228    
229     \subsection{Key subroutines
230     \label{sec:pkg:exf:subroutines}}
231    
232     %----------------------------------------------------------------------
233    
234     \subsection{EXF diagnostics
235     \label{sec:pkg:exf:diagnostics}}
236    
237     Diagnostics output is available via the diagnostics package
238     (see Section \ref{sec:pkg:diagnostics}).
239     Available output fields are summarized in
240     Table \ref{tab:pkg:exf:diagnostics}.
241    
242     \begin{table}
243     \label{tab:pkg:exf:diagnostics}
244     \caption{~}
245     {\footnotesize
246     \begin{verbatim}
247     ------------------------------------------------------
248     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
249     ------------------------------------------------------
250     EXFlwdn | 1 | SM |W/m^2 |Downward longwave radiation, >0 increases theta
251     EXFswdn | 1 | SM |W/m^2 |Downward shortwave radiation, >0 increases theta
252     EXFqnet | 1 | SM |W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta
253     EXFtaux | 1 | SU |N/m^2 |zonal surface wind stress, >0 increases uVel
254     EXFtauy | 1 | SV |N/m^2 |meridional surface wind stress, >0 increases vVel
255     EXFuwind| 1 | SM |m/s |zonal 10-m wind speed, >0 increases uVel
256     EXFvwind| 1 | SM |m/s |meridional 10-m wind speed, >0 increases uVel
257     EXFatemp| 1 | SM |degK |surface (2-m) air temperature
258     EXFaqh | 1 | SM |kg/kg |surface (2-m) specific humidity
259     EXFevap | 1 | SM |m/s |evaporation, > 0 increases salinity
260     EXFpreci| 1 | SM |m/s |evaporation, > 0 decreases salinity
261     EXFempmr| 1 | SM |m/s |net upward freshwater flux, > 0 increases salinity
262     EXFpress| 1 | SM |N/m^2 |atmospheric pressure field
263     \end{verbatim}
264     }
265     \end{table}
266    
267     %----------------------------------------------------------------------
268    
269     \subsection{Reference experiments}
270    
271     %----------------------------------------------------------------------
272    
273     \subsection{References}

  ViewVC Help
Powered by ViewVC 1.1.22