/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (hide annotations) (download) (as text)
Tue Aug 2 15:43:59 2005 UTC (19 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.9: +41 -93 lines
File MIME type: application/x-tex
Use bibtex references

1 molod 1.9 \subsection{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8 molod 1.9 \subsubsection{Introduction}
9 molod 1.1 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11     boundary layer turbulence, and land surface processes.
12    
13     % *************************************************************************
14     % *************************************************************************
15    
16 molod 1.9 \subsubsection{Equations}
17 molod 1.1
18 molod 1.9 Moist Convective Processes:
19 molod 1.1
20 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
21 molod 1.1 \label{sec:fizhi:mc}
22    
23     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24 molod 1.10 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
25 molod 1.1 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27    
28     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31     mass from the environment during ascent, and detraining all cloud air at the level of neutral
32     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33     mass flux, is a linear function of height, expressed as:
34     \[
35     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36     -{c_p \over {g}}\theta\lambda
37     \]
38     where we have used the hydrostatic equation written in the form:
39     \[
40     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41     \]
42    
43     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46 molod 1.10 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
47 molod 1.1 $\lambda$ may be written as
48     \[
49     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50     \]
51    
52     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53    
54    
55     The convective instability is measured in terms of the cloud work function $A$, defined as the
56     rate of change of cumulus kinetic energy. The cloud work function is
57     related to the buoyancy, or the difference
58     between the moist static energy in the cloud and in the environment:
59     \[
60     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62     \]
63    
64     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65     and the subscript $c$ refers to the value inside the cloud.
66    
67    
68     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71     \[
72     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73     \]
74    
75     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76     unit cloud base mass flux, and is currently obtained by analytically differentiating the
77     expression for $A$ in time.
78     The rate of change of $A$ due to the generation by the large scale can be written as the
79     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80     convective time step
81     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82     computed by Lord (1982) from $in situ$ observations.
83    
84    
85     The predicted convective mass fluxes are used to solve grid-scale temperature
86     and moisture budget equations to determine the impact of convection on the large scale fields of
87     temperature (through latent heating and compensating subsidence) and moisture (through
88     precipitation and detrainment):
89     \[
90     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91     \]
92     and
93     \[
94     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95     \]
96     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97    
98     As an approximation to a full interaction between the different allowable subensembles,
99     many clouds are simulated frequently, each modifying the large scale environment some fraction
100     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101     towards equillibrium.
102    
103     In addition to the RAS cumulus convection scheme, the fizhi package employs a
104 molod 1.10 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
105 molod 1.1 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106     formulation assumes that all cloud water is deposited into the detrainment level as rain.
107     All of the rain is available for re-evaporation, which begins in the level below detrainment.
108     The scheme accounts for some microphysics such as
109     the rainfall intensity, the drop size distribution, as well as the temperature,
110     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113     for frozen precipitation.
114    
115     Due to the increased vertical resolution near the surface, the lowest model
116     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117     invoked (every ten simulated minutes),
118     a number of randomly chosen subensembles are checked for the possibility
119     of convection, from just above cloud base to 10 mb.
120    
121     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123     The large-scale precipitation re-evaporates during descent to partially saturate
124     lower layers in a process identical to the re-evaporation of convective rain.
125    
126    
127 molod 1.5 \paragraph{Cloud Formation}
128 molod 1.1 \label{sec:fizhi:clouds}
129    
130     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131     diagnostically as part of the cumulus and large-scale parameterizations.
132     Convective cloud fractions produced by RAS are proportional to the
133     detrained liquid water amount given by
134    
135     \[
136     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137     \]
138    
139     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140     A memory is associated with convective clouds defined by:
141    
142     \[
143     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144     \]
145    
146     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149    
150     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151     humidity:
152    
153     \[
154     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155     \]
156    
157     where
158    
159     \bqa
160     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161     s & = & p/p_{surf} \nonumber \\
162     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163     RH_{min} & = & 0.75 \nonumber \\
164     \alpha & = & 0.573285 \nonumber .
165     \eqa
166    
167     These cloud fractions are suppressed, however, in regions where the convective
168     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169     Figure (\ref{fig:fizhi:rhcrit}).
170    
171     \begin{figure*}[htbp]
172     \vspace{0.4in}
173 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 molod 1.1 \vspace{0.4in}
175     \caption [Critical Relative Humidity for Clouds.]
176     {Critical Relative Humidity for Clouds.}
177     \label{fig:fizhi:rhcrit}
178     \end{figure*}
179    
180     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181    
182     \[
183     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184     \]
185    
186     Finally, cloud fractions are time-averaged between calls to the radiation packages.
187    
188    
189 molod 1.9 Radiation:
190 molod 1.1
191     The parameterization of radiative heating in the fizhi package includes effects
192     from both shortwave and longwave processes.
193     Radiative fluxes are calculated at each
194     model edge-level in both up and down directions.
195     The heating rates/cooling rates are then obtained
196     from the vertical divergence of the net radiative fluxes.
197    
198     The net flux is
199     \[
200     F = F^\uparrow - F^\downarrow
201     \]
202     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203     the downward flux.
204    
205     The heating rate due to the divergence of the radiative flux is given by
206     \[
207     \pp{\rho c_p T}{t} = - \pp{F}{z}
208     \]
209     or
210     \[
211     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212     \]
213     where $g$ is the accelation due to gravity
214     and $c_p$ is the heat capacity of air at constant pressure.
215    
216     The time tendency for Longwave
217     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218     every three hours assuming a normalized incident solar radiation, and subsequently modified at
219     every model time step by the true incident radiation.
220     The solar constant value used in the package is equal to 1365 $W/m^2$
221     and a $CO_2$ mixing ratio of 330 ppm.
222     For the ozone mixing ratio, monthly mean zonally averaged
223     climatological values specified as a function
224 molod 1.10 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
225 molod 1.1
226    
227 molod 1.5 \paragraph{Shortwave Radiation}
228 molod 1.1
229     The shortwave radiation package used in the package computes solar radiative
230     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231     clouds, and aerosols and due to the
232     scattering by clouds, aerosols, and gases.
233     The shortwave radiative processes are described by
234 molod 1.10 \cite{chou:90,chou:92}. This shortwave package
235 molod 1.1 uses the Delta-Eddington approximation to compute the
236     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237     The transmittance and reflectance of diffuse radiation
238 molod 1.10 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
239 molod 1.1
240     Highly accurate heating rate calculations are obtained through the use
241     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243     can be accurately computed in the ultraviolet region and the photosynthetically
244     active radiation (PAR) region.
245     The computation of solar flux in the infrared region is performed with a broadband
246     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249    
250     \begin{table}[htb]
251     \begin{center}
252     {\bf UV and Visible Spectral Regions} \\
253     \vspace{0.1in}
254     \begin{tabular}{|c|c|c|}
255     \hline
256     Region & Band & Wavelength (micron) \\ \hline
257     \hline
258     UV-C & 1. & .175 - .225 \\
259     & 2. & .225 - .245 \\
260     & & .260 - .280 \\
261     & 3. & .245 - .260 \\ \hline
262     UV-B & 4. & .280 - .295 \\
263     & 5. & .295 - .310 \\
264     & 6. & .310 - .320 \\ \hline
265     UV-A & 7. & .320 - .400 \\ \hline
266     PAR & 8. & .400 - .700 \\
267     \hline
268     \end{tabular}
269     \end{center}
270     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271     \label{tab:fizhi:solar2}
272     \end{table}
273    
274     \begin{table}[htb]
275     \begin{center}
276     {\bf Infrared Spectral Regions} \\
277     \vspace{0.1in}
278     \begin{tabular}{|c|c|c|}
279     \hline
280     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281     \hline
282     1 & 1000-4400 & 2.27-10.0 \\
283     2 & 4400-8200 & 1.22-2.27 \\
284     3 & 8200-14300 & 0.70-1.22 \\
285     \hline
286     \end{tabular}
287     \end{center}
288     \caption{Infrared Spectral Regions used in shortwave radiation package.}
289     \label{tab:fizhi:solar1}
290     \end{table}
291    
292     Within the shortwave radiation package,
293     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296     In the fizhi package, the effective radius for water droplets is given as 10 microns,
297     while 65 microns is used for ice particles. The absorption due to aerosols is currently
298     set to zero.
299    
300     To simplify calculations in a cloudy atmosphere, clouds are
301     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302     Within each of the three regions, clouds are assumed maximally
303     overlapped, and the cloud cover of the group is the maximum
304     cloud cover of all the layers in the group. The optical thickness
305     of a given layer is then scaled for both the direct (as a function of the
306     solar zenith angle) and diffuse beam radiation
307     so that the grouped layer reflectance is the same as the original reflectance.
308     The solar flux is computed for each of the eight cloud realizations possible
309     (see Figure \ref{fig:fizhi:cloud}) within this
310     low/middle/high classification, and appropriately averaged to produce the net solar flux.
311    
312     \begin{figure*}[htbp]
313     \vspace{0.4in}
314 molod 1.4 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 molod 1.1 }
316     \vspace{0.4in}
317     \caption {Low-Middle-High Cloud Configurations}
318     \label{fig:fizhi:cloud}
319     \end{figure*}
320    
321    
322 molod 1.5 \paragraph{Longwave Radiation}
323 molod 1.1
324 molod 1.10 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
325 molod 1.1 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328    
329    
330     \begin{table}[htb]
331     \begin{center}
332     {\bf IR Spectral Bands} \\
333     \vspace{0.1in}
334     \begin{tabular}{|c|c|l|c| }
335     \hline
336     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337     \hline
338     1 & 0-340 & H$_2$O line & T \\ \hline
339     2 & 340-540 & H$_2$O line & T \\ \hline
340     3a & 540-620 & H$_2$O line & K \\
341     3b & 620-720 & H$_2$O continuum & S \\
342     3b & 720-800 & CO$_2$ & T \\ \hline
343     4 & 800-980 & H$_2$O line & K \\
344     & & H$_2$O continuum & S \\ \hline
345     & & H$_2$O line & K \\
346     5 & 980-1100 & H$_2$O continuum & S \\
347     & & O$_3$ & T \\ \hline
348     6 & 1100-1380 & H$_2$O line & K \\
349     & & H$_2$O continuum & S \\ \hline
350     7 & 1380-1900 & H$_2$O line & T \\ \hline
351     8 & 1900-3000 & H$_2$O line & K \\ \hline
352     \hline
353     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356     \hline
357     \end{tabular}
358     \end{center}
359     \vspace{0.1in}
360 molod 1.10 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chzs:94})}
361 molod 1.1 \label{tab:fizhi:longwave}
362     \end{table}
363    
364    
365     The longwave radiation package accurately computes cooling rates for the middle and
366     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371     in the upward flux at the top of the atmosphere.
372    
373     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374     three regions catagorized as low/middle/high.
375     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377    
378     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379    
380     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381     a group is given by:
382    
383     \[ P_{group} = 1 - F_{max} , \]
384    
385     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387     assigned.
388    
389    
390 molod 1.5 \paragraph{Cloud-Radiation Interaction}
391 molod 1.1 \label{sec:fizhi:radcloud}
392    
393     The cloud fractions and diagnosed cloud liquid water produced by moist processes
394     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395     The cloud optical thickness associated with large-scale cloudiness is made
396     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397     Two values are used corresponding to cloud ice particles and water droplets.
398     The range of optical thickness for these clouds is given as
399    
400     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402    
403     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404     in temperature:
405    
406     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407    
408     The resulting optical depth associated with large-scale cloudiness is given as
409    
410     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411    
412     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413    
414     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415    
416     The total optical depth in a given model layer is computed as a weighted average between
417     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418     layer:
419    
420     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421    
422     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423     processes described in Section \ref{sec:fizhi:clouds}.
424     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425    
426     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428     hours). Therefore, in a time-averaged sense, both convective and large-scale
429     cloudiness can exist in a given grid-box.
430    
431 molod 1.9 Turbulence:
432    
433 molod 1.1 Turbulence is parameterized in the fizhi package to account for its contribution to the
434     vertical exchange of heat, moisture, and momentum.
435     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
436     time scheme with an internal time step of 5 minutes.
437     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
438     the diffusion equations:
439    
440     \[
441     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
442     = {\pp{}{z} }{(K_m \pp{u}{z})}
443     \]
444     \[
445     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
446     = {\pp{}{z} }{(K_m \pp{v}{z})}
447     \]
448     \[
449     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
450     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
451     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
452     \]
453     \[
454     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
455     = {\pp{}{z} }{(K_h \pp{q}{z})}
456     \]
457    
458     Within the atmosphere, the time evolution
459     of second turbulent moments is explicitly modeled by representing the third moments in terms of
460     the first and second moments. This approach is known as a second-order closure modeling.
461     To simplify and streamline the computation of the second moments, the level 2.5 assumption
462 molod 1.10 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
463 molod 1.1 kinetic energy (TKE),
464    
465     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
466    
467     is solved prognostically and the other second moments are solved diagnostically.
468     The prognostic equation for TKE allows the scheme to simulate
469     some of the transient and diffusive effects in the turbulence. The TKE budget equation
470     is solved numerically using an implicit backward computation of the terms linear in $q^2$
471     and is written:
472    
473     \[
474     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
475     ({\h}q^2)} })} =
476     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
477     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
478     - { q^3 \over {{\Lambda} _1} }
479     \]
480    
481     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
482     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
483     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
484     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
485     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
486     of the vertical structure of the turbulent layers.
487    
488     The first term on the left-hand side represents the time rate of change of TKE, and
489     the second term is a representation of the triple correlation, or turbulent
490     transport term. The first three terms on the right-hand side represent the sources of
491     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
492     of TKE.
493    
494     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
495     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
496 molod 1.10 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
497     \cite{helflab:88}, these diffusion coefficients are expressed as
498 molod 1.1
499     \[
500     K_h
501     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
502     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503     \]
504    
505     and
506    
507     \[
508     K_m
509     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
510     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
511     \]
512    
513     where the subscript $e$ refers to the value under conditions of local equillibrium
514     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
515     vertical structure of the atmosphere,
516     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
517     wind shear parameters, respectively.
518     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
519     are functions of the Richardson number:
520    
521     \[
522     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
523     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
524     \]
525    
526     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
527     indicate dominantly unstable shear, and large positive values indicate dominantly stable
528     stratification.
529    
530     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
531     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
532     are calculated using stability-dependant functions based on Monin-Obukhov theory:
533     \[
534     {K_m} (surface) = C_u \times u_* = C_D W_s
535     \]
536     and
537     \[
538     {K_h} (surface) = C_t \times u_* = C_H W_s
539     \]
540     where $u_*=C_uW_s$ is the surface friction velocity,
541     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
542     and $W_s$ is the magnitude of the surface layer wind.
543    
544     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
545     similarity functions:
546     \[
547     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
548     \]
549     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
550     wind shear given by
551     \[
552     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
553     \]
554     Here $\zeta$ is the non-dimensional stability parameter, and
555     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
556     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
557     layers.
558    
559     $C_t$ is the dimensionless exchange coefficient for heat and
560     moisture from the surface layer similarity functions:
561     \[
562     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
563     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
564     { k \over { (\psi_{h} + \psi_{g}) } }
565     \]
566     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
567     \[
568     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
569     \]
570     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
571     the temperature and moisture gradients, and is specified differently for stable and unstable
572 molod 1.10 layers according to \cite{helfschu:95}.
573 molod 1.1
574     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
575     which is the mosstly laminar region between the surface and the tops of the roughness
576     elements, in which temperature and moisture gradients can be quite large.
577 molod 1.10 Based on \cite{yagkad:74}:
578 molod 1.1 \[
579     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
580     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
581     \]
582     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
583     surface roughness length, and the subscript {\em ref} refers to a reference value.
584     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
585    
586     The surface roughness length over oceans is is a function of the surface-stress velocity,
587     \[
588     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
589     \]
590     where the constants are chosen to interpolate between the reciprocal relation of
591 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
592 molod 1.1 for moderate to large winds. Roughness lengths over land are specified
593 molod 1.10 from the climatology of \cite{dorsell:89}.
594 molod 1.1
595     For an unstable surface layer, the stability functions, chosen to interpolate between the
596     condition of small values of $\beta$ and the convective limit, are the KEYPS function
597 molod 1.10 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
598 molod 1.1 \[
599     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
600     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
601     \]
602     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
603     speed approaches zero.
604    
605     For a stable surface layer, the stability functions are the observationally
606 molod 1.10 based functions of \cite{clarke:70}, slightly modified for
607 molod 1.1 the momemtum flux:
608     \[
609     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
610     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
611     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
612     (1+ 5 {{\zeta}_1}) } } .
613     \]
614     The moisture flux also depends on a specified evapotranspiration
615     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
616     land.
617    
618     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
619     using an implicit backward operator.
620    
621 molod 1.5 \paragraph{Atmospheric Boundary Layer}
622 molod 1.1
623     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
624     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
625     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
626    
627 molod 1.5 \paragraph{Surface Energy Budget}
628 molod 1.1
629     The ground temperature equation is solved as part of the turbulence package
630     using a backward implicit time differencing scheme:
631     \[
632     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
633     \]
634     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
635     net surface upward longwave radiative flux.
636    
637     $H$ is the upward sensible heat flux, given by:
638     \[
639     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
640     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
641     \]
642     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
643     heat of air at constant pressure, and $\theta$ represents the potential temperature
644     of the surface and of the lowest $\sigma$-level, respectively.
645    
646     The upward latent heat flux, $LE$, is given by
647     \[
648     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
649     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
650     \]
651     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
652     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
653     humidity of the surface and of the lowest $\sigma$-level, respectively.
654    
655     The heat conduction through sea ice, $Q_{ice}$, is given by
656     \[
657     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
658     \]
659     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
660     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
661     surface temperature of the ice.
662    
663     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
664 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
665 molod 1.1 \[
666     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
667     {86400 \over 2 \pi} } \, \, .
668     \]
669     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
670     {cm \over {^oK}}$,
671     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
672     by $2 \pi$ $radians/
673     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674     is a function of the ground wetness, $W$.
675    
676 molod 1.9 Land Surface Processes:
677 molod 1.1
678 molod 1.5 \paragraph{Surface Type}
679 molod 1.10 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
680     Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
681     types, in any one grid cell. The Koster-Suarez LSM surface type classifications
682 molod 1.1 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
683     cell occupied by any surface type were derived from the surface classification of
684 molod 1.10 \cite{deftow:94}, and information about the location of permanent
685     ice was obtained from the classifications of \cite{dorsell:89}.
686 molod 1.1 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
687     The determination of the land or sea category of surface type was made from NCAR's
688     10 minute by 10 minute Navy topography
689     dataset, which includes information about the percentage of water-cover at any point.
690     The data were averaged to the model's \fxf and \txt grid resolutions,
691     and any grid-box whose averaged water percentage was $\geq 60 \%$ was
692     defined as a water point. The \fxf grid Land-Water designation was further modified
693     subjectively to ensure sufficient representation from small but isolated land and water regions.
694    
695     \begin{table}
696     \begin{center}
697     {\bf Surface Type Designation} \\
698     \vspace{0.1in}
699     \begin{tabular}{ |c|l| }
700     \hline
701     Type & Vegetation Designation \\ \hline
702     \hline
703     1 & Broadleaf Evergreen Trees \\ \hline
704     2 & Broadleaf Deciduous Trees \\ \hline
705     3 & Needleleaf Trees \\ \hline
706     4 & Ground Cover \\ \hline
707     5 & Broadleaf Shrubs \\ \hline
708     6 & Dwarf Trees (Tundra) \\ \hline
709     7 & Bare Soil \\ \hline
710     8 & Desert (Bright) \\ \hline
711     9 & Glacier \\ \hline
712     10 & Desert (Dark) \\ \hline
713     100 & Ocean \\ \hline
714     \end{tabular}
715     \end{center}
716     \caption{Surface type designations used to compute surface roughness (over land)
717     and surface albedo.}
718     \label{tab:fizhi:surftype}
719     \end{table}
720    
721    
722     \begin{figure*}[htbp]
723 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
724 molod 1.1 \vspace{0.3in}
725     \caption {Surface Type Compinations at \txt resolution.}
726     \label{fig:fizhi:surftype}
727     \end{figure*}
728    
729     \begin{figure*}[htbp]
730 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
731 molod 1.1 \vspace{0.3in}
732     \caption {Surface Type Descriptions.}
733     \label{fig:fizhi:surftype.desc}
734     \end{figure*}
735    
736    
737 molod 1.5 \paragraph{Surface Roughness}
738 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
739 molod 1.10 stress by the surface layer parameterization (\cite{helfschu:95}).
740     It employs an interpolation between the functions of \cite{larpond:81}
741     for high winds and of \cite{kondo:75} for weak winds.
742 molod 1.1
743    
744 molod 1.5 \paragraph{Albedo}
745 molod 1.10 The surface albedo computation, described in \cite{ks:91},
746 molod 1.1 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
747     Model which distinguishes between the direct and diffuse albedos in the visible
748     and in the near infra-red spectral ranges. The albedos are functions of the observed
749     leaf area index (a description of the relative orientation of the leaves to the
750     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
751     Modifications are made to account for the presence of snow, and its depth relative
752     to the height of the vegetation elements.
753    
754 molod 1.9 Gravity Wave Drag:
755    
756 molod 1.10 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:96}).
757 molod 1.1 This scheme is a modified version of Vernekar et al. (1992),
758     which was based on Alpert et al. (1988) and Helfand et al. (1987).
759     In this version, the gravity wave stress at the surface is
760     based on that derived by Pierrehumbert (1986) and is given by:
761    
762     \bq
763     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
764     \eq
765    
766     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
767     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
768     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
769     A modification introduced by Zhou et al. allows for the momentum flux to
770     escape through the top of the model, although this effect is small for the current 70-level model.
771     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
772    
773 molod 1.10 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
774 molod 1.1 Experiments using the gravity wave drag parameterization yielded significant and
775     beneficial impacts on both the time-mean flow and the transient statistics of the
776     a GCM climatology, and have eliminated most of the worst dynamically driven biases
777     in the a GCM simulation.
778     An examination of the angular momentum budget during climate runs indicates that the
779     resulting gravity wave torque is similar to the data-driven torque produced by a data
780     assimilation which was performed without gravity
781     wave drag. It was shown that the inclusion of gravity wave drag results in
782     large changes in both the mean flow and in eddy fluxes.
783     The result is a more
784     accurate simulation of surface stress (through a reduction in the surface wind strength),
785     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
786     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
787    
788    
789 molod 1.9 Boundary Conditions and other Input Data:
790 molod 1.1
791     Required fields which are not explicitly predicted or diagnosed during model execution must
792     either be prescribed internally or obtained from external data sets. In the fizhi package these
793     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
794     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
795     and stratospheric moisture.
796    
797     Boundary condition data sets are available at the model's \fxf and \txt
798     resolutions for either climatological or yearly varying conditions.
799     Any frequency of boundary condition data can be used in the fizhi package;
800     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
801     The time mean values are interpolated during each model timestep to the
802     current time. Future model versions will incorporate boundary conditions at
803     higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
804    
805     \begin{table}[htb]
806     \begin{center}
807     {\bf Fizhi Input Datasets} \\
808     \vspace{0.1in}
809     \begin{tabular}{|l|c|r|} \hline
810     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
811     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
812     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
813     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
814     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
815     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
816     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
817     \end{tabular}
818     \end{center}
819     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
820     current years and frequencies available.}
821     \label{tab:fizhi:bcdata}
822     \end{table}
823    
824    
825 molod 1.5 \paragraph{Topography and Topography Variance}
826 molod 1.1
827     Surface geopotential heights are provided from an averaging of the Navy 10 minute
828     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
829     model's grid resolution. The original topography is first rotated to the proper grid-orientation
830 molod 1.10 which is being run, and then averages the data to the model resolution.
831 molod 1.1
832 molod 1.10 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
833     data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
834 molod 1.1 The sub-grid scale variance is constructed based on this smoothed dataset.
835    
836    
837 molod 1.5 \paragraph{Upper Level Moisture}
838 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
839     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
840     as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
841     model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
842     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
843     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
844    
845 molod 1.8
846 molod 1.9 \subsubsection{Fizhi Diagnostics}
847 molod 1.8
848 molod 1.9 Fizhi Diagnostic Menu:
849 molod 1.8 \label{sec:fizhi-diagnostics:menu}
850    
851     \begin{tabular}{llll}
852     \hline\hline
853     NAME & UNITS & LEVELS & DESCRIPTION \\
854     \hline
855    
856     &\\
857     UFLUX & $Newton/m^2$ & 1
858     &\begin{minipage}[t]{3in}
859     {Surface U-Wind Stress on the atmosphere}
860     \end{minipage}\\
861     VFLUX & $Newton/m^2$ & 1
862     &\begin{minipage}[t]{3in}
863     {Surface V-Wind Stress on the atmosphere}
864     \end{minipage}\\
865     HFLUX & $Watts/m^2$ & 1
866     &\begin{minipage}[t]{3in}
867     {Surface Flux of Sensible Heat}
868     \end{minipage}\\
869     EFLUX & $Watts/m^2$ & 1
870     &\begin{minipage}[t]{3in}
871     {Surface Flux of Latent Heat}
872     \end{minipage}\\
873     QICE & $Watts/m^2$ & 1
874     &\begin{minipage}[t]{3in}
875     {Heat Conduction through Sea-Ice}
876     \end{minipage}\\
877     RADLWG & $Watts/m^2$ & 1
878     &\begin{minipage}[t]{3in}
879     {Net upward LW flux at the ground}
880     \end{minipage}\\
881     RADSWG & $Watts/m^2$ & 1
882     &\begin{minipage}[t]{3in}
883     {Net downward SW flux at the ground}
884     \end{minipage}\\
885     RI & $dimensionless$ & Nrphys
886     &\begin{minipage}[t]{3in}
887     {Richardson Number}
888     \end{minipage}\\
889     CT & $dimensionless$ & 1
890     &\begin{minipage}[t]{3in}
891     {Surface Drag coefficient for T and Q}
892     \end{minipage}\\
893     CU & $dimensionless$ & 1
894     &\begin{minipage}[t]{3in}
895     {Surface Drag coefficient for U and V}
896     \end{minipage}\\
897     ET & $m^2/sec$ & Nrphys
898     &\begin{minipage}[t]{3in}
899     {Diffusivity coefficient for T and Q}
900     \end{minipage}\\
901     EU & $m^2/sec$ & Nrphys
902     &\begin{minipage}[t]{3in}
903     {Diffusivity coefficient for U and V}
904     \end{minipage}\\
905     TURBU & $m/sec/day$ & Nrphys
906     &\begin{minipage}[t]{3in}
907     {U-Momentum Changes due to Turbulence}
908     \end{minipage}\\
909     TURBV & $m/sec/day$ & Nrphys
910     &\begin{minipage}[t]{3in}
911     {V-Momentum Changes due to Turbulence}
912     \end{minipage}\\
913     TURBT & $deg/day$ & Nrphys
914     &\begin{minipage}[t]{3in}
915     {Temperature Changes due to Turbulence}
916     \end{minipage}\\
917     TURBQ & $g/kg/day$ & Nrphys
918     &\begin{minipage}[t]{3in}
919     {Specific Humidity Changes due to Turbulence}
920     \end{minipage}\\
921     MOISTT & $deg/day$ & Nrphys
922     &\begin{minipage}[t]{3in}
923     {Temperature Changes due to Moist Processes}
924     \end{minipage}\\
925     MOISTQ & $g/kg/day$ & Nrphys
926     &\begin{minipage}[t]{3in}
927     {Specific Humidity Changes due to Moist Processes}
928     \end{minipage}\\
929     RADLW & $deg/day$ & Nrphys
930     &\begin{minipage}[t]{3in}
931     {Net Longwave heating rate for each level}
932     \end{minipage}\\
933     RADSW & $deg/day$ & Nrphys
934     &\begin{minipage}[t]{3in}
935     {Net Shortwave heating rate for each level}
936     \end{minipage}\\
937     PREACC & $mm/day$ & 1
938     &\begin{minipage}[t]{3in}
939     {Total Precipitation}
940     \end{minipage}\\
941     PRECON & $mm/day$ & 1
942     &\begin{minipage}[t]{3in}
943     {Convective Precipitation}
944     \end{minipage}\\
945     TUFLUX & $Newton/m^2$ & Nrphys
946     &\begin{minipage}[t]{3in}
947     {Turbulent Flux of U-Momentum}
948     \end{minipage}\\
949     TVFLUX & $Newton/m^2$ & Nrphys
950     &\begin{minipage}[t]{3in}
951     {Turbulent Flux of V-Momentum}
952     \end{minipage}\\
953     TTFLUX & $Watts/m^2$ & Nrphys
954     &\begin{minipage}[t]{3in}
955     {Turbulent Flux of Sensible Heat}
956     \end{minipage}\\
957     \end{tabular}
958    
959     \newpage
960     \vspace*{\fill}
961     \begin{tabular}{llll}
962     \hline\hline
963     NAME & UNITS & LEVELS & DESCRIPTION \\
964     \hline
965    
966     &\\
967     TQFLUX & $Watts/m^2$ & Nrphys
968     &\begin{minipage}[t]{3in}
969     {Turbulent Flux of Latent Heat}
970     \end{minipage}\\
971     CN & $dimensionless$ & 1
972     &\begin{minipage}[t]{3in}
973     {Neutral Drag Coefficient}
974     \end{minipage}\\
975     WINDS & $m/sec$ & 1
976     &\begin{minipage}[t]{3in}
977     {Surface Wind Speed}
978     \end{minipage}\\
979     DTSRF & $deg$ & 1
980     &\begin{minipage}[t]{3in}
981     {Air/Surface virtual temperature difference}
982     \end{minipage}\\
983     TG & $deg$ & 1
984     &\begin{minipage}[t]{3in}
985     {Ground temperature}
986     \end{minipage}\\
987     TS & $deg$ & 1
988     &\begin{minipage}[t]{3in}
989     {Surface air temperature (Adiabatic from lowest model layer)}
990     \end{minipage}\\
991     DTG & $deg$ & 1
992     &\begin{minipage}[t]{3in}
993     {Ground temperature adjustment}
994     \end{minipage}\\
995    
996     QG & $g/kg$ & 1
997     &\begin{minipage}[t]{3in}
998     {Ground specific humidity}
999     \end{minipage}\\
1000     QS & $g/kg$ & 1
1001     &\begin{minipage}[t]{3in}
1002     {Saturation surface specific humidity}
1003     \end{minipage}\\
1004     TGRLW & $deg$ & 1
1005     &\begin{minipage}[t]{3in}
1006     {Instantaneous ground temperature used as input to the
1007     Longwave radiation subroutine}
1008     \end{minipage}\\
1009     ST4 & $Watts/m^2$ & 1
1010     &\begin{minipage}[t]{3in}
1011     {Upward Longwave flux at the ground ($\sigma T^4$)}
1012     \end{minipage}\\
1013     OLR & $Watts/m^2$ & 1
1014     &\begin{minipage}[t]{3in}
1015     {Net upward Longwave flux at the top of the model}
1016     \end{minipage}\\
1017     OLRCLR & $Watts/m^2$ & 1
1018     &\begin{minipage}[t]{3in}
1019     {Net upward clearsky Longwave flux at the top of the model}
1020     \end{minipage}\\
1021     LWGCLR & $Watts/m^2$ & 1
1022     &\begin{minipage}[t]{3in}
1023     {Net upward clearsky Longwave flux at the ground}
1024     \end{minipage}\\
1025     LWCLR & $deg/day$ & Nrphys
1026     &\begin{minipage}[t]{3in}
1027     {Net clearsky Longwave heating rate for each level}
1028     \end{minipage}\\
1029     TLW & $deg$ & Nrphys
1030     &\begin{minipage}[t]{3in}
1031     {Instantaneous temperature used as input to the Longwave radiation
1032     subroutine}
1033     \end{minipage}\\
1034     SHLW & $g/g$ & Nrphys
1035     &\begin{minipage}[t]{3in}
1036     {Instantaneous specific humidity used as input to the Longwave radiation
1037     subroutine}
1038     \end{minipage}\\
1039     OZLW & $g/g$ & Nrphys
1040     &\begin{minipage}[t]{3in}
1041     {Instantaneous ozone used as input to the Longwave radiation
1042     subroutine}
1043     \end{minipage}\\
1044     CLMOLW & $0-1$ & Nrphys
1045     &\begin{minipage}[t]{3in}
1046     {Maximum overlap cloud fraction used in the Longwave radiation
1047     subroutine}
1048     \end{minipage}\\
1049     CLDTOT & $0-1$ & Nrphys
1050     &\begin{minipage}[t]{3in}
1051     {Total cloud fraction used in the Longwave and Shortwave radiation
1052     subroutines}
1053     \end{minipage}\\
1054     LWGDOWN & $Watts/m^2$ & 1
1055     &\begin{minipage}[t]{3in}
1056     {Downwelling Longwave radiation at the ground}
1057     \end{minipage}\\
1058     GWDT & $deg/day$ & Nrphys
1059     &\begin{minipage}[t]{3in}
1060     {Temperature tendency due to Gravity Wave Drag}
1061     \end{minipage}\\
1062     RADSWT & $Watts/m^2$ & 1
1063     &\begin{minipage}[t]{3in}
1064     {Incident Shortwave radiation at the top of the atmosphere}
1065     \end{minipage}\\
1066     TAUCLD & $per 100 mb$ & Nrphys
1067     &\begin{minipage}[t]{3in}
1068     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1069     \end{minipage}\\
1070     TAUCLDC & $Number$ & Nrphys
1071     &\begin{minipage}[t]{3in}
1072     {Cloud Optical Depth Counter}
1073     \end{minipage}\\
1074     \end{tabular}
1075     \vfill
1076    
1077     \newpage
1078     \vspace*{\fill}
1079     \begin{tabular}{llll}
1080     \hline\hline
1081     NAME & UNITS & LEVELS & DESCRIPTION \\
1082     \hline
1083    
1084     &\\
1085     CLDLOW & $0-1$ & Nrphys
1086     &\begin{minipage}[t]{3in}
1087     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1088     \end{minipage}\\
1089     EVAP & $mm/day$ & 1
1090     &\begin{minipage}[t]{3in}
1091     {Surface evaporation}
1092     \end{minipage}\\
1093     DPDT & $hPa/day$ & 1
1094     &\begin{minipage}[t]{3in}
1095     {Surface Pressure tendency}
1096     \end{minipage}\\
1097     UAVE & $m/sec$ & Nrphys
1098     &\begin{minipage}[t]{3in}
1099     {Average U-Wind}
1100     \end{minipage}\\
1101     VAVE & $m/sec$ & Nrphys
1102     &\begin{minipage}[t]{3in}
1103     {Average V-Wind}
1104     \end{minipage}\\
1105     TAVE & $deg$ & Nrphys
1106     &\begin{minipage}[t]{3in}
1107     {Average Temperature}
1108     \end{minipage}\\
1109     QAVE & $g/kg$ & Nrphys
1110     &\begin{minipage}[t]{3in}
1111     {Average Specific Humidity}
1112     \end{minipage}\\
1113     OMEGA & $hPa/day$ & Nrphys
1114     &\begin{minipage}[t]{3in}
1115     {Vertical Velocity}
1116     \end{minipage}\\
1117     DUDT & $m/sec/day$ & Nrphys
1118     &\begin{minipage}[t]{3in}
1119     {Total U-Wind tendency}
1120     \end{minipage}\\
1121     DVDT & $m/sec/day$ & Nrphys
1122     &\begin{minipage}[t]{3in}
1123     {Total V-Wind tendency}
1124     \end{minipage}\\
1125     DTDT & $deg/day$ & Nrphys
1126     &\begin{minipage}[t]{3in}
1127     {Total Temperature tendency}
1128     \end{minipage}\\
1129     DQDT & $g/kg/day$ & Nrphys
1130     &\begin{minipage}[t]{3in}
1131     {Total Specific Humidity tendency}
1132     \end{minipage}\\
1133     VORT & $10^{-4}/sec$ & Nrphys
1134     &\begin{minipage}[t]{3in}
1135     {Relative Vorticity}
1136     \end{minipage}\\
1137     DTLS & $deg/day$ & Nrphys
1138     &\begin{minipage}[t]{3in}
1139     {Temperature tendency due to Stratiform Cloud Formation}
1140     \end{minipage}\\
1141     DQLS & $g/kg/day$ & Nrphys
1142     &\begin{minipage}[t]{3in}
1143     {Specific Humidity tendency due to Stratiform Cloud Formation}
1144     \end{minipage}\\
1145     USTAR & $m/sec$ & 1
1146     &\begin{minipage}[t]{3in}
1147     {Surface USTAR wind}
1148     \end{minipage}\\
1149     Z0 & $m$ & 1
1150     &\begin{minipage}[t]{3in}
1151     {Surface roughness}
1152     \end{minipage}\\
1153     FRQTRB & $0-1$ & Nrphys-1
1154     &\begin{minipage}[t]{3in}
1155     {Frequency of Turbulence}
1156     \end{minipage}\\
1157     PBL & $mb$ & 1
1158     &\begin{minipage}[t]{3in}
1159     {Planetary Boundary Layer depth}
1160     \end{minipage}\\
1161     SWCLR & $deg/day$ & Nrphys
1162     &\begin{minipage}[t]{3in}
1163     {Net clearsky Shortwave heating rate for each level}
1164     \end{minipage}\\
1165     OSR & $Watts/m^2$ & 1
1166     &\begin{minipage}[t]{3in}
1167     {Net downward Shortwave flux at the top of the model}
1168     \end{minipage}\\
1169     OSRCLR & $Watts/m^2$ & 1
1170     &\begin{minipage}[t]{3in}
1171     {Net downward clearsky Shortwave flux at the top of the model}
1172     \end{minipage}\\
1173     CLDMAS & $kg / m^2$ & Nrphys
1174     &\begin{minipage}[t]{3in}
1175     {Convective cloud mass flux}
1176     \end{minipage}\\
1177     UAVE & $m/sec$ & Nrphys
1178     &\begin{minipage}[t]{3in}
1179     {Time-averaged $u-Wind$}
1180     \end{minipage}\\
1181     \end{tabular}
1182     \vfill
1183    
1184     \newpage
1185     \vspace*{\fill}
1186     \begin{tabular}{llll}
1187     \hline\hline
1188     NAME & UNITS & LEVELS & DESCRIPTION \\
1189     \hline
1190    
1191     &\\
1192     VAVE & $m/sec$ & Nrphys
1193     &\begin{minipage}[t]{3in}
1194     {Time-averaged $v-Wind$}
1195     \end{minipage}\\
1196     TAVE & $deg$ & Nrphys
1197     &\begin{minipage}[t]{3in}
1198     {Time-averaged $Temperature$}
1199     \end{minipage}\\
1200     QAVE & $g/g$ & Nrphys
1201     &\begin{minipage}[t]{3in}
1202     {Time-averaged $Specific \, \, Humidity$}
1203     \end{minipage}\\
1204     RFT & $deg/day$ & Nrphys
1205     &\begin{minipage}[t]{3in}
1206     {Temperature tendency due Rayleigh Friction}
1207     \end{minipage}\\
1208     PS & $mb$ & 1
1209     &\begin{minipage}[t]{3in}
1210     {Surface Pressure}
1211     \end{minipage}\\
1212     QQAVE & $(m/sec)^2$ & Nrphys
1213     &\begin{minipage}[t]{3in}
1214     {Time-averaged $Turbulent Kinetic Energy$}
1215     \end{minipage}\\
1216     SWGCLR & $Watts/m^2$ & 1
1217     &\begin{minipage}[t]{3in}
1218     {Net downward clearsky Shortwave flux at the ground}
1219     \end{minipage}\\
1220     PAVE & $mb$ & 1
1221     &\begin{minipage}[t]{3in}
1222     {Time-averaged Surface Pressure}
1223     \end{minipage}\\
1224     DIABU & $m/sec/day$ & Nrphys
1225     &\begin{minipage}[t]{3in}
1226     {Total Diabatic forcing on $u-Wind$}
1227     \end{minipage}\\
1228     DIABV & $m/sec/day$ & Nrphys
1229     &\begin{minipage}[t]{3in}
1230     {Total Diabatic forcing on $v-Wind$}
1231     \end{minipage}\\
1232     DIABT & $deg/day$ & Nrphys
1233     &\begin{minipage}[t]{3in}
1234     {Total Diabatic forcing on $Temperature$}
1235     \end{minipage}\\
1236     DIABQ & $g/kg/day$ & Nrphys
1237     &\begin{minipage}[t]{3in}
1238     {Total Diabatic forcing on $Specific \, \, Humidity$}
1239     \end{minipage}\\
1240     RFU & $m/sec/day$ & Nrphys
1241     &\begin{minipage}[t]{3in}
1242     {U-Wind tendency due to Rayleigh Friction}
1243     \end{minipage}\\
1244     RFV & $m/sec/day$ & Nrphys
1245     &\begin{minipage}[t]{3in}
1246     {V-Wind tendency due to Rayleigh Friction}
1247     \end{minipage}\\
1248     GWDU & $m/sec/day$ & Nrphys
1249     &\begin{minipage}[t]{3in}
1250     {U-Wind tendency due to Gravity Wave Drag}
1251     \end{minipage}\\
1252     GWDU & $m/sec/day$ & Nrphys
1253     &\begin{minipage}[t]{3in}
1254     {V-Wind tendency due to Gravity Wave Drag}
1255     \end{minipage}\\
1256     GWDUS & $N/m^2$ & 1
1257     &\begin{minipage}[t]{3in}
1258     {U-Wind Gravity Wave Drag Stress at Surface}
1259     \end{minipage}\\
1260     GWDVS & $N/m^2$ & 1
1261     &\begin{minipage}[t]{3in}
1262     {V-Wind Gravity Wave Drag Stress at Surface}
1263     \end{minipage}\\
1264     GWDUT & $N/m^2$ & 1
1265     &\begin{minipage}[t]{3in}
1266     {U-Wind Gravity Wave Drag Stress at Top}
1267     \end{minipage}\\
1268     GWDVT & $N/m^2$ & 1
1269     &\begin{minipage}[t]{3in}
1270     {V-Wind Gravity Wave Drag Stress at Top}
1271     \end{minipage}\\
1272     LZRAD & $mg/kg$ & Nrphys
1273     &\begin{minipage}[t]{3in}
1274     {Estimated Cloud Liquid Water used in Radiation}
1275     \end{minipage}\\
1276     \end{tabular}
1277     \vfill
1278    
1279     \newpage
1280     \vspace*{\fill}
1281     \begin{tabular}{llll}
1282     \hline\hline
1283     NAME & UNITS & LEVELS & DESCRIPTION \\
1284     \hline
1285    
1286     &\\
1287     SLP & $mb$ & 1
1288     &\begin{minipage}[t]{3in}
1289     {Time-averaged Sea-level Pressure}
1290     \end{minipage}\\
1291     CLDFRC & $0-1$ & 1
1292     &\begin{minipage}[t]{3in}
1293     {Total Cloud Fraction}
1294     \end{minipage}\\
1295     TPW & $gm/cm^2$ & 1
1296     &\begin{minipage}[t]{3in}
1297     {Precipitable water}
1298     \end{minipage}\\
1299     U2M & $m/sec$ & 1
1300     &\begin{minipage}[t]{3in}
1301     {U-Wind at 2 meters}
1302     \end{minipage}\\
1303     V2M & $m/sec$ & 1
1304     &\begin{minipage}[t]{3in}
1305     {V-Wind at 2 meters}
1306     \end{minipage}\\
1307     T2M & $deg$ & 1
1308     &\begin{minipage}[t]{3in}
1309     {Temperature at 2 meters}
1310     \end{minipage}\\
1311     Q2M & $g/kg$ & 1
1312     &\begin{minipage}[t]{3in}
1313     {Specific Humidity at 2 meters}
1314     \end{minipage}\\
1315     U10M & $m/sec$ & 1
1316     &\begin{minipage}[t]{3in}
1317     {U-Wind at 10 meters}
1318     \end{minipage}\\
1319     V10M & $m/sec$ & 1
1320     &\begin{minipage}[t]{3in}
1321     {V-Wind at 10 meters}
1322     \end{minipage}\\
1323     T10M & $deg$ & 1
1324     &\begin{minipage}[t]{3in}
1325     {Temperature at 10 meters}
1326     \end{minipage}\\
1327     Q10M & $g/kg$ & 1
1328     &\begin{minipage}[t]{3in}
1329     {Specific Humidity at 10 meters}
1330     \end{minipage}\\
1331     DTRAIN & $kg/m^2$ & Nrphys
1332     &\begin{minipage}[t]{3in}
1333     {Detrainment Cloud Mass Flux}
1334     \end{minipage}\\
1335     QFILL & $g/kg/day$ & Nrphys
1336     &\begin{minipage}[t]{3in}
1337     {Filling of negative specific humidity}
1338     \end{minipage}\\
1339     \end{tabular}
1340     \vspace{1.5in}
1341     \vfill
1342    
1343     \newpage
1344     \vspace*{\fill}
1345     \begin{tabular}{llll}
1346     \hline\hline
1347     NAME & UNITS & LEVELS & DESCRIPTION \\
1348     \hline
1349    
1350     &\\
1351     DTCONV & $deg/sec$ & Nr
1352     &\begin{minipage}[t]{3in}
1353     {Temp Change due to Convection}
1354     \end{minipage}\\
1355     DQCONV & $g/kg/sec$ & Nr
1356     &\begin{minipage}[t]{3in}
1357     {Specific Humidity Change due to Convection}
1358     \end{minipage}\\
1359     RELHUM & $percent$ & Nr
1360     &\begin{minipage}[t]{3in}
1361     {Relative Humidity}
1362     \end{minipage}\\
1363     PRECLS & $g/m^2/sec$ & 1
1364     &\begin{minipage}[t]{3in}
1365     {Large Scale Precipitation}
1366     \end{minipage}\\
1367     ENPREC & $J/g$ & 1
1368     &\begin{minipage}[t]{3in}
1369     {Energy of Precipitation (snow, rain Temp)}
1370     \end{minipage}\\
1371     \end{tabular}
1372     \vspace{1.5in}
1373     \vfill
1374    
1375     \newpage
1376    
1377 molod 1.9 Fizhi Diagnostic Description:
1378 molod 1.8
1379     In this section we list and describe the diagnostic quantities available within the
1380     GCM. The diagnostics are listed in the order that they appear in the
1381     Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1382     In all cases, each diagnostic as currently archived on the output datasets
1383     is time-averaged over its diagnostic output frequency:
1384    
1385     \[
1386     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1387     \]
1388     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1389     output frequency of the diagnostic, and $\Delta t$ is
1390     the timestep over which the diagnostic is updated.
1391    
1392     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1393    
1394     The zonal wind stress is the turbulent flux of zonal momentum from
1395     the surface.
1396     \[
1397     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1398     \]
1399     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1400     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1401     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1402     the zonal wind in the lowest model layer.
1403     \\
1404    
1405    
1406     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1407    
1408     The meridional wind stress is the turbulent flux of meridional momentum from
1409     the surface.
1410     \[
1411     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1412     \]
1413     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1414     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1415     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1416     the meridional wind in the lowest model layer.
1417     \\
1418    
1419     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1420    
1421     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1422     gradient of virtual potential temperature and the eddy exchange coefficient:
1423     \[
1424     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1425     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1426     \]
1427     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1428     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1429     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1430     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1431     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1432     at the surface and at the bottom model level.
1433     \\
1434    
1435    
1436     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1437    
1438     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1439     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1440     \[
1441     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1442     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1443     \]
1444     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1445     the potential evapotranspiration actually evaporated, L is the latent
1446     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1447     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1448     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1449     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1450     humidity at the surface and at the bottom model level, respectively.
1451     \\
1452    
1453     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1454    
1455     Over sea ice there is an additional source of energy at the surface due to the heat
1456     conduction from the relatively warm ocean through the sea ice. The heat conduction
1457     through sea ice represents an additional energy source term for the ground temperature equation.
1458    
1459     \[
1460     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1461     \]
1462    
1463     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1464     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1465     $T_g$ is the temperature of the sea ice.
1466    
1467     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1468     \\
1469    
1470    
1471     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1472    
1473     \begin{eqnarray*}
1474     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1475     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1476     \end{eqnarray*}
1477     \\
1478     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1479     $F_{LW}^\uparrow$ is
1480     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1481     \\
1482    
1483     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1484    
1485     \begin{eqnarray*}
1486     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1487     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1488     \end{eqnarray*}
1489     \\
1490     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1491     $F_{SW}^\downarrow$ is
1492     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1493     \\
1494    
1495    
1496     \noindent
1497     { \underline {RI} Richardson Number} ($dimensionless$)
1498    
1499     \noindent
1500     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1501     \[
1502     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1503     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1504     \]
1505     \\
1506     where we used the hydrostatic equation:
1507     \[
1508     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1509     \]
1510     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1511     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1512     stratification.
1513     \\
1514    
1515     \noindent
1516     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1517    
1518     \noindent
1519     The surface exchange coefficient is obtained from the similarity functions for the stability
1520     dependant flux profile relationships:
1521     \[
1522     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1523     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1524     { k \over { (\psi_{h} + \psi_{g}) } }
1525     \]
1526     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1527     viscous sublayer non-dimensional temperature or moisture change:
1528     \[
1529     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1530     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1531     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1532     \]
1533     and:
1534     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1535    
1536     \noindent
1537     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1538     the temperature and moisture gradients, specified differently for stable and unstable
1539 molod 1.10 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1540 molod 1.8 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1541     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1542     (see diagnostic number 67), and the subscript ref refers to a reference value.
1543     \\
1544    
1545     \noindent
1546     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1547    
1548     \noindent
1549     The surface exchange coefficient is obtained from the similarity functions for the stability
1550     dependant flux profile relationships:
1551     \[
1552     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1553     \]
1554     where $\psi_m$ is the surface layer non-dimensional wind shear:
1555     \[
1556     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1557     \]
1558     \noindent
1559     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1560     the temperature and moisture gradients, specified differently for stable and unstable layers
1561 molod 1.10 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1562 molod 1.8 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1563     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1564     \\
1565    
1566     \noindent
1567     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1568    
1569     \noindent
1570     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1571     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1572     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1573 molod 1.10 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1574 molod 1.8 takes the form:
1575     \[
1576     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1577     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1578     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1579     \]
1580     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1581     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1582     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1583     depth,
1584     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1585     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1586     dimensionless buoyancy and wind shear
1587     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1588     are functions of the Richardson number.
1589    
1590     \noindent
1591     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1592 molod 1.10 see \cite{helflab:88}.
1593 molod 1.8
1594     \noindent
1595     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1596     in units of $m/sec$, given by:
1597     \[
1598     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1599     \]
1600     \noindent
1601     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1602     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1603     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1604     and $W_s$ is the magnitude of the surface layer wind.
1605     \\
1606    
1607     \noindent
1608     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1609    
1610     \noindent
1611     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1612     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1613     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1614 molod 1.10 In the \cite{helflab:88} adaptation of this closure, $K_m$
1615 molod 1.8 takes the form:
1616     \[
1617     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1618     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1619     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1620     \]
1621     \noindent
1622     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1623     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1624     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1625     depth,
1626     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1627     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1628     dimensionless buoyancy and wind shear
1629     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1630     are functions of the Richardson number.
1631    
1632     \noindent
1633     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1634 molod 1.10 see \cite{helflab:88}.
1635 molod 1.8
1636     \noindent
1637     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1638     in units of $m/sec$, given by:
1639     \[
1640     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1641     \]
1642     \noindent
1643     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1644     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1645     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1646     magnitude of the surface layer wind.
1647     \\
1648    
1649     \noindent
1650     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1651    
1652     \noindent
1653     The tendency of U-Momentum due to turbulence is written:
1654     \[
1655     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1656     = {\pp{}{z} }{(K_m \pp{u}{z})}
1657     \]
1658    
1659     \noindent
1660     The Helfand and Labraga level 2.5 scheme models the turbulent
1661     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1662     equation.
1663    
1664     \noindent
1665     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1666    
1667     \noindent
1668     The tendency of V-Momentum due to turbulence is written:
1669     \[
1670     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1671     = {\pp{}{z} }{(K_m \pp{v}{z})}
1672     \]
1673    
1674     \noindent
1675     The Helfand and Labraga level 2.5 scheme models the turbulent
1676     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1677     equation.
1678     \\
1679    
1680     \noindent
1681     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1682    
1683     \noindent
1684     The tendency of temperature due to turbulence is written:
1685     \[
1686     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1687     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1688     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1689     \]
1690    
1691     \noindent
1692     The Helfand and Labraga level 2.5 scheme models the turbulent
1693     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1694     equation.
1695     \\
1696    
1697     \noindent
1698     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1699    
1700     \noindent
1701     The tendency of specific humidity due to turbulence is written:
1702     \[
1703     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1704     = {\pp{}{z} }{(K_h \pp{q}{z})}
1705     \]
1706    
1707     \noindent
1708     The Helfand and Labraga level 2.5 scheme models the turbulent
1709     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1710     equation.
1711     \\
1712    
1713     \noindent
1714     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1715    
1716     \noindent
1717     \[
1718     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1719     \]
1720     where:
1721     \[
1722     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1723     \hspace{.4cm} and
1724     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1725     \]
1726     and
1727     \[
1728     \Gamma_s = g \eta \pp{s}{p}
1729     \]
1730    
1731     \noindent
1732     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1733     precipitation processes, or supersaturation rain.
1734     The summation refers to contributions from each cloud type called by RAS.
1735     The dry static energy is given
1736     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1737     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1738     the description of the convective parameterization. The fractional adjustment, or relaxation
1739     parameter, for each cloud type is given as $\alpha$, while
1740     $R$ is the rain re-evaporation adjustment.
1741     \\
1742    
1743     \noindent
1744     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1745    
1746     \noindent
1747     \[
1748     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1749     \]
1750     where:
1751     \[
1752     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1753     \hspace{.4cm} and
1754     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1755     \]
1756     and
1757     \[
1758     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1759     \]
1760     \noindent
1761     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1762     precipitation processes, or supersaturation rain.
1763     The summation refers to contributions from each cloud type called by RAS.
1764     The dry static energy is given as $s$,
1765     the moist static energy is given as $h$,
1766     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1767     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1768     the description of the convective parameterization. The fractional adjustment, or relaxation
1769     parameter, for each cloud type is given as $\alpha$, while
1770     $R$ is the rain re-evaporation adjustment.
1771     \\
1772    
1773     \noindent
1774     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1775    
1776     \noindent
1777     The net longwave heating rate is calculated as the vertical divergence of the
1778     net terrestrial radiative fluxes.
1779     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1780     longwave routine.
1781     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1782     For a given cloud fraction,
1783     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1784     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1785     for the upward and downward radiative fluxes.
1786     (see Section \ref{sec:fizhi:radcloud}).
1787     The cloudy-sky flux is then obtained as:
1788    
1789     \noindent
1790     \[
1791     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1792     \]
1793    
1794     \noindent
1795     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1796     net terrestrial radiative fluxes:
1797     \[
1798     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1799     \]
1800     or
1801     \[
1802     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1803     \]
1804    
1805     \noindent
1806     where $g$ is the accelation due to gravity,
1807     $c_p$ is the heat capacity of air at constant pressure,
1808     and
1809     \[
1810     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1811     \]
1812     \\
1813    
1814    
1815     \noindent
1816     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1817    
1818     \noindent
1819     The net Shortwave heating rate is calculated as the vertical divergence of the
1820     net solar radiative fluxes.
1821     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1822     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1823     both CLMO (maximum overlap cloud fraction) and
1824     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1825     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1826     true time-averaged cloud fractions CLMO
1827     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1828     input at the top of the atmosphere.
1829    
1830     \noindent
1831     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1832     \[
1833     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1834     \]
1835     or
1836     \[
1837     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1838     \]
1839    
1840     \noindent
1841     where $g$ is the accelation due to gravity,
1842     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1843     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1844     \[
1845     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1846     \]
1847     \\
1848    
1849     \noindent
1850     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1851    
1852     \noindent
1853     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1854     the vertical integral or total precipitable amount is given by:
1855     \[
1856     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1857     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1858     \]
1859     \\
1860    
1861     \noindent
1862     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1863     time step, scaled to $mm/day$.
1864     \\
1865    
1866     \noindent
1867     { \underline {PRECON} Convective Precipition ($mm/day$) }
1868    
1869     \noindent
1870     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1871     the vertical integral or total precipitable amount is given by:
1872     \[
1873     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1874     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1875     \]
1876     \\
1877    
1878     \noindent
1879     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1880     time step, scaled to $mm/day$.
1881     \\
1882    
1883     \noindent
1884     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1885    
1886     \noindent
1887     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1888     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1889    
1890     \[
1891     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1892     {\rho } {(- K_m \pp{U}{z})}
1893     \]
1894    
1895     \noindent
1896     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1897     \\
1898    
1899     \noindent
1900     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1901    
1902     \noindent
1903     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1904     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1905    
1906     \[
1907     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1908     {\rho } {(- K_m \pp{V}{z})}
1909     \]
1910    
1911     \noindent
1912     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1913     \\
1914    
1915    
1916     \noindent
1917     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1918    
1919     \noindent
1920     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1921     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1922    
1923     \noindent
1924     \[
1925     {\bf TTFLUX} = c_p {\rho }
1926     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1927     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1928     \]
1929    
1930     \noindent
1931     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1932     \\
1933    
1934    
1935     \noindent
1936     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1937    
1938     \noindent
1939     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1940     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1941    
1942     \noindent
1943     \[
1944     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1945     {L {\rho }(- K_h \pp{q}{z})}
1946     \]
1947    
1948     \noindent
1949     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1950     \\
1951    
1952    
1953     \noindent
1954     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1955    
1956     \noindent
1957     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1958     \[
1959     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1960     \]
1961    
1962     \noindent
1963     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1964     $z_0$ is the surface roughness.
1965    
1966     \noindent
1967     NOTE: CN is not available through model version 5.3, but is available in subsequent
1968     versions.
1969     \\
1970    
1971     \noindent
1972     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1973    
1974     \noindent
1975     The surface wind speed is calculated for the last internal turbulence time step:
1976     \[
1977     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1978     \]
1979    
1980     \noindent
1981     where the subscript $Nrphys$ refers to the lowest model level.
1982     \\
1983    
1984     \noindent
1985     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1986    
1987     \noindent
1988     The air/surface virtual temperature difference measures the stability of the surface layer:
1989     \[
1990     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1991     \]
1992     \noindent
1993     where
1994     \[
1995     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1996     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1997     \]
1998    
1999     \noindent
2000     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2001     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2002     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2003     refers to the surface.
2004     \\
2005    
2006    
2007     \noindent
2008     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2009    
2010     \noindent
2011     The ground temperature equation is solved as part of the turbulence package
2012     using a backward implicit time differencing scheme:
2013     \[
2014     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2015     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2016     \]
2017    
2018     \noindent
2019     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2020     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2021     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2022     flux, and $C_g$ is the total heat capacity of the ground.
2023     $C_g$ is obtained by solving a heat diffusion equation
2024 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2025 molod 1.8 \[
2026     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2027     { 86400. \over {2 \pi} } } \, \, .
2028     \]
2029     \noindent
2030     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2031     {cm \over {^oK}}$,
2032     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2033     by $2 \pi$ $radians/
2034     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2035     is a function of the ground wetness, $W$.
2036     \\
2037    
2038     \noindent
2039     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2040    
2041     \noindent
2042     The surface temperature estimate is made by assuming that the model's lowest
2043     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2044     The surface temperature is therefore:
2045     \[
2046     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2047     \]
2048     \\
2049    
2050     \noindent
2051     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2052    
2053     \noindent
2054     The change in surface temperature from one turbulence time step to the next, solved
2055     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2056     \[
2057     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2058     \]
2059    
2060     \noindent
2061     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2062     refers to the value at the previous turbulence time level.
2063     \\
2064    
2065     \noindent
2066     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2067    
2068     \noindent
2069     The ground specific humidity is obtained by interpolating between the specific
2070     humidity at the lowest model level and the specific humidity of a saturated ground.
2071     The interpolation is performed using the potential evapotranspiration function:
2072     \[
2073     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2074     \]
2075    
2076     \noindent
2077     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2078     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2079     pressure.
2080     \\
2081    
2082     \noindent
2083     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2084    
2085     \noindent
2086     The surface saturation specific humidity is the saturation specific humidity at
2087     the ground temprature and surface pressure:
2088     \[
2089     {\bf QS} = q^*(T_g,P_s)
2090     \]
2091     \\
2092    
2093     \noindent
2094     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2095     radiation subroutine (deg)}
2096     \[
2097     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2098     \]
2099     \noindent
2100     where $T_g$ is the model ground temperature at the current time step $n$.
2101     \\
2102    
2103    
2104     \noindent
2105     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2106     \[
2107     {\bf ST4} = \sigma T^4
2108     \]
2109     \noindent
2110     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2111     \\
2112    
2113     \noindent
2114     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2115     \[
2116     {\bf OLR} = F_{LW,top}^{NET}
2117     \]
2118     \noindent
2119     where top indicates the top of the first model layer.
2120     In the GCM, $p_{top}$ = 0.0 mb.
2121     \\
2122    
2123    
2124     \noindent
2125     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2126     \[
2127     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2128     \]
2129     \noindent
2130     where top indicates the top of the first model layer.
2131     In the GCM, $p_{top}$ = 0.0 mb.
2132     \\
2133    
2134     \noindent
2135     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2136    
2137     \noindent
2138     \begin{eqnarray*}
2139     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2140     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2141     \end{eqnarray*}
2142     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2143     $F(clearsky)_{LW}^\uparrow$ is
2144     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2145     \\
2146    
2147     \noindent
2148     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2149    
2150     \noindent
2151     The net longwave heating rate is calculated as the vertical divergence of the
2152     net terrestrial radiative fluxes.
2153     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2154     longwave routine.
2155     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2156     For a given cloud fraction,
2157     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2158     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2159     for the upward and downward radiative fluxes.
2160     (see Section \ref{sec:fizhi:radcloud}).
2161     The cloudy-sky flux is then obtained as:
2162    
2163     \noindent
2164     \[
2165     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2166     \]
2167    
2168     \noindent
2169     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2170     vertical divergence of the
2171     clear-sky longwave radiative flux:
2172     \[
2173     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2174     \]
2175     or
2176     \[
2177     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2178     \]
2179    
2180     \noindent
2181     where $g$ is the accelation due to gravity,
2182     $c_p$ is the heat capacity of air at constant pressure,
2183     and
2184     \[
2185     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2186     \]
2187     \\
2188    
2189    
2190     \noindent
2191     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2192     radiation subroutine (deg)}
2193     \[
2194     {\bf TLW} = T(\lambda , \phi ,level, n)
2195     \]
2196     \noindent
2197     where $T$ is the model temperature at the current time step $n$.
2198     \\
2199    
2200    
2201     \noindent
2202     { \underline {SHLW} Instantaneous specific humidity used as input to
2203     the Longwave radiation subroutine (kg/kg)}
2204     \[
2205     {\bf SHLW} = q(\lambda , \phi , level , n)
2206     \]
2207     \noindent
2208     where $q$ is the model specific humidity at the current time step $n$.
2209     \\
2210    
2211    
2212     \noindent
2213     { \underline {OZLW} Instantaneous ozone used as input to
2214     the Longwave radiation subroutine (kg/kg)}
2215     \[
2216     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2217     \]
2218     \noindent
2219     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2220     mean zonally averaged ozone data set.
2221     \\
2222    
2223    
2224     \noindent
2225     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2226    
2227     \noindent
2228     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2229     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2230     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2231     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2232     \[
2233     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2234     \]
2235     \\
2236    
2237    
2238     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2239    
2240     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2241     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2242     Radiation packages.
2243     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2244     \[
2245     {\bf CLDTOT} = F_{RAS} + F_{LS}
2246     \]
2247     \\
2248     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2249     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2250     \\
2251    
2252    
2253     \noindent
2254     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2255    
2256     \noindent
2257     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2258     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2259     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2260     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2261     \[
2262     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2263     \]
2264     \\
2265    
2266     \noindent
2267     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2268    
2269     \noindent
2270     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2271     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2272     Radiation algorithm. These are
2273     convective and large-scale clouds whose radiative characteristics are not
2274     assumed to be correlated in the vertical.
2275     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2276     \[
2277     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2278     \]
2279     \\
2280    
2281     \noindent
2282     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2283     \[
2284     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2285     \]
2286     \noindent
2287     where $S_0$, is the extra-terrestial solar contant,
2288     $R_a$ is the earth-sun distance in Astronomical Units,
2289     and $cos \phi_z$ is the cosine of the zenith angle.
2290     It should be noted that {\bf RADSWT}, as well as
2291     {\bf OSR} and {\bf OSRCLR},
2292     are calculated at the top of the atmosphere (p=0 mb). However, the
2293     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2294     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2295     \\
2296    
2297     \noindent
2298     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2299    
2300     \noindent
2301     The surface evaporation is a function of the gradient of moisture, the potential
2302     evapotranspiration fraction and the eddy exchange coefficient:
2303     \[
2304     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2305     \]
2306     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2307     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2308     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2309     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2310     number 34) and at the bottom model level, respectively.
2311     \\
2312    
2313     \noindent
2314     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2315    
2316     \noindent
2317     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2318     and Analysis forcing.
2319     \[
2320     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2321     \]
2322     \\
2323    
2324     \noindent
2325     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2326    
2327     \noindent
2328     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2329     and Analysis forcing.
2330     \[
2331     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2332     \]
2333     \\
2334    
2335     \noindent
2336     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2337    
2338     \noindent
2339     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2340     and Analysis forcing.
2341     \begin{eqnarray*}
2342     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2343     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2344     \end{eqnarray*}
2345     \\
2346    
2347     \noindent
2348     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2349    
2350     \noindent
2351     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2352     and Analysis forcing.
2353     \[
2354     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2355     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2356     \]
2357     \\
2358    
2359     \noindent
2360     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2361    
2362     \noindent
2363     The surface stress velocity, or the friction velocity, is the wind speed at
2364     the surface layer top impeded by the surface drag:
2365     \[
2366     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2367     C_u = {k \over {\psi_m} }
2368     \]
2369    
2370     \noindent
2371     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2372     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2373    
2374     \noindent
2375     { \underline {Z0} Surface Roughness Length ($m$) }
2376    
2377     \noindent
2378     Over the land surface, the surface roughness length is interpolated to the local
2379 molod 1.10 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2380 molod 1.8 the roughness length is a function of the surface-stress velocity, $u_*$.
2381     \[
2382     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2383     \]
2384    
2385     \noindent
2386     where the constants are chosen to interpolate between the reciprocal relation of
2387 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2388 molod 1.8 for moderate to large winds.
2389     \\
2390    
2391     \noindent
2392     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2393    
2394     \noindent
2395     The fraction of time when turbulence is present is defined as the fraction of
2396     time when the turbulent kinetic energy exceeds some minimum value, defined here
2397     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2398     incremented. The fraction over the averaging interval is reported.
2399     \\
2400    
2401     \noindent
2402     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2403    
2404     \noindent
2405     The depth of the PBL is defined by the turbulence parameterization to be the
2406     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2407     value.
2408    
2409     \[
2410     {\bf PBL} = P_{PBL} - P_{surface}
2411     \]
2412    
2413     \noindent
2414     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2415     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2416     \\
2417    
2418     \noindent
2419     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2420    
2421     \noindent
2422     The net Shortwave heating rate is calculated as the vertical divergence of the
2423     net solar radiative fluxes.
2424     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2425     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2426     both CLMO (maximum overlap cloud fraction) and
2427     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2428     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2429     true time-averaged cloud fractions CLMO
2430     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2431     input at the top of the atmosphere.
2432    
2433     \noindent
2434     The heating rate due to Shortwave Radiation under clear skies is defined as:
2435     \[
2436     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2437     \]
2438     or
2439     \[
2440     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2441     \]
2442    
2443     \noindent
2444     where $g$ is the accelation due to gravity,
2445     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2446     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2447     \[
2448     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2449     \]
2450     \\
2451    
2452     \noindent
2453     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2454     \[
2455     {\bf OSR} = F_{SW,top}^{NET}
2456     \]
2457     \noindent
2458     where top indicates the top of the first model layer used in the shortwave radiation
2459     routine.
2460     In the GCM, $p_{SW_{top}}$ = 0 mb.
2461     \\
2462    
2463     \noindent
2464     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2465     \[
2466     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2467     \]
2468     \noindent
2469     where top indicates the top of the first model layer used in the shortwave radiation
2470     routine.
2471     In the GCM, $p_{SW_{top}}$ = 0 mb.
2472     \\
2473    
2474    
2475     \noindent
2476     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2477    
2478     \noindent
2479     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2480     \[
2481     {\bf CLDMAS} = \eta m_B
2482     \]
2483     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2484     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2485     description of the convective parameterization.
2486     \\
2487    
2488    
2489    
2490     \noindent
2491     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2492    
2493     \noindent
2494     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2495     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2496     Zonal U-Wind which is archived on the Prognostic Output data stream.
2497     \[
2498     {\bf UAVE} = u(\lambda, \phi, level , t)
2499     \]
2500     \\
2501     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2502     \\
2503    
2504     \noindent
2505     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2506    
2507     \noindent
2508     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2509     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2510     Meridional V-Wind which is archived on the Prognostic Output data stream.
2511     \[
2512     {\bf VAVE} = v(\lambda, \phi, level , t)
2513     \]
2514     \\
2515     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2516     \\
2517    
2518     \noindent
2519     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2520    
2521     \noindent
2522     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2523     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2524     Temperature which is archived on the Prognostic Output data stream.
2525     \[
2526     {\bf TAVE} = T(\lambda, \phi, level , t)
2527     \]
2528     \\
2529    
2530     \noindent
2531     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2532    
2533     \noindent
2534     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2535     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2536     Specific Humidity which is archived on the Prognostic Output data stream.
2537     \[
2538     {\bf QAVE} = q(\lambda, \phi, level , t)
2539     \]
2540     \\
2541    
2542     \noindent
2543     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2544    
2545     \noindent
2546     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2547     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2548     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2549     \begin{eqnarray*}
2550     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2551     & = & p_s(\lambda, \phi, level , t) - p_T
2552     \end{eqnarray*}
2553     \\
2554    
2555    
2556     \noindent
2557     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2558    
2559     \noindent
2560     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2561     produced by the GCM Turbulence parameterization over
2562     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2563     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2564     \[
2565     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2566     \]
2567     \\
2568     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2569     \\
2570    
2571     \noindent
2572     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2573    
2574     \noindent
2575     \begin{eqnarray*}
2576     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2577     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2578     \end{eqnarray*}
2579     \noindent
2580     \\
2581     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2582     $F(clearsky){SW}^\downarrow$ is
2583     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2584     the upward clearsky Shortwave flux.
2585     \\
2586    
2587     \noindent
2588     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2589    
2590     \noindent
2591     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2592     and the Analysis forcing.
2593     \[
2594     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2595     \]
2596     \\
2597    
2598     \noindent
2599     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2600    
2601     \noindent
2602     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2603     and the Analysis forcing.
2604     \[
2605     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2606     \]
2607     \\
2608    
2609     \noindent
2610     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2611    
2612     \noindent
2613     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2614     and the Analysis forcing.
2615     \begin{eqnarray*}
2616     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2617     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2618     \end{eqnarray*}
2619     \\
2620     If we define the time-tendency of Temperature due to Diabatic processes as
2621     \begin{eqnarray*}
2622     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2623     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2624     \end{eqnarray*}
2625     then, since there are no surface pressure changes due to Diabatic processes, we may write
2626     \[
2627     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2628     \]
2629     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2630     \[
2631     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2632     \]
2633     \\
2634    
2635     \noindent
2636     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2637    
2638     \noindent
2639     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2640     and the Analysis forcing.
2641     \[
2642     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2643     \]
2644     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2645     \[
2646     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2647     \]
2648     then, since there are no surface pressure changes due to Diabatic processes, we may write
2649     \[
2650     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2651     \]
2652     Thus, {\bf DIABQ} may be written as
2653     \[
2654     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2655     \]
2656     \\
2657    
2658     \noindent
2659     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2660    
2661     \noindent
2662     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2663     $u q$ over the depth of the atmosphere at each model timestep,
2664     and dividing by the total mass of the column.
2665     \[
2666     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2667     \]
2668     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2669     \[
2670     {\bf VINTUQ} = { \int_0^1 u q dp }
2671     \]
2672     \\
2673    
2674    
2675     \noindent
2676     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2677    
2678     \noindent
2679     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2680     $v q$ over the depth of the atmosphere at each model timestep,
2681     and dividing by the total mass of the column.
2682     \[
2683     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2684     \]
2685     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2686     \[
2687     {\bf VINTVQ} = { \int_0^1 v q dp }
2688     \]
2689     \\
2690    
2691    
2692     \noindent
2693     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2694    
2695     \noindent
2696     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2697     $u T$ over the depth of the atmosphere at each model timestep,
2698     and dividing by the total mass of the column.
2699     \[
2700     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2701     \]
2702     Or,
2703     \[
2704     {\bf VINTUT} = { \int_0^1 u T dp }
2705     \]
2706     \\
2707    
2708     \noindent
2709     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2710    
2711     \noindent
2712     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2713     $v T$ over the depth of the atmosphere at each model timestep,
2714     and dividing by the total mass of the column.
2715     \[
2716     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2717     \]
2718     Using $\rho \delta z = -{\delta p \over g} $, we have
2719     \[
2720     {\bf VINTVT} = { \int_0^1 v T dp }
2721     \]
2722     \\
2723    
2724     \noindent
2725     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2726    
2727     If we define the
2728     time-averaged random and maximum overlapped cloudiness as CLRO and
2729     CLMO respectively, then the probability of clear sky associated
2730     with random overlapped clouds at any level is (1-CLRO) while the probability of
2731     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2732     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2733     the total cloud fraction at each level may be obtained by
2734     1-(1-CLRO)*(1-CLMO).
2735    
2736     At any given level, we may define the clear line-of-site probability by
2737     appropriately accounting for the maximum and random overlap
2738     cloudiness. The clear line-of-site probability is defined to be
2739     equal to the product of the clear line-of-site probabilities
2740     associated with random and maximum overlap cloudiness. The clear
2741     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2742     from the current pressure $p$
2743     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2744     is simply 1.0 minus the largest maximum overlap cloud value along the
2745     line-of-site, ie.
2746    
2747     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2748    
2749     Thus, even in the time-averaged sense it is assumed that the
2750     maximum overlap clouds are correlated in the vertical. The clear
2751     line-of-site probability associated with random overlap clouds is
2752     defined to be the product of the clear sky probabilities at each
2753     level along the line-of-site, ie.
2754    
2755     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2756    
2757     The total cloud fraction at a given level associated with a line-
2758     of-site calculation is given by
2759    
2760     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2761     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2762    
2763    
2764     \noindent
2765     The 2-dimensional net cloud fraction as seen from the top of the
2766     atmosphere is given by
2767     \[
2768     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2769     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2770     \]
2771     \\
2772     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2773    
2774    
2775     \noindent
2776     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2777    
2778     \noindent
2779     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2780     given by:
2781     \begin{eqnarray*}
2782     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2783     & = & {\pi \over g} \int_0^1 q dp
2784     \end{eqnarray*}
2785     where we have used the hydrostatic relation
2786     $\rho \delta z = -{\delta p \over g} $.
2787     \\
2788    
2789    
2790     \noindent
2791     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2792    
2793     \noindent
2794     The u-wind at the 2-meter depth is determined from the similarity theory:
2795     \[
2796     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2797     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2798     \]
2799    
2800     \noindent
2801     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2802     $sl$ refers to the height of the top of the surface layer. If the roughness height
2803     is above two meters, ${\bf U2M}$ is undefined.
2804     \\
2805    
2806     \noindent
2807     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2808    
2809     \noindent
2810     The v-wind at the 2-meter depth is a determined from the similarity theory:
2811     \[
2812     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2813     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2814     \]
2815    
2816     \noindent
2817     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2818     $sl$ refers to the height of the top of the surface layer. If the roughness height
2819     is above two meters, ${\bf V2M}$ is undefined.
2820     \\
2821    
2822     \noindent
2823     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2824    
2825     \noindent
2826     The temperature at the 2-meter depth is a determined from the similarity theory:
2827     \[
2828     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2829     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2830     (\theta_{sl} - \theta_{surf}))
2831     \]
2832     where:
2833     \[
2834     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2835     \]
2836    
2837     \noindent
2838     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2839     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2840     $sl$ refers to the height of the top of the surface layer. If the roughness height
2841     is above two meters, ${\bf T2M}$ is undefined.
2842     \\
2843    
2844     \noindent
2845     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2846    
2847     \noindent
2848     The specific humidity at the 2-meter depth is determined from the similarity theory:
2849     \[
2850     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2851     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2852     (q_{sl} - q_{surf}))
2853     \]
2854     where:
2855     \[
2856     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2857     \]
2858    
2859     \noindent
2860     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2861     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2862     $sl$ refers to the height of the top of the surface layer. If the roughness height
2863     is above two meters, ${\bf Q2M}$ is undefined.
2864     \\
2865    
2866     \noindent
2867     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2868    
2869     \noindent
2870     The u-wind at the 10-meter depth is an interpolation between the surface wind
2871     and the model lowest level wind using the ratio of the non-dimensional wind shear
2872     at the two levels:
2873     \[
2874     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2875     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2876     \]
2877    
2878     \noindent
2879     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2880     $sl$ refers to the height of the top of the surface layer.
2881     \\
2882    
2883     \noindent
2884     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2885    
2886     \noindent
2887     The v-wind at the 10-meter depth is an interpolation between the surface wind
2888     and the model lowest level wind using the ratio of the non-dimensional wind shear
2889     at the two levels:
2890     \[
2891     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2892     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2893     \]
2894    
2895     \noindent
2896     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2897     $sl$ refers to the height of the top of the surface layer.
2898     \\
2899    
2900     \noindent
2901     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2902    
2903     \noindent
2904     The temperature at the 10-meter depth is an interpolation between the surface potential
2905     temperature and the model lowest level potential temperature using the ratio of the
2906     non-dimensional temperature gradient at the two levels:
2907     \[
2908     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2909     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2910     (\theta_{sl} - \theta_{surf}))
2911     \]
2912     where:
2913     \[
2914     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2915     \]
2916    
2917     \noindent
2918     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2919     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2920     $sl$ refers to the height of the top of the surface layer.
2921     \\
2922    
2923     \noindent
2924     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2925    
2926     \noindent
2927     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2928     humidity and the model lowest level specific humidity using the ratio of the
2929     non-dimensional temperature gradient at the two levels:
2930     \[
2931     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2932     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2933     (q_{sl} - q_{surf}))
2934     \]
2935     where:
2936     \[
2937     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2938     \]
2939    
2940     \noindent
2941     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2942     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2943     $sl$ refers to the height of the top of the surface layer.
2944     \\
2945    
2946     \noindent
2947     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2948    
2949     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2950     \[
2951     {\bf DTRAIN} = \eta_{r_D}m_B
2952     \]
2953     \noindent
2954     where $r_D$ is the detrainment level,
2955     $m_B$ is the cloud base mass flux, and $\eta$
2956     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2957     \\
2958    
2959     \noindent
2960     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2961    
2962     \noindent
2963     Due to computational errors associated with the numerical scheme used for
2964     the advection of moisture, negative values of specific humidity may be generated. The
2965     specific humidity is checked for negative values after every dynamics timestep. If negative
2966     values have been produced, a filling algorithm is invoked which redistributes moisture from
2967     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2968     to eliminate negative specific humidity, scaled to a per-day rate:
2969     \[
2970     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2971     \]
2972     where
2973     \[
2974     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2975     \]
2976    
2977    
2978 molod 1.9 \subsubsection{Key subroutines, parameters and files}
2979 molod 1.6
2980 molod 1.9 \subsubsection{Dos and donts}
2981 molod 1.6
2982 molod 1.9 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22