1 |
heimbach |
1.1 |
\section{EXF: The external forcing package |
2 |
|
|
\label{sec:pkg:exf}} |
3 |
|
|
\begin{rawhtml} |
4 |
|
|
<!-- CMIREDIR:sectionexf: --> |
5 |
|
|
\end{rawhtml} |
6 |
|
|
|
7 |
|
|
|
8 |
|
|
\subsection{Introduction |
9 |
|
|
\label{sec:pkg:exf:intro}} |
10 |
|
|
|
11 |
|
|
The external forcing package, in conjunction with the |
12 |
|
|
calendar package (cal), enables the handling of real-time |
13 |
|
|
(or ``model-time'') forcing |
14 |
|
|
fields of differing temporal forcing patterns. |
15 |
|
|
It comprises climatological restoring and relaxation. |
16 |
|
|
Bulk formulae are implemented to convert atmospheric fields |
17 |
|
|
to surface fluxes. |
18 |
|
|
An interpolation routine provides on-the-fly interpolation of |
19 |
|
|
forcing fields an arbitrary grid onto the model grid. |
20 |
|
|
|
21 |
|
|
CPP options enable or disable different aspects of the package |
22 |
|
|
(Section \ref{sec:pkg:exf:config}). |
23 |
|
|
Runtime options, flags, filenames and field-related dates/times are |
24 |
|
|
set in \texttt{data.exf} and \texttt{data.exf\_clim} |
25 |
|
|
(Section \ref{sec:pkg:exf:runtime}). |
26 |
|
|
A description of key subroutines is given in Section |
27 |
|
|
\ref{sec:pkg:exf:subroutines}. |
28 |
|
|
Input fields, units and sign conventions are summarized in |
29 |
|
|
Section \ref{sec:pkg:exf:fields_units}, and available diagnostics |
30 |
|
|
output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}. |
31 |
|
|
|
32 |
|
|
%---------------------------------------------------------------------- |
33 |
|
|
|
34 |
heimbach |
1.2 |
\subsection{EXF configuration, compiling \& running} |
35 |
|
|
|
36 |
|
|
\subsubsection{Compile-time options |
37 |
heimbach |
1.1 |
\label{sec:pkg:exf:config}} |
38 |
|
|
|
39 |
|
|
As with all MITgcm packages, EXF can be turned on or off at compile time |
40 |
|
|
using the \texttt{packages.conf} file or the \texttt{genmake2} |
41 |
|
|
\texttt{-enable=exf} or \texttt{-disable=exf} switches. |
42 |
|
|
|
43 |
|
|
Parts of the exf code can be enabled or disabled at compile time |
44 |
|
|
via CPP preprocessor flags. These options are set in either |
45 |
|
|
\texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}. |
46 |
|
|
Table \ref{tab:pkg:exf:cpp} summarizes these options. |
47 |
|
|
|
48 |
|
|
\begin{table}[b!] |
49 |
|
|
\label{tab:pkg:exf:cpp} |
50 |
|
|
{\footnotesize |
51 |
|
|
\begin{tabular}{|l|l|} |
52 |
heimbach |
1.2 |
\hline |
53 |
heimbach |
1.1 |
\textbf{CPP option} & \textbf{Description} \\ |
54 |
heimbach |
1.2 |
\hline \hline |
55 |
heimbach |
1.1 |
\texttt{EXF\_VERBOSE} & |
56 |
|
|
verbose mode (recommended only for testing) \\ |
57 |
|
|
\texttt{ALLOW\_ATM\_TEMP} & |
58 |
|
|
compute heat/freshwater fluxes from atmos. state input \\ |
59 |
|
|
\texttt{ALLOW\_ATM\_WIND} & |
60 |
|
|
compute wind stress from wind speed input\\ |
61 |
|
|
\texttt{ALLOW\_BULKFORMULAE} & |
62 |
|
|
is used if either ALLOW\_ATM\_TEMP or ALLOW\_ATM\_WIND is enabled \\ |
63 |
|
|
\texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\ |
64 |
|
|
\texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\ |
65 |
|
|
\texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\ |
66 |
|
|
\texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\ |
67 |
|
|
\hline |
68 |
|
|
\texttt{ALLOW\_CLIMTEMP\_RELAXATION} & |
69 |
heimbach |
1.2 |
relaxation to 3-D potential temperature climatology \\ |
70 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSALT\_RELAXATION} & |
71 |
heimbach |
1.2 |
relaxation to 3-D salinity climatology \\ |
72 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSST\_RELAXATION} & |
73 |
heimbach |
1.2 |
relaxation to 2-D SST climatology \\ |
74 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSSS\_RELAXATION} & |
75 |
heimbach |
1.2 |
relaxation to 2-D SSS climatology \\ |
76 |
heimbach |
1.1 |
\hline |
77 |
|
|
\texttt{SHORTWAVE\_HEATING} & in \texttt{CPP\_OPTIONS.h}: enable shortwave radiation \\ |
78 |
|
|
\texttt{ATMOSPHERIC\_LOADING} & in \texttt{CPP\_OPTIONS.h}: enable surface pressure forcing \\ |
79 |
|
|
\hline |
80 |
|
|
\end{tabular} |
81 |
|
|
} |
82 |
|
|
\caption{~} |
83 |
|
|
\end{table} |
84 |
|
|
|
85 |
|
|
|
86 |
|
|
%---------------------------------------------------------------------- |
87 |
|
|
|
88 |
heimbach |
1.2 |
\subsubsection{Run-time parameters |
89 |
heimbach |
1.1 |
\label{sec:pkg:exf:runtime}} |
90 |
|
|
|
91 |
heimbach |
1.2 |
Run-time parameters are set in files \texttt{data.pkg}, |
92 |
|
|
and \texttt{data.pkg\_clim} (for relaxation/climatological fields). |
93 |
|
|
Run-time parameters may be broken into 2 categories: |
94 |
|
|
(i) general flags and parameters, and |
95 |
|
|
(ii) attributes for each forcing and climatological field. |
96 |
|
|
|
97 |
|
|
\paragraph{General flags and parameters} |
98 |
|
|
|
99 |
|
|
\begin{table}[h!] |
100 |
|
|
\label{tab:pkg:exf:runtime_flags} |
101 |
|
|
{\footnotesize |
102 |
|
|
\begin{tabular}{|l|cl|} |
103 |
|
|
\hline |
104 |
|
|
\textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\ |
105 |
|
|
\hline \hline |
106 |
|
|
useExfCheckRange & \texttt{.TRUE.} & ~ \\ |
107 |
|
|
useExfYearlyFields & \texttt{.FALSE.} & ~ \\ |
108 |
|
|
twoDigitYear & \texttt{.FALSE.} & ~ \\ |
109 |
|
|
repeatPeriod & \texttt{0.0} & ~ \\ |
110 |
|
|
windstressmax & \texttt{2.0} & ~ \\ |
111 |
|
|
exf\_albedo & \texttt{0.1} & ~ \\ |
112 |
|
|
exf\_iprec & \texttt{32} & ~ \\ |
113 |
|
|
exf\_yftype & \texttt{'RL'} & ~ \\ |
114 |
|
|
\hline |
115 |
|
|
\end{tabular} |
116 |
|
|
} |
117 |
|
|
\caption{~} |
118 |
|
|
\end{table} |
119 |
|
|
|
120 |
|
|
|
121 |
|
|
\paragraph{Field attributes} |
122 |
|
|
|
123 |
|
|
|
124 |
|
|
|
125 |
heimbach |
1.1 |
%---------------------------------------------------------------------- |
126 |
|
|
|
127 |
|
|
\subsection{EXF fields and units |
128 |
|
|
\label{sec:pkg:exf:fields_units}} |
129 |
|
|
|
130 |
|
|
The following list is taken from the header file \texttt{exf\_fields.h}. |
131 |
|
|
|
132 |
|
|
{\footnotesize |
133 |
|
|
\begin{verbatim} |
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
c ustress :: Zonal surface wind stress in N/m^2 |
138 |
|
|
c > 0 for increase in uVel, which is west to |
139 |
|
|
c east for cartesian and spherical polar grids |
140 |
|
|
c Typical range: -0.5 < ustress < 0.5 |
141 |
|
|
c Southwest C-grid U point |
142 |
|
|
c Input field |
143 |
|
|
c |
144 |
|
|
c vstress :: Meridional surface wind stress in N/m^2 |
145 |
|
|
c > 0 for increase in vVel, which is south to |
146 |
|
|
c north for cartesian and spherical polar grids |
147 |
|
|
c Typical range: -0.5 < vstress < 0.5 |
148 |
|
|
c Southwest C-grid V point |
149 |
|
|
c Input field |
150 |
|
|
c |
151 |
|
|
c hflux :: Net upward surface heat flux in W/m^2 |
152 |
|
|
c excluding shortwave (on input) |
153 |
|
|
c hflux = latent + sensible + lwflux |
154 |
|
|
c > 0 for decrease in theta (ocean cooling) |
155 |
|
|
c Typical range: -250 < hflux < 600 |
156 |
|
|
c Southwest C-grid tracer point |
157 |
|
|
c Input field |
158 |
|
|
c |
159 |
|
|
c sflux :: Net upward freshwater flux in m/s |
160 |
|
|
c sflux = evap - precip - runoff |
161 |
|
|
c > 0 for increase in salt (ocean salinity) |
162 |
|
|
c Typical range: -1e-7 < sflux < 1e-7 |
163 |
|
|
c Southwest C-grid tracer point |
164 |
|
|
c Input field |
165 |
|
|
c |
166 |
|
|
c swflux :: Net upward shortwave radiation in W/m^2 |
167 |
|
|
c swflux = - ( swdown - ice and snow absorption - reflected ) |
168 |
|
|
c > 0 for decrease in theta (ocean cooling) |
169 |
|
|
c Typical range: -350 < swflux < 0 |
170 |
|
|
c Southwest C-grid tracer point |
171 |
|
|
c Input field |
172 |
|
|
c |
173 |
|
|
c uwind :: Surface (10-m) zonal wind velocity in m/s |
174 |
|
|
c > 0 for increase in uVel, which is west to |
175 |
|
|
c east for cartesian and spherical polar grids |
176 |
|
|
c Typical range: -10 < uwind < 10 |
177 |
|
|
c Southwest C-grid U point |
178 |
|
|
c Input or input/output field |
179 |
|
|
c |
180 |
|
|
c vwind :: Surface (10-m) meridional wind velocity in m/s |
181 |
|
|
c > 0 for increase in vVel, which is south to |
182 |
|
|
c north for cartesian and spherical polar grids |
183 |
|
|
c Typical range: -10 < vwind < 10 |
184 |
|
|
c Southwest C-grid V point |
185 |
|
|
c Input or input/output field |
186 |
|
|
c |
187 |
|
|
c atemp :: Surface (2-m) air temperature in deg K |
188 |
|
|
c Typical range: 200 < atemp < 300 |
189 |
|
|
c Southwest C-grid tracer point |
190 |
|
|
c Input or input/output field |
191 |
|
|
c |
192 |
|
|
c aqh :: Surface (2m) specific humidity in kg/kg |
193 |
|
|
c Typical range: 0 < aqh < 0.02 |
194 |
|
|
c Southwest C-grid tracer point |
195 |
|
|
c Input or input/output field |
196 |
|
|
c |
197 |
|
|
c lwflux :: Net upward longwave radiation in W/m^2 |
198 |
|
|
c lwflux = - ( lwdown - ice and snow absorption - emitted ) |
199 |
|
|
c > 0 for decrease in theta (ocean cooling) |
200 |
|
|
c Typical range: -20 < lwflux < 170 |
201 |
|
|
c Southwest C-grid tracer point |
202 |
|
|
c Input field |
203 |
|
|
c |
204 |
|
|
c evap :: Evaporation in m/s |
205 |
|
|
c > 0 for increase in salt (ocean salinity) |
206 |
|
|
c Typical range: 0 < evap < 2.5e-7 |
207 |
|
|
c Southwest C-grid tracer point |
208 |
|
|
c Input, input/output, or output field |
209 |
|
|
c |
210 |
|
|
c precip :: Precipitation in m/s |
211 |
|
|
c > 0 for decrease in salt (ocean salinity) |
212 |
|
|
c Typical range: 0 < precip < 5e-7 |
213 |
|
|
c Southwest C-grid tracer point |
214 |
|
|
c Input or input/output field |
215 |
|
|
c |
216 |
|
|
c runoff :: River and glacier runoff in m/s |
217 |
|
|
c > 0 for decrease in salt (ocean salinity) |
218 |
|
|
c Typical range: 0 < runoff < ???? |
219 |
|
|
c Southwest C-grid tracer point |
220 |
|
|
c Input or input/output field |
221 |
|
|
c !!! WATCH OUT: Default exf_inscal_runoff !!! |
222 |
|
|
c !!! in exf_readparms.F is not 1.0 !!! |
223 |
|
|
c |
224 |
|
|
c swdown :: Downward shortwave radiation in W/m^2 |
225 |
|
|
c > 0 for increase in theta (ocean warming) |
226 |
|
|
c Typical range: 0 < swdown < 450 |
227 |
|
|
c Southwest C-grid tracer point |
228 |
|
|
c Input/output field |
229 |
|
|
c |
230 |
|
|
c lwdown :: Downward longwave radiation in W/m^2 |
231 |
|
|
c > 0 for increase in theta (ocean warming) |
232 |
|
|
c Typical range: 50 < lwdown < 450 |
233 |
|
|
c Southwest C-grid tracer point |
234 |
|
|
c Input/output field |
235 |
|
|
c |
236 |
|
|
c apressure :: Atmospheric pressure field in N/m^2 |
237 |
|
|
c > 0 for ???? |
238 |
|
|
c Typical range: ???? < apressure < ???? |
239 |
|
|
c Southwest C-grid tracer point |
240 |
|
|
c Input field |
241 |
|
|
C |
242 |
|
|
C |
243 |
|
|
c NOTES: |
244 |
|
|
c ====== |
245 |
|
|
c |
246 |
|
|
c Input and output units and sign conventions can be customized |
247 |
|
|
c using variables exf_inscal_* and exf_outscal_*, which are set |
248 |
|
|
c by exf_readparms.F |
249 |
|
|
c |
250 |
|
|
c Output fields fu, fv, Qnet, Qsw, and EmPmR are |
251 |
|
|
c defined in FFIELDS.h |
252 |
|
|
c |
253 |
|
|
c #ifndef SHORTWAVE_HEATING, hflux includes shortwave, |
254 |
|
|
c that is, hflux = latent + sensible + lwflux +swflux |
255 |
|
|
c |
256 |
|
|
c If (EXFwindOnBgrid .EQ. .TRUE.), uwind and vwind are |
257 |
|
|
c defined on northeast B-grid U and V points, respectively. |
258 |
|
|
c |
259 |
|
|
c Arrays *0 and *1 below are used for temporal interpolation. |
260 |
|
|
\end{verbatim} |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
%---------------------------------------------------------------------- |
264 |
|
|
|
265 |
|
|
\subsection{Key subroutines |
266 |
|
|
\label{sec:pkg:exf:subroutines}} |
267 |
|
|
|
268 |
|
|
%---------------------------------------------------------------------- |
269 |
|
|
|
270 |
|
|
\subsection{EXF diagnostics |
271 |
|
|
\label{sec:pkg:exf:diagnostics}} |
272 |
|
|
|
273 |
|
|
Diagnostics output is available via the diagnostics package |
274 |
|
|
(see Section \ref{sec:pkg:diagnostics}). |
275 |
|
|
Available output fields are summarized in |
276 |
|
|
Table \ref{tab:pkg:exf:diagnostics}. |
277 |
|
|
|
278 |
|
|
\begin{table} |
279 |
|
|
\label{tab:pkg:exf:diagnostics} |
280 |
|
|
\caption{~} |
281 |
|
|
{\footnotesize |
282 |
|
|
\begin{verbatim} |
283 |
|
|
------------------------------------------------------ |
284 |
|
|
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
285 |
|
|
------------------------------------------------------ |
286 |
|
|
EXFlwdn | 1 | SM |W/m^2 |Downward longwave radiation, >0 increases theta |
287 |
|
|
EXFswdn | 1 | SM |W/m^2 |Downward shortwave radiation, >0 increases theta |
288 |
|
|
EXFqnet | 1 | SM |W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta |
289 |
|
|
EXFtaux | 1 | SU |N/m^2 |zonal surface wind stress, >0 increases uVel |
290 |
|
|
EXFtauy | 1 | SV |N/m^2 |meridional surface wind stress, >0 increases vVel |
291 |
|
|
EXFuwind| 1 | SM |m/s |zonal 10-m wind speed, >0 increases uVel |
292 |
|
|
EXFvwind| 1 | SM |m/s |meridional 10-m wind speed, >0 increases uVel |
293 |
|
|
EXFatemp| 1 | SM |degK |surface (2-m) air temperature |
294 |
|
|
EXFaqh | 1 | SM |kg/kg |surface (2-m) specific humidity |
295 |
|
|
EXFevap | 1 | SM |m/s |evaporation, > 0 increases salinity |
296 |
|
|
EXFpreci| 1 | SM |m/s |evaporation, > 0 decreases salinity |
297 |
|
|
EXFempmr| 1 | SM |m/s |net upward freshwater flux, > 0 increases salinity |
298 |
|
|
EXFpress| 1 | SM |N/m^2 |atmospheric pressure field |
299 |
|
|
\end{verbatim} |
300 |
|
|
} |
301 |
|
|
\end{table} |
302 |
|
|
|
303 |
|
|
%---------------------------------------------------------------------- |
304 |
|
|
|
305 |
|
|
\subsection{Reference experiments} |
306 |
|
|
|
307 |
|
|
%---------------------------------------------------------------------- |
308 |
|
|
|
309 |
|
|
\subsection{References} |