/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download) (as text)
Tue Aug 2 15:50:51 2005 UTC (19 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.10: +4 -1 lines
File MIME type: application/x-tex
Add vocabulary referring to GEOS-3.

1 molod 1.9 \subsection{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8 molod 1.9 \subsubsection{Introduction}
9 molod 1.1 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 molod 1.11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12     physics parameterizations were originally used together as part of the GEOS-3
13     (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14     and Assimilation Office (GMAO).
15 molod 1.1
16     % *************************************************************************
17     % *************************************************************************
18    
19 molod 1.9 \subsubsection{Equations}
20 molod 1.1
21 molod 1.9 Moist Convective Processes:
22 molod 1.1
23 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
24 molod 1.1 \label{sec:fizhi:mc}
25    
26     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 molod 1.10 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 molod 1.1 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30    
31     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34     mass from the environment during ascent, and detraining all cloud air at the level of neutral
35     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36     mass flux, is a linear function of height, expressed as:
37     \[
38     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39     -{c_p \over {g}}\theta\lambda
40     \]
41     where we have used the hydrostatic equation written in the form:
42     \[
43     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44     \]
45    
46     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 molod 1.10 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 molod 1.1 $\lambda$ may be written as
51     \[
52     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53     \]
54    
55     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56    
57    
58     The convective instability is measured in terms of the cloud work function $A$, defined as the
59     rate of change of cumulus kinetic energy. The cloud work function is
60     related to the buoyancy, or the difference
61     between the moist static energy in the cloud and in the environment:
62     \[
63     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65     \]
66    
67     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68     and the subscript $c$ refers to the value inside the cloud.
69    
70    
71     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74     \[
75     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76     \]
77    
78     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79     unit cloud base mass flux, and is currently obtained by analytically differentiating the
80     expression for $A$ in time.
81     The rate of change of $A$ due to the generation by the large scale can be written as the
82     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83     convective time step
84     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85     computed by Lord (1982) from $in situ$ observations.
86    
87    
88     The predicted convective mass fluxes are used to solve grid-scale temperature
89     and moisture budget equations to determine the impact of convection on the large scale fields of
90     temperature (through latent heating and compensating subsidence) and moisture (through
91     precipitation and detrainment):
92     \[
93     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94     \]
95     and
96     \[
97     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98     \]
99     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100    
101     As an approximation to a full interaction between the different allowable subensembles,
102     many clouds are simulated frequently, each modifying the large scale environment some fraction
103     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104     towards equillibrium.
105    
106     In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 molod 1.10 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 molod 1.1 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109     formulation assumes that all cloud water is deposited into the detrainment level as rain.
110     All of the rain is available for re-evaporation, which begins in the level below detrainment.
111     The scheme accounts for some microphysics such as
112     the rainfall intensity, the drop size distribution, as well as the temperature,
113     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116     for frozen precipitation.
117    
118     Due to the increased vertical resolution near the surface, the lowest model
119     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120     invoked (every ten simulated minutes),
121     a number of randomly chosen subensembles are checked for the possibility
122     of convection, from just above cloud base to 10 mb.
123    
124     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126     The large-scale precipitation re-evaporates during descent to partially saturate
127     lower layers in a process identical to the re-evaporation of convective rain.
128    
129    
130 molod 1.5 \paragraph{Cloud Formation}
131 molod 1.1 \label{sec:fizhi:clouds}
132    
133     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134     diagnostically as part of the cumulus and large-scale parameterizations.
135     Convective cloud fractions produced by RAS are proportional to the
136     detrained liquid water amount given by
137    
138     \[
139     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140     \]
141    
142     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143     A memory is associated with convective clouds defined by:
144    
145     \[
146     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147     \]
148    
149     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152    
153     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154     humidity:
155    
156     \[
157     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158     \]
159    
160     where
161    
162     \bqa
163     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164     s & = & p/p_{surf} \nonumber \\
165     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166     RH_{min} & = & 0.75 \nonumber \\
167     \alpha & = & 0.573285 \nonumber .
168     \eqa
169    
170     These cloud fractions are suppressed, however, in regions where the convective
171     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172     Figure (\ref{fig:fizhi:rhcrit}).
173    
174     \begin{figure*}[htbp]
175     \vspace{0.4in}
176 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 molod 1.1 \vspace{0.4in}
178     \caption [Critical Relative Humidity for Clouds.]
179     {Critical Relative Humidity for Clouds.}
180     \label{fig:fizhi:rhcrit}
181     \end{figure*}
182    
183     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184    
185     \[
186     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187     \]
188    
189     Finally, cloud fractions are time-averaged between calls to the radiation packages.
190    
191    
192 molod 1.9 Radiation:
193 molod 1.1
194     The parameterization of radiative heating in the fizhi package includes effects
195     from both shortwave and longwave processes.
196     Radiative fluxes are calculated at each
197     model edge-level in both up and down directions.
198     The heating rates/cooling rates are then obtained
199     from the vertical divergence of the net radiative fluxes.
200    
201     The net flux is
202     \[
203     F = F^\uparrow - F^\downarrow
204     \]
205     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206     the downward flux.
207    
208     The heating rate due to the divergence of the radiative flux is given by
209     \[
210     \pp{\rho c_p T}{t} = - \pp{F}{z}
211     \]
212     or
213     \[
214     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215     \]
216     where $g$ is the accelation due to gravity
217     and $c_p$ is the heat capacity of air at constant pressure.
218    
219     The time tendency for Longwave
220     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221     every three hours assuming a normalized incident solar radiation, and subsequently modified at
222     every model time step by the true incident radiation.
223     The solar constant value used in the package is equal to 1365 $W/m^2$
224     and a $CO_2$ mixing ratio of 330 ppm.
225     For the ozone mixing ratio, monthly mean zonally averaged
226     climatological values specified as a function
227 molod 1.10 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228 molod 1.1
229    
230 molod 1.5 \paragraph{Shortwave Radiation}
231 molod 1.1
232     The shortwave radiation package used in the package computes solar radiative
233     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234     clouds, and aerosols and due to the
235     scattering by clouds, aerosols, and gases.
236     The shortwave radiative processes are described by
237 molod 1.10 \cite{chou:90,chou:92}. This shortwave package
238 molod 1.1 uses the Delta-Eddington approximation to compute the
239     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240     The transmittance and reflectance of diffuse radiation
241 molod 1.10 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242 molod 1.1
243     Highly accurate heating rate calculations are obtained through the use
244     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246     can be accurately computed in the ultraviolet region and the photosynthetically
247     active radiation (PAR) region.
248     The computation of solar flux in the infrared region is performed with a broadband
249     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252    
253     \begin{table}[htb]
254     \begin{center}
255     {\bf UV and Visible Spectral Regions} \\
256     \vspace{0.1in}
257     \begin{tabular}{|c|c|c|}
258     \hline
259     Region & Band & Wavelength (micron) \\ \hline
260     \hline
261     UV-C & 1. & .175 - .225 \\
262     & 2. & .225 - .245 \\
263     & & .260 - .280 \\
264     & 3. & .245 - .260 \\ \hline
265     UV-B & 4. & .280 - .295 \\
266     & 5. & .295 - .310 \\
267     & 6. & .310 - .320 \\ \hline
268     UV-A & 7. & .320 - .400 \\ \hline
269     PAR & 8. & .400 - .700 \\
270     \hline
271     \end{tabular}
272     \end{center}
273     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274     \label{tab:fizhi:solar2}
275     \end{table}
276    
277     \begin{table}[htb]
278     \begin{center}
279     {\bf Infrared Spectral Regions} \\
280     \vspace{0.1in}
281     \begin{tabular}{|c|c|c|}
282     \hline
283     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284     \hline
285     1 & 1000-4400 & 2.27-10.0 \\
286     2 & 4400-8200 & 1.22-2.27 \\
287     3 & 8200-14300 & 0.70-1.22 \\
288     \hline
289     \end{tabular}
290     \end{center}
291     \caption{Infrared Spectral Regions used in shortwave radiation package.}
292     \label{tab:fizhi:solar1}
293     \end{table}
294    
295     Within the shortwave radiation package,
296     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299     In the fizhi package, the effective radius for water droplets is given as 10 microns,
300     while 65 microns is used for ice particles. The absorption due to aerosols is currently
301     set to zero.
302    
303     To simplify calculations in a cloudy atmosphere, clouds are
304     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305     Within each of the three regions, clouds are assumed maximally
306     overlapped, and the cloud cover of the group is the maximum
307     cloud cover of all the layers in the group. The optical thickness
308     of a given layer is then scaled for both the direct (as a function of the
309     solar zenith angle) and diffuse beam radiation
310     so that the grouped layer reflectance is the same as the original reflectance.
311     The solar flux is computed for each of the eight cloud realizations possible
312     (see Figure \ref{fig:fizhi:cloud}) within this
313     low/middle/high classification, and appropriately averaged to produce the net solar flux.
314    
315     \begin{figure*}[htbp]
316     \vspace{0.4in}
317 molod 1.4 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
318 molod 1.1 }
319     \vspace{0.4in}
320     \caption {Low-Middle-High Cloud Configurations}
321     \label{fig:fizhi:cloud}
322     \end{figure*}
323    
324    
325 molod 1.5 \paragraph{Longwave Radiation}
326 molod 1.1
327 molod 1.10 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
328 molod 1.1 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
329     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
330     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
331    
332    
333     \begin{table}[htb]
334     \begin{center}
335     {\bf IR Spectral Bands} \\
336     \vspace{0.1in}
337     \begin{tabular}{|c|c|l|c| }
338     \hline
339     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
340     \hline
341     1 & 0-340 & H$_2$O line & T \\ \hline
342     2 & 340-540 & H$_2$O line & T \\ \hline
343     3a & 540-620 & H$_2$O line & K \\
344     3b & 620-720 & H$_2$O continuum & S \\
345     3b & 720-800 & CO$_2$ & T \\ \hline
346     4 & 800-980 & H$_2$O line & K \\
347     & & H$_2$O continuum & S \\ \hline
348     & & H$_2$O line & K \\
349     5 & 980-1100 & H$_2$O continuum & S \\
350     & & O$_3$ & T \\ \hline
351     6 & 1100-1380 & H$_2$O line & K \\
352     & & H$_2$O continuum & S \\ \hline
353     7 & 1380-1900 & H$_2$O line & T \\ \hline
354     8 & 1900-3000 & H$_2$O line & K \\ \hline
355     \hline
356     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
357     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
358     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
359     \hline
360     \end{tabular}
361     \end{center}
362     \vspace{0.1in}
363 molod 1.10 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chzs:94})}
364 molod 1.1 \label{tab:fizhi:longwave}
365     \end{table}
366    
367    
368     The longwave radiation package accurately computes cooling rates for the middle and
369     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
370     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
371     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
372     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
373     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
374     in the upward flux at the top of the atmosphere.
375    
376     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
377     three regions catagorized as low/middle/high.
378     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
379     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
380    
381     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
382    
383     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
384     a group is given by:
385    
386     \[ P_{group} = 1 - F_{max} , \]
387    
388     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
389     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
390     assigned.
391    
392    
393 molod 1.5 \paragraph{Cloud-Radiation Interaction}
394 molod 1.1 \label{sec:fizhi:radcloud}
395    
396     The cloud fractions and diagnosed cloud liquid water produced by moist processes
397     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
398     The cloud optical thickness associated with large-scale cloudiness is made
399     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
400     Two values are used corresponding to cloud ice particles and water droplets.
401     The range of optical thickness for these clouds is given as
402    
403     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
404     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
405    
406     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
407     in temperature:
408    
409     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
410    
411     The resulting optical depth associated with large-scale cloudiness is given as
412    
413     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
414    
415     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
416    
417     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
418    
419     The total optical depth in a given model layer is computed as a weighted average between
420     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
421     layer:
422    
423     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
424    
425     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
426     processes described in Section \ref{sec:fizhi:clouds}.
427     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
428    
429     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
430     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
431     hours). Therefore, in a time-averaged sense, both convective and large-scale
432     cloudiness can exist in a given grid-box.
433    
434 molod 1.9 Turbulence:
435    
436 molod 1.1 Turbulence is parameterized in the fizhi package to account for its contribution to the
437     vertical exchange of heat, moisture, and momentum.
438     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
439     time scheme with an internal time step of 5 minutes.
440     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
441     the diffusion equations:
442    
443     \[
444     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
445     = {\pp{}{z} }{(K_m \pp{u}{z})}
446     \]
447     \[
448     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
449     = {\pp{}{z} }{(K_m \pp{v}{z})}
450     \]
451     \[
452     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
453     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
454     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
455     \]
456     \[
457     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
458     = {\pp{}{z} }{(K_h \pp{q}{z})}
459     \]
460    
461     Within the atmosphere, the time evolution
462     of second turbulent moments is explicitly modeled by representing the third moments in terms of
463     the first and second moments. This approach is known as a second-order closure modeling.
464     To simplify and streamline the computation of the second moments, the level 2.5 assumption
465 molod 1.10 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
466 molod 1.1 kinetic energy (TKE),
467    
468     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
469    
470     is solved prognostically and the other second moments are solved diagnostically.
471     The prognostic equation for TKE allows the scheme to simulate
472     some of the transient and diffusive effects in the turbulence. The TKE budget equation
473     is solved numerically using an implicit backward computation of the terms linear in $q^2$
474     and is written:
475    
476     \[
477     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
478     ({\h}q^2)} })} =
479     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
480     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
481     - { q^3 \over {{\Lambda} _1} }
482     \]
483    
484     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
485     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
486     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
487     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
488     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
489     of the vertical structure of the turbulent layers.
490    
491     The first term on the left-hand side represents the time rate of change of TKE, and
492     the second term is a representation of the triple correlation, or turbulent
493     transport term. The first three terms on the right-hand side represent the sources of
494     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
495     of TKE.
496    
497     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
498     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
499 molod 1.10 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
500     \cite{helflab:88}, these diffusion coefficients are expressed as
501 molod 1.1
502     \[
503     K_h
504     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
505     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
506     \]
507    
508     and
509    
510     \[
511     K_m
512     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
513     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
514     \]
515    
516     where the subscript $e$ refers to the value under conditions of local equillibrium
517     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
518     vertical structure of the atmosphere,
519     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
520     wind shear parameters, respectively.
521     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
522     are functions of the Richardson number:
523    
524     \[
525     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
526     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
527     \]
528    
529     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
530     indicate dominantly unstable shear, and large positive values indicate dominantly stable
531     stratification.
532    
533     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
534     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
535     are calculated using stability-dependant functions based on Monin-Obukhov theory:
536     \[
537     {K_m} (surface) = C_u \times u_* = C_D W_s
538     \]
539     and
540     \[
541     {K_h} (surface) = C_t \times u_* = C_H W_s
542     \]
543     where $u_*=C_uW_s$ is the surface friction velocity,
544     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
545     and $W_s$ is the magnitude of the surface layer wind.
546    
547     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
548     similarity functions:
549     \[
550     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
551     \]
552     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
553     wind shear given by
554     \[
555     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
556     \]
557     Here $\zeta$ is the non-dimensional stability parameter, and
558     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
559     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
560     layers.
561    
562     $C_t$ is the dimensionless exchange coefficient for heat and
563     moisture from the surface layer similarity functions:
564     \[
565     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
566     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
567     { k \over { (\psi_{h} + \psi_{g}) } }
568     \]
569     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
570     \[
571     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
572     \]
573     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
574     the temperature and moisture gradients, and is specified differently for stable and unstable
575 molod 1.10 layers according to \cite{helfschu:95}.
576 molod 1.1
577     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
578     which is the mosstly laminar region between the surface and the tops of the roughness
579     elements, in which temperature and moisture gradients can be quite large.
580 molod 1.10 Based on \cite{yagkad:74}:
581 molod 1.1 \[
582     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
583     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
584     \]
585     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
586     surface roughness length, and the subscript {\em ref} refers to a reference value.
587     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
588    
589     The surface roughness length over oceans is is a function of the surface-stress velocity,
590     \[
591     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
592     \]
593     where the constants are chosen to interpolate between the reciprocal relation of
594 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
595 molod 1.1 for moderate to large winds. Roughness lengths over land are specified
596 molod 1.10 from the climatology of \cite{dorsell:89}.
597 molod 1.1
598     For an unstable surface layer, the stability functions, chosen to interpolate between the
599     condition of small values of $\beta$ and the convective limit, are the KEYPS function
600 molod 1.10 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
601 molod 1.1 \[
602     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
603     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
604     \]
605     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
606     speed approaches zero.
607    
608     For a stable surface layer, the stability functions are the observationally
609 molod 1.10 based functions of \cite{clarke:70}, slightly modified for
610 molod 1.1 the momemtum flux:
611     \[
612     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
613     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
614     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
615     (1+ 5 {{\zeta}_1}) } } .
616     \]
617     The moisture flux also depends on a specified evapotranspiration
618     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
619     land.
620    
621     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
622     using an implicit backward operator.
623    
624 molod 1.5 \paragraph{Atmospheric Boundary Layer}
625 molod 1.1
626     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
627     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
628     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
629    
630 molod 1.5 \paragraph{Surface Energy Budget}
631 molod 1.1
632     The ground temperature equation is solved as part of the turbulence package
633     using a backward implicit time differencing scheme:
634     \[
635     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
636     \]
637     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
638     net surface upward longwave radiative flux.
639    
640     $H$ is the upward sensible heat flux, given by:
641     \[
642     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
643     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
644     \]
645     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
646     heat of air at constant pressure, and $\theta$ represents the potential temperature
647     of the surface and of the lowest $\sigma$-level, respectively.
648    
649     The upward latent heat flux, $LE$, is given by
650     \[
651     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
652     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
653     \]
654     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
655     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
656     humidity of the surface and of the lowest $\sigma$-level, respectively.
657    
658     The heat conduction through sea ice, $Q_{ice}$, is given by
659     \[
660     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
661     \]
662     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
663     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
664     surface temperature of the ice.
665    
666     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
667 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
668 molod 1.1 \[
669     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
670     {86400 \over 2 \pi} } \, \, .
671     \]
672     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
673     {cm \over {^oK}}$,
674     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
675     by $2 \pi$ $radians/
676     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
677     is a function of the ground wetness, $W$.
678    
679 molod 1.9 Land Surface Processes:
680 molod 1.1
681 molod 1.5 \paragraph{Surface Type}
682 molod 1.10 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
683     Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
684     types, in any one grid cell. The Koster-Suarez LSM surface type classifications
685 molod 1.1 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
686     cell occupied by any surface type were derived from the surface classification of
687 molod 1.10 \cite{deftow:94}, and information about the location of permanent
688     ice was obtained from the classifications of \cite{dorsell:89}.
689 molod 1.1 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
690     The determination of the land or sea category of surface type was made from NCAR's
691     10 minute by 10 minute Navy topography
692     dataset, which includes information about the percentage of water-cover at any point.
693     The data were averaged to the model's \fxf and \txt grid resolutions,
694     and any grid-box whose averaged water percentage was $\geq 60 \%$ was
695     defined as a water point. The \fxf grid Land-Water designation was further modified
696     subjectively to ensure sufficient representation from small but isolated land and water regions.
697    
698     \begin{table}
699     \begin{center}
700     {\bf Surface Type Designation} \\
701     \vspace{0.1in}
702     \begin{tabular}{ |c|l| }
703     \hline
704     Type & Vegetation Designation \\ \hline
705     \hline
706     1 & Broadleaf Evergreen Trees \\ \hline
707     2 & Broadleaf Deciduous Trees \\ \hline
708     3 & Needleleaf Trees \\ \hline
709     4 & Ground Cover \\ \hline
710     5 & Broadleaf Shrubs \\ \hline
711     6 & Dwarf Trees (Tundra) \\ \hline
712     7 & Bare Soil \\ \hline
713     8 & Desert (Bright) \\ \hline
714     9 & Glacier \\ \hline
715     10 & Desert (Dark) \\ \hline
716     100 & Ocean \\ \hline
717     \end{tabular}
718     \end{center}
719     \caption{Surface type designations used to compute surface roughness (over land)
720     and surface albedo.}
721     \label{tab:fizhi:surftype}
722     \end{table}
723    
724    
725     \begin{figure*}[htbp]
726 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
727 molod 1.1 \vspace{0.3in}
728     \caption {Surface Type Compinations at \txt resolution.}
729     \label{fig:fizhi:surftype}
730     \end{figure*}
731    
732     \begin{figure*}[htbp]
733 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
734 molod 1.1 \vspace{0.3in}
735     \caption {Surface Type Descriptions.}
736     \label{fig:fizhi:surftype.desc}
737     \end{figure*}
738    
739    
740 molod 1.5 \paragraph{Surface Roughness}
741 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
742 molod 1.10 stress by the surface layer parameterization (\cite{helfschu:95}).
743     It employs an interpolation between the functions of \cite{larpond:81}
744     for high winds and of \cite{kondo:75} for weak winds.
745 molod 1.1
746    
747 molod 1.5 \paragraph{Albedo}
748 molod 1.10 The surface albedo computation, described in \cite{ks:91},
749 molod 1.1 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
750     Model which distinguishes between the direct and diffuse albedos in the visible
751     and in the near infra-red spectral ranges. The albedos are functions of the observed
752     leaf area index (a description of the relative orientation of the leaves to the
753     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
754     Modifications are made to account for the presence of snow, and its depth relative
755     to the height of the vegetation elements.
756    
757 molod 1.9 Gravity Wave Drag:
758    
759 molod 1.10 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:96}).
760 molod 1.1 This scheme is a modified version of Vernekar et al. (1992),
761     which was based on Alpert et al. (1988) and Helfand et al. (1987).
762     In this version, the gravity wave stress at the surface is
763     based on that derived by Pierrehumbert (1986) and is given by:
764    
765     \bq
766     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
767     \eq
768    
769     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
770     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
771     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
772     A modification introduced by Zhou et al. allows for the momentum flux to
773     escape through the top of the model, although this effect is small for the current 70-level model.
774     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
775    
776 molod 1.10 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
777 molod 1.1 Experiments using the gravity wave drag parameterization yielded significant and
778     beneficial impacts on both the time-mean flow and the transient statistics of the
779     a GCM climatology, and have eliminated most of the worst dynamically driven biases
780     in the a GCM simulation.
781     An examination of the angular momentum budget during climate runs indicates that the
782     resulting gravity wave torque is similar to the data-driven torque produced by a data
783     assimilation which was performed without gravity
784     wave drag. It was shown that the inclusion of gravity wave drag results in
785     large changes in both the mean flow and in eddy fluxes.
786     The result is a more
787     accurate simulation of surface stress (through a reduction in the surface wind strength),
788     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
789     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
790    
791    
792 molod 1.9 Boundary Conditions and other Input Data:
793 molod 1.1
794     Required fields which are not explicitly predicted or diagnosed during model execution must
795     either be prescribed internally or obtained from external data sets. In the fizhi package these
796     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
797     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
798     and stratospheric moisture.
799    
800     Boundary condition data sets are available at the model's \fxf and \txt
801     resolutions for either climatological or yearly varying conditions.
802     Any frequency of boundary condition data can be used in the fizhi package;
803     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
804     The time mean values are interpolated during each model timestep to the
805     current time. Future model versions will incorporate boundary conditions at
806     higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
807    
808     \begin{table}[htb]
809     \begin{center}
810     {\bf Fizhi Input Datasets} \\
811     \vspace{0.1in}
812     \begin{tabular}{|l|c|r|} \hline
813     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
814     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
815     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
816     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
817     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
818     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
819     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
820     \end{tabular}
821     \end{center}
822     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
823     current years and frequencies available.}
824     \label{tab:fizhi:bcdata}
825     \end{table}
826    
827    
828 molod 1.5 \paragraph{Topography and Topography Variance}
829 molod 1.1
830     Surface geopotential heights are provided from an averaging of the Navy 10 minute
831     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
832     model's grid resolution. The original topography is first rotated to the proper grid-orientation
833 molod 1.10 which is being run, and then averages the data to the model resolution.
834 molod 1.1
835 molod 1.10 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
836     data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
837 molod 1.1 The sub-grid scale variance is constructed based on this smoothed dataset.
838    
839    
840 molod 1.5 \paragraph{Upper Level Moisture}
841 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
842     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
843     as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
844     model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
845     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
846     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
847    
848 molod 1.8
849 molod 1.9 \subsubsection{Fizhi Diagnostics}
850 molod 1.8
851 molod 1.9 Fizhi Diagnostic Menu:
852 molod 1.8 \label{sec:fizhi-diagnostics:menu}
853    
854     \begin{tabular}{llll}
855     \hline\hline
856     NAME & UNITS & LEVELS & DESCRIPTION \\
857     \hline
858    
859     &\\
860     UFLUX & $Newton/m^2$ & 1
861     &\begin{minipage}[t]{3in}
862     {Surface U-Wind Stress on the atmosphere}
863     \end{minipage}\\
864     VFLUX & $Newton/m^2$ & 1
865     &\begin{minipage}[t]{3in}
866     {Surface V-Wind Stress on the atmosphere}
867     \end{minipage}\\
868     HFLUX & $Watts/m^2$ & 1
869     &\begin{minipage}[t]{3in}
870     {Surface Flux of Sensible Heat}
871     \end{minipage}\\
872     EFLUX & $Watts/m^2$ & 1
873     &\begin{minipage}[t]{3in}
874     {Surface Flux of Latent Heat}
875     \end{minipage}\\
876     QICE & $Watts/m^2$ & 1
877     &\begin{minipage}[t]{3in}
878     {Heat Conduction through Sea-Ice}
879     \end{minipage}\\
880     RADLWG & $Watts/m^2$ & 1
881     &\begin{minipage}[t]{3in}
882     {Net upward LW flux at the ground}
883     \end{minipage}\\
884     RADSWG & $Watts/m^2$ & 1
885     &\begin{minipage}[t]{3in}
886     {Net downward SW flux at the ground}
887     \end{minipage}\\
888     RI & $dimensionless$ & Nrphys
889     &\begin{minipage}[t]{3in}
890     {Richardson Number}
891     \end{minipage}\\
892     CT & $dimensionless$ & 1
893     &\begin{minipage}[t]{3in}
894     {Surface Drag coefficient for T and Q}
895     \end{minipage}\\
896     CU & $dimensionless$ & 1
897     &\begin{minipage}[t]{3in}
898     {Surface Drag coefficient for U and V}
899     \end{minipage}\\
900     ET & $m^2/sec$ & Nrphys
901     &\begin{minipage}[t]{3in}
902     {Diffusivity coefficient for T and Q}
903     \end{minipage}\\
904     EU & $m^2/sec$ & Nrphys
905     &\begin{minipage}[t]{3in}
906     {Diffusivity coefficient for U and V}
907     \end{minipage}\\
908     TURBU & $m/sec/day$ & Nrphys
909     &\begin{minipage}[t]{3in}
910     {U-Momentum Changes due to Turbulence}
911     \end{minipage}\\
912     TURBV & $m/sec/day$ & Nrphys
913     &\begin{minipage}[t]{3in}
914     {V-Momentum Changes due to Turbulence}
915     \end{minipage}\\
916     TURBT & $deg/day$ & Nrphys
917     &\begin{minipage}[t]{3in}
918     {Temperature Changes due to Turbulence}
919     \end{minipage}\\
920     TURBQ & $g/kg/day$ & Nrphys
921     &\begin{minipage}[t]{3in}
922     {Specific Humidity Changes due to Turbulence}
923     \end{minipage}\\
924     MOISTT & $deg/day$ & Nrphys
925     &\begin{minipage}[t]{3in}
926     {Temperature Changes due to Moist Processes}
927     \end{minipage}\\
928     MOISTQ & $g/kg/day$ & Nrphys
929     &\begin{minipage}[t]{3in}
930     {Specific Humidity Changes due to Moist Processes}
931     \end{minipage}\\
932     RADLW & $deg/day$ & Nrphys
933     &\begin{minipage}[t]{3in}
934     {Net Longwave heating rate for each level}
935     \end{minipage}\\
936     RADSW & $deg/day$ & Nrphys
937     &\begin{minipage}[t]{3in}
938     {Net Shortwave heating rate for each level}
939     \end{minipage}\\
940     PREACC & $mm/day$ & 1
941     &\begin{minipage}[t]{3in}
942     {Total Precipitation}
943     \end{minipage}\\
944     PRECON & $mm/day$ & 1
945     &\begin{minipage}[t]{3in}
946     {Convective Precipitation}
947     \end{minipage}\\
948     TUFLUX & $Newton/m^2$ & Nrphys
949     &\begin{minipage}[t]{3in}
950     {Turbulent Flux of U-Momentum}
951     \end{minipage}\\
952     TVFLUX & $Newton/m^2$ & Nrphys
953     &\begin{minipage}[t]{3in}
954     {Turbulent Flux of V-Momentum}
955     \end{minipage}\\
956     TTFLUX & $Watts/m^2$ & Nrphys
957     &\begin{minipage}[t]{3in}
958     {Turbulent Flux of Sensible Heat}
959     \end{minipage}\\
960     \end{tabular}
961    
962     \newpage
963     \vspace*{\fill}
964     \begin{tabular}{llll}
965     \hline\hline
966     NAME & UNITS & LEVELS & DESCRIPTION \\
967     \hline
968    
969     &\\
970     TQFLUX & $Watts/m^2$ & Nrphys
971     &\begin{minipage}[t]{3in}
972     {Turbulent Flux of Latent Heat}
973     \end{minipage}\\
974     CN & $dimensionless$ & 1
975     &\begin{minipage}[t]{3in}
976     {Neutral Drag Coefficient}
977     \end{minipage}\\
978     WINDS & $m/sec$ & 1
979     &\begin{minipage}[t]{3in}
980     {Surface Wind Speed}
981     \end{minipage}\\
982     DTSRF & $deg$ & 1
983     &\begin{minipage}[t]{3in}
984     {Air/Surface virtual temperature difference}
985     \end{minipage}\\
986     TG & $deg$ & 1
987     &\begin{minipage}[t]{3in}
988     {Ground temperature}
989     \end{minipage}\\
990     TS & $deg$ & 1
991     &\begin{minipage}[t]{3in}
992     {Surface air temperature (Adiabatic from lowest model layer)}
993     \end{minipage}\\
994     DTG & $deg$ & 1
995     &\begin{minipage}[t]{3in}
996     {Ground temperature adjustment}
997     \end{minipage}\\
998    
999     QG & $g/kg$ & 1
1000     &\begin{minipage}[t]{3in}
1001     {Ground specific humidity}
1002     \end{minipage}\\
1003     QS & $g/kg$ & 1
1004     &\begin{minipage}[t]{3in}
1005     {Saturation surface specific humidity}
1006     \end{minipage}\\
1007     TGRLW & $deg$ & 1
1008     &\begin{minipage}[t]{3in}
1009     {Instantaneous ground temperature used as input to the
1010     Longwave radiation subroutine}
1011     \end{minipage}\\
1012     ST4 & $Watts/m^2$ & 1
1013     &\begin{minipage}[t]{3in}
1014     {Upward Longwave flux at the ground ($\sigma T^4$)}
1015     \end{minipage}\\
1016     OLR & $Watts/m^2$ & 1
1017     &\begin{minipage}[t]{3in}
1018     {Net upward Longwave flux at the top of the model}
1019     \end{minipage}\\
1020     OLRCLR & $Watts/m^2$ & 1
1021     &\begin{minipage}[t]{3in}
1022     {Net upward clearsky Longwave flux at the top of the model}
1023     \end{minipage}\\
1024     LWGCLR & $Watts/m^2$ & 1
1025     &\begin{minipage}[t]{3in}
1026     {Net upward clearsky Longwave flux at the ground}
1027     \end{minipage}\\
1028     LWCLR & $deg/day$ & Nrphys
1029     &\begin{minipage}[t]{3in}
1030     {Net clearsky Longwave heating rate for each level}
1031     \end{minipage}\\
1032     TLW & $deg$ & Nrphys
1033     &\begin{minipage}[t]{3in}
1034     {Instantaneous temperature used as input to the Longwave radiation
1035     subroutine}
1036     \end{minipage}\\
1037     SHLW & $g/g$ & Nrphys
1038     &\begin{minipage}[t]{3in}
1039     {Instantaneous specific humidity used as input to the Longwave radiation
1040     subroutine}
1041     \end{minipage}\\
1042     OZLW & $g/g$ & Nrphys
1043     &\begin{minipage}[t]{3in}
1044     {Instantaneous ozone used as input to the Longwave radiation
1045     subroutine}
1046     \end{minipage}\\
1047     CLMOLW & $0-1$ & Nrphys
1048     &\begin{minipage}[t]{3in}
1049     {Maximum overlap cloud fraction used in the Longwave radiation
1050     subroutine}
1051     \end{minipage}\\
1052     CLDTOT & $0-1$ & Nrphys
1053     &\begin{minipage}[t]{3in}
1054     {Total cloud fraction used in the Longwave and Shortwave radiation
1055     subroutines}
1056     \end{minipage}\\
1057     LWGDOWN & $Watts/m^2$ & 1
1058     &\begin{minipage}[t]{3in}
1059     {Downwelling Longwave radiation at the ground}
1060     \end{minipage}\\
1061     GWDT & $deg/day$ & Nrphys
1062     &\begin{minipage}[t]{3in}
1063     {Temperature tendency due to Gravity Wave Drag}
1064     \end{minipage}\\
1065     RADSWT & $Watts/m^2$ & 1
1066     &\begin{minipage}[t]{3in}
1067     {Incident Shortwave radiation at the top of the atmosphere}
1068     \end{minipage}\\
1069     TAUCLD & $per 100 mb$ & Nrphys
1070     &\begin{minipage}[t]{3in}
1071     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1072     \end{minipage}\\
1073     TAUCLDC & $Number$ & Nrphys
1074     &\begin{minipage}[t]{3in}
1075     {Cloud Optical Depth Counter}
1076     \end{minipage}\\
1077     \end{tabular}
1078     \vfill
1079    
1080     \newpage
1081     \vspace*{\fill}
1082     \begin{tabular}{llll}
1083     \hline\hline
1084     NAME & UNITS & LEVELS & DESCRIPTION \\
1085     \hline
1086    
1087     &\\
1088     CLDLOW & $0-1$ & Nrphys
1089     &\begin{minipage}[t]{3in}
1090     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1091     \end{minipage}\\
1092     EVAP & $mm/day$ & 1
1093     &\begin{minipage}[t]{3in}
1094     {Surface evaporation}
1095     \end{minipage}\\
1096     DPDT & $hPa/day$ & 1
1097     &\begin{minipage}[t]{3in}
1098     {Surface Pressure tendency}
1099     \end{minipage}\\
1100     UAVE & $m/sec$ & Nrphys
1101     &\begin{minipage}[t]{3in}
1102     {Average U-Wind}
1103     \end{minipage}\\
1104     VAVE & $m/sec$ & Nrphys
1105     &\begin{minipage}[t]{3in}
1106     {Average V-Wind}
1107     \end{minipage}\\
1108     TAVE & $deg$ & Nrphys
1109     &\begin{minipage}[t]{3in}
1110     {Average Temperature}
1111     \end{minipage}\\
1112     QAVE & $g/kg$ & Nrphys
1113     &\begin{minipage}[t]{3in}
1114     {Average Specific Humidity}
1115     \end{minipage}\\
1116     OMEGA & $hPa/day$ & Nrphys
1117     &\begin{minipage}[t]{3in}
1118     {Vertical Velocity}
1119     \end{minipage}\\
1120     DUDT & $m/sec/day$ & Nrphys
1121     &\begin{minipage}[t]{3in}
1122     {Total U-Wind tendency}
1123     \end{minipage}\\
1124     DVDT & $m/sec/day$ & Nrphys
1125     &\begin{minipage}[t]{3in}
1126     {Total V-Wind tendency}
1127     \end{minipage}\\
1128     DTDT & $deg/day$ & Nrphys
1129     &\begin{minipage}[t]{3in}
1130     {Total Temperature tendency}
1131     \end{minipage}\\
1132     DQDT & $g/kg/day$ & Nrphys
1133     &\begin{minipage}[t]{3in}
1134     {Total Specific Humidity tendency}
1135     \end{minipage}\\
1136     VORT & $10^{-4}/sec$ & Nrphys
1137     &\begin{minipage}[t]{3in}
1138     {Relative Vorticity}
1139     \end{minipage}\\
1140     DTLS & $deg/day$ & Nrphys
1141     &\begin{minipage}[t]{3in}
1142     {Temperature tendency due to Stratiform Cloud Formation}
1143     \end{minipage}\\
1144     DQLS & $g/kg/day$ & Nrphys
1145     &\begin{minipage}[t]{3in}
1146     {Specific Humidity tendency due to Stratiform Cloud Formation}
1147     \end{minipage}\\
1148     USTAR & $m/sec$ & 1
1149     &\begin{minipage}[t]{3in}
1150     {Surface USTAR wind}
1151     \end{minipage}\\
1152     Z0 & $m$ & 1
1153     &\begin{minipage}[t]{3in}
1154     {Surface roughness}
1155     \end{minipage}\\
1156     FRQTRB & $0-1$ & Nrphys-1
1157     &\begin{minipage}[t]{3in}
1158     {Frequency of Turbulence}
1159     \end{minipage}\\
1160     PBL & $mb$ & 1
1161     &\begin{minipage}[t]{3in}
1162     {Planetary Boundary Layer depth}
1163     \end{minipage}\\
1164     SWCLR & $deg/day$ & Nrphys
1165     &\begin{minipage}[t]{3in}
1166     {Net clearsky Shortwave heating rate for each level}
1167     \end{minipage}\\
1168     OSR & $Watts/m^2$ & 1
1169     &\begin{minipage}[t]{3in}
1170     {Net downward Shortwave flux at the top of the model}
1171     \end{minipage}\\
1172     OSRCLR & $Watts/m^2$ & 1
1173     &\begin{minipage}[t]{3in}
1174     {Net downward clearsky Shortwave flux at the top of the model}
1175     \end{minipage}\\
1176     CLDMAS & $kg / m^2$ & Nrphys
1177     &\begin{minipage}[t]{3in}
1178     {Convective cloud mass flux}
1179     \end{minipage}\\
1180     UAVE & $m/sec$ & Nrphys
1181     &\begin{minipage}[t]{3in}
1182     {Time-averaged $u-Wind$}
1183     \end{minipage}\\
1184     \end{tabular}
1185     \vfill
1186    
1187     \newpage
1188     \vspace*{\fill}
1189     \begin{tabular}{llll}
1190     \hline\hline
1191     NAME & UNITS & LEVELS & DESCRIPTION \\
1192     \hline
1193    
1194     &\\
1195     VAVE & $m/sec$ & Nrphys
1196     &\begin{minipage}[t]{3in}
1197     {Time-averaged $v-Wind$}
1198     \end{minipage}\\
1199     TAVE & $deg$ & Nrphys
1200     &\begin{minipage}[t]{3in}
1201     {Time-averaged $Temperature$}
1202     \end{minipage}\\
1203     QAVE & $g/g$ & Nrphys
1204     &\begin{minipage}[t]{3in}
1205     {Time-averaged $Specific \, \, Humidity$}
1206     \end{minipage}\\
1207     RFT & $deg/day$ & Nrphys
1208     &\begin{minipage}[t]{3in}
1209     {Temperature tendency due Rayleigh Friction}
1210     \end{minipage}\\
1211     PS & $mb$ & 1
1212     &\begin{minipage}[t]{3in}
1213     {Surface Pressure}
1214     \end{minipage}\\
1215     QQAVE & $(m/sec)^2$ & Nrphys
1216     &\begin{minipage}[t]{3in}
1217     {Time-averaged $Turbulent Kinetic Energy$}
1218     \end{minipage}\\
1219     SWGCLR & $Watts/m^2$ & 1
1220     &\begin{minipage}[t]{3in}
1221     {Net downward clearsky Shortwave flux at the ground}
1222     \end{minipage}\\
1223     PAVE & $mb$ & 1
1224     &\begin{minipage}[t]{3in}
1225     {Time-averaged Surface Pressure}
1226     \end{minipage}\\
1227     DIABU & $m/sec/day$ & Nrphys
1228     &\begin{minipage}[t]{3in}
1229     {Total Diabatic forcing on $u-Wind$}
1230     \end{minipage}\\
1231     DIABV & $m/sec/day$ & Nrphys
1232     &\begin{minipage}[t]{3in}
1233     {Total Diabatic forcing on $v-Wind$}
1234     \end{minipage}\\
1235     DIABT & $deg/day$ & Nrphys
1236     &\begin{minipage}[t]{3in}
1237     {Total Diabatic forcing on $Temperature$}
1238     \end{minipage}\\
1239     DIABQ & $g/kg/day$ & Nrphys
1240     &\begin{minipage}[t]{3in}
1241     {Total Diabatic forcing on $Specific \, \, Humidity$}
1242     \end{minipage}\\
1243     RFU & $m/sec/day$ & Nrphys
1244     &\begin{minipage}[t]{3in}
1245     {U-Wind tendency due to Rayleigh Friction}
1246     \end{minipage}\\
1247     RFV & $m/sec/day$ & Nrphys
1248     &\begin{minipage}[t]{3in}
1249     {V-Wind tendency due to Rayleigh Friction}
1250     \end{minipage}\\
1251     GWDU & $m/sec/day$ & Nrphys
1252     &\begin{minipage}[t]{3in}
1253     {U-Wind tendency due to Gravity Wave Drag}
1254     \end{minipage}\\
1255     GWDU & $m/sec/day$ & Nrphys
1256     &\begin{minipage}[t]{3in}
1257     {V-Wind tendency due to Gravity Wave Drag}
1258     \end{minipage}\\
1259     GWDUS & $N/m^2$ & 1
1260     &\begin{minipage}[t]{3in}
1261     {U-Wind Gravity Wave Drag Stress at Surface}
1262     \end{minipage}\\
1263     GWDVS & $N/m^2$ & 1
1264     &\begin{minipage}[t]{3in}
1265     {V-Wind Gravity Wave Drag Stress at Surface}
1266     \end{minipage}\\
1267     GWDUT & $N/m^2$ & 1
1268     &\begin{minipage}[t]{3in}
1269     {U-Wind Gravity Wave Drag Stress at Top}
1270     \end{minipage}\\
1271     GWDVT & $N/m^2$ & 1
1272     &\begin{minipage}[t]{3in}
1273     {V-Wind Gravity Wave Drag Stress at Top}
1274     \end{minipage}\\
1275     LZRAD & $mg/kg$ & Nrphys
1276     &\begin{minipage}[t]{3in}
1277     {Estimated Cloud Liquid Water used in Radiation}
1278     \end{minipage}\\
1279     \end{tabular}
1280     \vfill
1281    
1282     \newpage
1283     \vspace*{\fill}
1284     \begin{tabular}{llll}
1285     \hline\hline
1286     NAME & UNITS & LEVELS & DESCRIPTION \\
1287     \hline
1288    
1289     &\\
1290     SLP & $mb$ & 1
1291     &\begin{minipage}[t]{3in}
1292     {Time-averaged Sea-level Pressure}
1293     \end{minipage}\\
1294     CLDFRC & $0-1$ & 1
1295     &\begin{minipage}[t]{3in}
1296     {Total Cloud Fraction}
1297     \end{minipage}\\
1298     TPW & $gm/cm^2$ & 1
1299     &\begin{minipage}[t]{3in}
1300     {Precipitable water}
1301     \end{minipage}\\
1302     U2M & $m/sec$ & 1
1303     &\begin{minipage}[t]{3in}
1304     {U-Wind at 2 meters}
1305     \end{minipage}\\
1306     V2M & $m/sec$ & 1
1307     &\begin{minipage}[t]{3in}
1308     {V-Wind at 2 meters}
1309     \end{minipage}\\
1310     T2M & $deg$ & 1
1311     &\begin{minipage}[t]{3in}
1312     {Temperature at 2 meters}
1313     \end{minipage}\\
1314     Q2M & $g/kg$ & 1
1315     &\begin{minipage}[t]{3in}
1316     {Specific Humidity at 2 meters}
1317     \end{minipage}\\
1318     U10M & $m/sec$ & 1
1319     &\begin{minipage}[t]{3in}
1320     {U-Wind at 10 meters}
1321     \end{minipage}\\
1322     V10M & $m/sec$ & 1
1323     &\begin{minipage}[t]{3in}
1324     {V-Wind at 10 meters}
1325     \end{minipage}\\
1326     T10M & $deg$ & 1
1327     &\begin{minipage}[t]{3in}
1328     {Temperature at 10 meters}
1329     \end{minipage}\\
1330     Q10M & $g/kg$ & 1
1331     &\begin{minipage}[t]{3in}
1332     {Specific Humidity at 10 meters}
1333     \end{minipage}\\
1334     DTRAIN & $kg/m^2$ & Nrphys
1335     &\begin{minipage}[t]{3in}
1336     {Detrainment Cloud Mass Flux}
1337     \end{minipage}\\
1338     QFILL & $g/kg/day$ & Nrphys
1339     &\begin{minipage}[t]{3in}
1340     {Filling of negative specific humidity}
1341     \end{minipage}\\
1342     \end{tabular}
1343     \vspace{1.5in}
1344     \vfill
1345    
1346     \newpage
1347     \vspace*{\fill}
1348     \begin{tabular}{llll}
1349     \hline\hline
1350     NAME & UNITS & LEVELS & DESCRIPTION \\
1351     \hline
1352    
1353     &\\
1354     DTCONV & $deg/sec$ & Nr
1355     &\begin{minipage}[t]{3in}
1356     {Temp Change due to Convection}
1357     \end{minipage}\\
1358     DQCONV & $g/kg/sec$ & Nr
1359     &\begin{minipage}[t]{3in}
1360     {Specific Humidity Change due to Convection}
1361     \end{minipage}\\
1362     RELHUM & $percent$ & Nr
1363     &\begin{minipage}[t]{3in}
1364     {Relative Humidity}
1365     \end{minipage}\\
1366     PRECLS & $g/m^2/sec$ & 1
1367     &\begin{minipage}[t]{3in}
1368     {Large Scale Precipitation}
1369     \end{minipage}\\
1370     ENPREC & $J/g$ & 1
1371     &\begin{minipage}[t]{3in}
1372     {Energy of Precipitation (snow, rain Temp)}
1373     \end{minipage}\\
1374     \end{tabular}
1375     \vspace{1.5in}
1376     \vfill
1377    
1378     \newpage
1379    
1380 molod 1.9 Fizhi Diagnostic Description:
1381 molod 1.8
1382     In this section we list and describe the diagnostic quantities available within the
1383     GCM. The diagnostics are listed in the order that they appear in the
1384     Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1385     In all cases, each diagnostic as currently archived on the output datasets
1386     is time-averaged over its diagnostic output frequency:
1387    
1388     \[
1389     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1390     \]
1391     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1392     output frequency of the diagnostic, and $\Delta t$ is
1393     the timestep over which the diagnostic is updated.
1394    
1395     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1396    
1397     The zonal wind stress is the turbulent flux of zonal momentum from
1398     the surface.
1399     \[
1400     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1401     \]
1402     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1403     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1404     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1405     the zonal wind in the lowest model layer.
1406     \\
1407    
1408    
1409     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1410    
1411     The meridional wind stress is the turbulent flux of meridional momentum from
1412     the surface.
1413     \[
1414     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1415     \]
1416     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1417     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1418     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1419     the meridional wind in the lowest model layer.
1420     \\
1421    
1422     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1423    
1424     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1425     gradient of virtual potential temperature and the eddy exchange coefficient:
1426     \[
1427     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1428     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1429     \]
1430     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1431     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1432     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1433     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1434     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1435     at the surface and at the bottom model level.
1436     \\
1437    
1438    
1439     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1440    
1441     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1442     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1443     \[
1444     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1445     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1446     \]
1447     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1448     the potential evapotranspiration actually evaporated, L is the latent
1449     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1450     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1451     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1452     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1453     humidity at the surface and at the bottom model level, respectively.
1454     \\
1455    
1456     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1457    
1458     Over sea ice there is an additional source of energy at the surface due to the heat
1459     conduction from the relatively warm ocean through the sea ice. The heat conduction
1460     through sea ice represents an additional energy source term for the ground temperature equation.
1461    
1462     \[
1463     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1464     \]
1465    
1466     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1467     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1468     $T_g$ is the temperature of the sea ice.
1469    
1470     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1471     \\
1472    
1473    
1474     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1475    
1476     \begin{eqnarray*}
1477     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1478     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1479     \end{eqnarray*}
1480     \\
1481     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1482     $F_{LW}^\uparrow$ is
1483     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1484     \\
1485    
1486     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1487    
1488     \begin{eqnarray*}
1489     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1490     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1491     \end{eqnarray*}
1492     \\
1493     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1494     $F_{SW}^\downarrow$ is
1495     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1496     \\
1497    
1498    
1499     \noindent
1500     { \underline {RI} Richardson Number} ($dimensionless$)
1501    
1502     \noindent
1503     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1504     \[
1505     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1506     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1507     \]
1508     \\
1509     where we used the hydrostatic equation:
1510     \[
1511     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1512     \]
1513     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1514     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1515     stratification.
1516     \\
1517    
1518     \noindent
1519     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1520    
1521     \noindent
1522     The surface exchange coefficient is obtained from the similarity functions for the stability
1523     dependant flux profile relationships:
1524     \[
1525     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1526     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1527     { k \over { (\psi_{h} + \psi_{g}) } }
1528     \]
1529     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1530     viscous sublayer non-dimensional temperature or moisture change:
1531     \[
1532     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1533     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1534     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1535     \]
1536     and:
1537     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1538    
1539     \noindent
1540     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1541     the temperature and moisture gradients, specified differently for stable and unstable
1542 molod 1.10 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1543 molod 1.8 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1544     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1545     (see diagnostic number 67), and the subscript ref refers to a reference value.
1546     \\
1547    
1548     \noindent
1549     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1550    
1551     \noindent
1552     The surface exchange coefficient is obtained from the similarity functions for the stability
1553     dependant flux profile relationships:
1554     \[
1555     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1556     \]
1557     where $\psi_m$ is the surface layer non-dimensional wind shear:
1558     \[
1559     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1560     \]
1561     \noindent
1562     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1563     the temperature and moisture gradients, specified differently for stable and unstable layers
1564 molod 1.10 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1565 molod 1.8 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1566     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1567     \\
1568    
1569     \noindent
1570     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1571    
1572     \noindent
1573     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1574     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1575     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1576 molod 1.10 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1577 molod 1.8 takes the form:
1578     \[
1579     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1580     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1581     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1582     \]
1583     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1584     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1585     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1586     depth,
1587     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1588     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1589     dimensionless buoyancy and wind shear
1590     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1591     are functions of the Richardson number.
1592    
1593     \noindent
1594     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1595 molod 1.10 see \cite{helflab:88}.
1596 molod 1.8
1597     \noindent
1598     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1599     in units of $m/sec$, given by:
1600     \[
1601     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1602     \]
1603     \noindent
1604     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1605     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1606     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1607     and $W_s$ is the magnitude of the surface layer wind.
1608     \\
1609    
1610     \noindent
1611     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1612    
1613     \noindent
1614     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1615     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1616     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1617 molod 1.10 In the \cite{helflab:88} adaptation of this closure, $K_m$
1618 molod 1.8 takes the form:
1619     \[
1620     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1621     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1622     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1623     \]
1624     \noindent
1625     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1626     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1627     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1628     depth,
1629     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1630     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1631     dimensionless buoyancy and wind shear
1632     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1633     are functions of the Richardson number.
1634    
1635     \noindent
1636     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1637 molod 1.10 see \cite{helflab:88}.
1638 molod 1.8
1639     \noindent
1640     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1641     in units of $m/sec$, given by:
1642     \[
1643     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1644     \]
1645     \noindent
1646     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1647     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1648     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1649     magnitude of the surface layer wind.
1650     \\
1651    
1652     \noindent
1653     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1654    
1655     \noindent
1656     The tendency of U-Momentum due to turbulence is written:
1657     \[
1658     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1659     = {\pp{}{z} }{(K_m \pp{u}{z})}
1660     \]
1661    
1662     \noindent
1663     The Helfand and Labraga level 2.5 scheme models the turbulent
1664     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1665     equation.
1666    
1667     \noindent
1668     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1669    
1670     \noindent
1671     The tendency of V-Momentum due to turbulence is written:
1672     \[
1673     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1674     = {\pp{}{z} }{(K_m \pp{v}{z})}
1675     \]
1676    
1677     \noindent
1678     The Helfand and Labraga level 2.5 scheme models the turbulent
1679     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1680     equation.
1681     \\
1682    
1683     \noindent
1684     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1685    
1686     \noindent
1687     The tendency of temperature due to turbulence is written:
1688     \[
1689     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1690     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1691     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1692     \]
1693    
1694     \noindent
1695     The Helfand and Labraga level 2.5 scheme models the turbulent
1696     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1697     equation.
1698     \\
1699    
1700     \noindent
1701     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1702    
1703     \noindent
1704     The tendency of specific humidity due to turbulence is written:
1705     \[
1706     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1707     = {\pp{}{z} }{(K_h \pp{q}{z})}
1708     \]
1709    
1710     \noindent
1711     The Helfand and Labraga level 2.5 scheme models the turbulent
1712     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1713     equation.
1714     \\
1715    
1716     \noindent
1717     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1718    
1719     \noindent
1720     \[
1721     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1722     \]
1723     where:
1724     \[
1725     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1726     \hspace{.4cm} and
1727     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1728     \]
1729     and
1730     \[
1731     \Gamma_s = g \eta \pp{s}{p}
1732     \]
1733    
1734     \noindent
1735     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1736     precipitation processes, or supersaturation rain.
1737     The summation refers to contributions from each cloud type called by RAS.
1738     The dry static energy is given
1739     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1740     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1741     the description of the convective parameterization. The fractional adjustment, or relaxation
1742     parameter, for each cloud type is given as $\alpha$, while
1743     $R$ is the rain re-evaporation adjustment.
1744     \\
1745    
1746     \noindent
1747     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1748    
1749     \noindent
1750     \[
1751     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1752     \]
1753     where:
1754     \[
1755     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1756     \hspace{.4cm} and
1757     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1758     \]
1759     and
1760     \[
1761     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1762     \]
1763     \noindent
1764     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1765     precipitation processes, or supersaturation rain.
1766     The summation refers to contributions from each cloud type called by RAS.
1767     The dry static energy is given as $s$,
1768     the moist static energy is given as $h$,
1769     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1770     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1771     the description of the convective parameterization. The fractional adjustment, or relaxation
1772     parameter, for each cloud type is given as $\alpha$, while
1773     $R$ is the rain re-evaporation adjustment.
1774     \\
1775    
1776     \noindent
1777     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1778    
1779     \noindent
1780     The net longwave heating rate is calculated as the vertical divergence of the
1781     net terrestrial radiative fluxes.
1782     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1783     longwave routine.
1784     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1785     For a given cloud fraction,
1786     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1787     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1788     for the upward and downward radiative fluxes.
1789     (see Section \ref{sec:fizhi:radcloud}).
1790     The cloudy-sky flux is then obtained as:
1791    
1792     \noindent
1793     \[
1794     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1795     \]
1796    
1797     \noindent
1798     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1799     net terrestrial radiative fluxes:
1800     \[
1801     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1802     \]
1803     or
1804     \[
1805     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1806     \]
1807    
1808     \noindent
1809     where $g$ is the accelation due to gravity,
1810     $c_p$ is the heat capacity of air at constant pressure,
1811     and
1812     \[
1813     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1814     \]
1815     \\
1816    
1817    
1818     \noindent
1819     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1820    
1821     \noindent
1822     The net Shortwave heating rate is calculated as the vertical divergence of the
1823     net solar radiative fluxes.
1824     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1825     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1826     both CLMO (maximum overlap cloud fraction) and
1827     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1828     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1829     true time-averaged cloud fractions CLMO
1830     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1831     input at the top of the atmosphere.
1832    
1833     \noindent
1834     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1835     \[
1836     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1837     \]
1838     or
1839     \[
1840     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1841     \]
1842    
1843     \noindent
1844     where $g$ is the accelation due to gravity,
1845     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1846     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1847     \[
1848     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1849     \]
1850     \\
1851    
1852     \noindent
1853     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1854    
1855     \noindent
1856     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1857     the vertical integral or total precipitable amount is given by:
1858     \[
1859     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1860     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1861     \]
1862     \\
1863    
1864     \noindent
1865     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1866     time step, scaled to $mm/day$.
1867     \\
1868    
1869     \noindent
1870     { \underline {PRECON} Convective Precipition ($mm/day$) }
1871    
1872     \noindent
1873     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1874     the vertical integral or total precipitable amount is given by:
1875     \[
1876     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1877     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1878     \]
1879     \\
1880    
1881     \noindent
1882     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1883     time step, scaled to $mm/day$.
1884     \\
1885    
1886     \noindent
1887     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1888    
1889     \noindent
1890     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1891     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1892    
1893     \[
1894     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1895     {\rho } {(- K_m \pp{U}{z})}
1896     \]
1897    
1898     \noindent
1899     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1900     \\
1901    
1902     \noindent
1903     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1904    
1905     \noindent
1906     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1907     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1908    
1909     \[
1910     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1911     {\rho } {(- K_m \pp{V}{z})}
1912     \]
1913    
1914     \noindent
1915     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1916     \\
1917    
1918    
1919     \noindent
1920     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1921    
1922     \noindent
1923     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1924     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1925    
1926     \noindent
1927     \[
1928     {\bf TTFLUX} = c_p {\rho }
1929     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1930     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1931     \]
1932    
1933     \noindent
1934     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1935     \\
1936    
1937    
1938     \noindent
1939     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1940    
1941     \noindent
1942     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1943     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1944    
1945     \noindent
1946     \[
1947     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1948     {L {\rho }(- K_h \pp{q}{z})}
1949     \]
1950    
1951     \noindent
1952     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1953     \\
1954    
1955    
1956     \noindent
1957     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1958    
1959     \noindent
1960     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1961     \[
1962     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1963     \]
1964    
1965     \noindent
1966     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1967     $z_0$ is the surface roughness.
1968    
1969     \noindent
1970     NOTE: CN is not available through model version 5.3, but is available in subsequent
1971     versions.
1972     \\
1973    
1974     \noindent
1975     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1976    
1977     \noindent
1978     The surface wind speed is calculated for the last internal turbulence time step:
1979     \[
1980     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1981     \]
1982    
1983     \noindent
1984     where the subscript $Nrphys$ refers to the lowest model level.
1985     \\
1986    
1987     \noindent
1988     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1989    
1990     \noindent
1991     The air/surface virtual temperature difference measures the stability of the surface layer:
1992     \[
1993     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1994     \]
1995     \noindent
1996     where
1997     \[
1998     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1999     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2000     \]
2001    
2002     \noindent
2003     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2004     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2005     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2006     refers to the surface.
2007     \\
2008    
2009    
2010     \noindent
2011     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2012    
2013     \noindent
2014     The ground temperature equation is solved as part of the turbulence package
2015     using a backward implicit time differencing scheme:
2016     \[
2017     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2018     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2019     \]
2020    
2021     \noindent
2022     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2023     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2024     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2025     flux, and $C_g$ is the total heat capacity of the ground.
2026     $C_g$ is obtained by solving a heat diffusion equation
2027 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2028 molod 1.8 \[
2029     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2030     { 86400. \over {2 \pi} } } \, \, .
2031     \]
2032     \noindent
2033     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2034     {cm \over {^oK}}$,
2035     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2036     by $2 \pi$ $radians/
2037     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2038     is a function of the ground wetness, $W$.
2039     \\
2040    
2041     \noindent
2042     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2043    
2044     \noindent
2045     The surface temperature estimate is made by assuming that the model's lowest
2046     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2047     The surface temperature is therefore:
2048     \[
2049     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2050     \]
2051     \\
2052    
2053     \noindent
2054     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2055    
2056     \noindent
2057     The change in surface temperature from one turbulence time step to the next, solved
2058     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2059     \[
2060     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2061     \]
2062    
2063     \noindent
2064     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2065     refers to the value at the previous turbulence time level.
2066     \\
2067    
2068     \noindent
2069     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2070    
2071     \noindent
2072     The ground specific humidity is obtained by interpolating between the specific
2073     humidity at the lowest model level and the specific humidity of a saturated ground.
2074     The interpolation is performed using the potential evapotranspiration function:
2075     \[
2076     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2077     \]
2078    
2079     \noindent
2080     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2081     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2082     pressure.
2083     \\
2084    
2085     \noindent
2086     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2087    
2088     \noindent
2089     The surface saturation specific humidity is the saturation specific humidity at
2090     the ground temprature and surface pressure:
2091     \[
2092     {\bf QS} = q^*(T_g,P_s)
2093     \]
2094     \\
2095    
2096     \noindent
2097     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2098     radiation subroutine (deg)}
2099     \[
2100     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2101     \]
2102     \noindent
2103     where $T_g$ is the model ground temperature at the current time step $n$.
2104     \\
2105    
2106    
2107     \noindent
2108     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2109     \[
2110     {\bf ST4} = \sigma T^4
2111     \]
2112     \noindent
2113     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2114     \\
2115    
2116     \noindent
2117     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2118     \[
2119     {\bf OLR} = F_{LW,top}^{NET}
2120     \]
2121     \noindent
2122     where top indicates the top of the first model layer.
2123     In the GCM, $p_{top}$ = 0.0 mb.
2124     \\
2125    
2126    
2127     \noindent
2128     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2129     \[
2130     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2131     \]
2132     \noindent
2133     where top indicates the top of the first model layer.
2134     In the GCM, $p_{top}$ = 0.0 mb.
2135     \\
2136    
2137     \noindent
2138     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2139    
2140     \noindent
2141     \begin{eqnarray*}
2142     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2143     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2144     \end{eqnarray*}
2145     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2146     $F(clearsky)_{LW}^\uparrow$ is
2147     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2148     \\
2149    
2150     \noindent
2151     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2152    
2153     \noindent
2154     The net longwave heating rate is calculated as the vertical divergence of the
2155     net terrestrial radiative fluxes.
2156     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2157     longwave routine.
2158     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2159     For a given cloud fraction,
2160     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2161     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2162     for the upward and downward radiative fluxes.
2163     (see Section \ref{sec:fizhi:radcloud}).
2164     The cloudy-sky flux is then obtained as:
2165    
2166     \noindent
2167     \[
2168     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2169     \]
2170    
2171     \noindent
2172     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2173     vertical divergence of the
2174     clear-sky longwave radiative flux:
2175     \[
2176     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2177     \]
2178     or
2179     \[
2180     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2181     \]
2182    
2183     \noindent
2184     where $g$ is the accelation due to gravity,
2185     $c_p$ is the heat capacity of air at constant pressure,
2186     and
2187     \[
2188     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2189     \]
2190     \\
2191    
2192    
2193     \noindent
2194     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2195     radiation subroutine (deg)}
2196     \[
2197     {\bf TLW} = T(\lambda , \phi ,level, n)
2198     \]
2199     \noindent
2200     where $T$ is the model temperature at the current time step $n$.
2201     \\
2202    
2203    
2204     \noindent
2205     { \underline {SHLW} Instantaneous specific humidity used as input to
2206     the Longwave radiation subroutine (kg/kg)}
2207     \[
2208     {\bf SHLW} = q(\lambda , \phi , level , n)
2209     \]
2210     \noindent
2211     where $q$ is the model specific humidity at the current time step $n$.
2212     \\
2213    
2214    
2215     \noindent
2216     { \underline {OZLW} Instantaneous ozone used as input to
2217     the Longwave radiation subroutine (kg/kg)}
2218     \[
2219     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2220     \]
2221     \noindent
2222     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2223     mean zonally averaged ozone data set.
2224     \\
2225    
2226    
2227     \noindent
2228     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2229    
2230     \noindent
2231     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2232     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2233     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2234     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2235     \[
2236     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2237     \]
2238     \\
2239    
2240    
2241     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2242    
2243     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2244     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2245     Radiation packages.
2246     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2247     \[
2248     {\bf CLDTOT} = F_{RAS} + F_{LS}
2249     \]
2250     \\
2251     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2252     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2253     \\
2254    
2255    
2256     \noindent
2257     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2258    
2259     \noindent
2260     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2261     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2262     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2263     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2264     \[
2265     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2266     \]
2267     \\
2268    
2269     \noindent
2270     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2271    
2272     \noindent
2273     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2274     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2275     Radiation algorithm. These are
2276     convective and large-scale clouds whose radiative characteristics are not
2277     assumed to be correlated in the vertical.
2278     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2279     \[
2280     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2281     \]
2282     \\
2283    
2284     \noindent
2285     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2286     \[
2287     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2288     \]
2289     \noindent
2290     where $S_0$, is the extra-terrestial solar contant,
2291     $R_a$ is the earth-sun distance in Astronomical Units,
2292     and $cos \phi_z$ is the cosine of the zenith angle.
2293     It should be noted that {\bf RADSWT}, as well as
2294     {\bf OSR} and {\bf OSRCLR},
2295     are calculated at the top of the atmosphere (p=0 mb). However, the
2296     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2297     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2298     \\
2299    
2300     \noindent
2301     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2302    
2303     \noindent
2304     The surface evaporation is a function of the gradient of moisture, the potential
2305     evapotranspiration fraction and the eddy exchange coefficient:
2306     \[
2307     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2308     \]
2309     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2310     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2311     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2312     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2313     number 34) and at the bottom model level, respectively.
2314     \\
2315    
2316     \noindent
2317     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2318    
2319     \noindent
2320     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2321     and Analysis forcing.
2322     \[
2323     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2324     \]
2325     \\
2326    
2327     \noindent
2328     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2329    
2330     \noindent
2331     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2332     and Analysis forcing.
2333     \[
2334     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2335     \]
2336     \\
2337    
2338     \noindent
2339     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2340    
2341     \noindent
2342     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2343     and Analysis forcing.
2344     \begin{eqnarray*}
2345     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2346     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2347     \end{eqnarray*}
2348     \\
2349    
2350     \noindent
2351     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2352    
2353     \noindent
2354     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2355     and Analysis forcing.
2356     \[
2357     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2358     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2359     \]
2360     \\
2361    
2362     \noindent
2363     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2364    
2365     \noindent
2366     The surface stress velocity, or the friction velocity, is the wind speed at
2367     the surface layer top impeded by the surface drag:
2368     \[
2369     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2370     C_u = {k \over {\psi_m} }
2371     \]
2372    
2373     \noindent
2374     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2375     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2376    
2377     \noindent
2378     { \underline {Z0} Surface Roughness Length ($m$) }
2379    
2380     \noindent
2381     Over the land surface, the surface roughness length is interpolated to the local
2382 molod 1.10 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2383 molod 1.8 the roughness length is a function of the surface-stress velocity, $u_*$.
2384     \[
2385     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2386     \]
2387    
2388     \noindent
2389     where the constants are chosen to interpolate between the reciprocal relation of
2390 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2391 molod 1.8 for moderate to large winds.
2392     \\
2393    
2394     \noindent
2395     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2396    
2397     \noindent
2398     The fraction of time when turbulence is present is defined as the fraction of
2399     time when the turbulent kinetic energy exceeds some minimum value, defined here
2400     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2401     incremented. The fraction over the averaging interval is reported.
2402     \\
2403    
2404     \noindent
2405     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2406    
2407     \noindent
2408     The depth of the PBL is defined by the turbulence parameterization to be the
2409     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2410     value.
2411    
2412     \[
2413     {\bf PBL} = P_{PBL} - P_{surface}
2414     \]
2415    
2416     \noindent
2417     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2418     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2419     \\
2420    
2421     \noindent
2422     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2423    
2424     \noindent
2425     The net Shortwave heating rate is calculated as the vertical divergence of the
2426     net solar radiative fluxes.
2427     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2428     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2429     both CLMO (maximum overlap cloud fraction) and
2430     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2431     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2432     true time-averaged cloud fractions CLMO
2433     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2434     input at the top of the atmosphere.
2435    
2436     \noindent
2437     The heating rate due to Shortwave Radiation under clear skies is defined as:
2438     \[
2439     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2440     \]
2441     or
2442     \[
2443     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2444     \]
2445    
2446     \noindent
2447     where $g$ is the accelation due to gravity,
2448     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2449     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2450     \[
2451     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2452     \]
2453     \\
2454    
2455     \noindent
2456     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2457     \[
2458     {\bf OSR} = F_{SW,top}^{NET}
2459     \]
2460     \noindent
2461     where top indicates the top of the first model layer used in the shortwave radiation
2462     routine.
2463     In the GCM, $p_{SW_{top}}$ = 0 mb.
2464     \\
2465    
2466     \noindent
2467     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2468     \[
2469     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2470     \]
2471     \noindent
2472     where top indicates the top of the first model layer used in the shortwave radiation
2473     routine.
2474     In the GCM, $p_{SW_{top}}$ = 0 mb.
2475     \\
2476    
2477    
2478     \noindent
2479     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2480    
2481     \noindent
2482     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2483     \[
2484     {\bf CLDMAS} = \eta m_B
2485     \]
2486     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2487     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2488     description of the convective parameterization.
2489     \\
2490    
2491    
2492    
2493     \noindent
2494     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2495    
2496     \noindent
2497     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2498     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2499     Zonal U-Wind which is archived on the Prognostic Output data stream.
2500     \[
2501     {\bf UAVE} = u(\lambda, \phi, level , t)
2502     \]
2503     \\
2504     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2505     \\
2506    
2507     \noindent
2508     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2509    
2510     \noindent
2511     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2512     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2513     Meridional V-Wind which is archived on the Prognostic Output data stream.
2514     \[
2515     {\bf VAVE} = v(\lambda, \phi, level , t)
2516     \]
2517     \\
2518     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2519     \\
2520    
2521     \noindent
2522     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2523    
2524     \noindent
2525     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2526     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2527     Temperature which is archived on the Prognostic Output data stream.
2528     \[
2529     {\bf TAVE} = T(\lambda, \phi, level , t)
2530     \]
2531     \\
2532    
2533     \noindent
2534     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2535    
2536     \noindent
2537     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2538     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2539     Specific Humidity which is archived on the Prognostic Output data stream.
2540     \[
2541     {\bf QAVE} = q(\lambda, \phi, level , t)
2542     \]
2543     \\
2544    
2545     \noindent
2546     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2547    
2548     \noindent
2549     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2550     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2551     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2552     \begin{eqnarray*}
2553     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2554     & = & p_s(\lambda, \phi, level , t) - p_T
2555     \end{eqnarray*}
2556     \\
2557    
2558    
2559     \noindent
2560     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2561    
2562     \noindent
2563     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2564     produced by the GCM Turbulence parameterization over
2565     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2566     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2567     \[
2568     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2569     \]
2570     \\
2571     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2572     \\
2573    
2574     \noindent
2575     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2576    
2577     \noindent
2578     \begin{eqnarray*}
2579     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2580     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2581     \end{eqnarray*}
2582     \noindent
2583     \\
2584     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2585     $F(clearsky){SW}^\downarrow$ is
2586     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2587     the upward clearsky Shortwave flux.
2588     \\
2589    
2590     \noindent
2591     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2592    
2593     \noindent
2594     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2595     and the Analysis forcing.
2596     \[
2597     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2598     \]
2599     \\
2600    
2601     \noindent
2602     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2603    
2604     \noindent
2605     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2606     and the Analysis forcing.
2607     \[
2608     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2609     \]
2610     \\
2611    
2612     \noindent
2613     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2614    
2615     \noindent
2616     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2617     and the Analysis forcing.
2618     \begin{eqnarray*}
2619     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2620     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2621     \end{eqnarray*}
2622     \\
2623     If we define the time-tendency of Temperature due to Diabatic processes as
2624     \begin{eqnarray*}
2625     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2626     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2627     \end{eqnarray*}
2628     then, since there are no surface pressure changes due to Diabatic processes, we may write
2629     \[
2630     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2631     \]
2632     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2633     \[
2634     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2635     \]
2636     \\
2637    
2638     \noindent
2639     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2640    
2641     \noindent
2642     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2643     and the Analysis forcing.
2644     \[
2645     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2646     \]
2647     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2648     \[
2649     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2650     \]
2651     then, since there are no surface pressure changes due to Diabatic processes, we may write
2652     \[
2653     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2654     \]
2655     Thus, {\bf DIABQ} may be written as
2656     \[
2657     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2658     \]
2659     \\
2660    
2661     \noindent
2662     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2663    
2664     \noindent
2665     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2666     $u q$ over the depth of the atmosphere at each model timestep,
2667     and dividing by the total mass of the column.
2668     \[
2669     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2670     \]
2671     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2672     \[
2673     {\bf VINTUQ} = { \int_0^1 u q dp }
2674     \]
2675     \\
2676    
2677    
2678     \noindent
2679     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2680    
2681     \noindent
2682     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2683     $v q$ over the depth of the atmosphere at each model timestep,
2684     and dividing by the total mass of the column.
2685     \[
2686     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2687     \]
2688     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2689     \[
2690     {\bf VINTVQ} = { \int_0^1 v q dp }
2691     \]
2692     \\
2693    
2694    
2695     \noindent
2696     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2697    
2698     \noindent
2699     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2700     $u T$ over the depth of the atmosphere at each model timestep,
2701     and dividing by the total mass of the column.
2702     \[
2703     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2704     \]
2705     Or,
2706     \[
2707     {\bf VINTUT} = { \int_0^1 u T dp }
2708     \]
2709     \\
2710    
2711     \noindent
2712     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2713    
2714     \noindent
2715     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2716     $v T$ over the depth of the atmosphere at each model timestep,
2717     and dividing by the total mass of the column.
2718     \[
2719     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2720     \]
2721     Using $\rho \delta z = -{\delta p \over g} $, we have
2722     \[
2723     {\bf VINTVT} = { \int_0^1 v T dp }
2724     \]
2725     \\
2726    
2727     \noindent
2728     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2729    
2730     If we define the
2731     time-averaged random and maximum overlapped cloudiness as CLRO and
2732     CLMO respectively, then the probability of clear sky associated
2733     with random overlapped clouds at any level is (1-CLRO) while the probability of
2734     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2735     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2736     the total cloud fraction at each level may be obtained by
2737     1-(1-CLRO)*(1-CLMO).
2738    
2739     At any given level, we may define the clear line-of-site probability by
2740     appropriately accounting for the maximum and random overlap
2741     cloudiness. The clear line-of-site probability is defined to be
2742     equal to the product of the clear line-of-site probabilities
2743     associated with random and maximum overlap cloudiness. The clear
2744     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2745     from the current pressure $p$
2746     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2747     is simply 1.0 minus the largest maximum overlap cloud value along the
2748     line-of-site, ie.
2749    
2750     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2751    
2752     Thus, even in the time-averaged sense it is assumed that the
2753     maximum overlap clouds are correlated in the vertical. The clear
2754     line-of-site probability associated with random overlap clouds is
2755     defined to be the product of the clear sky probabilities at each
2756     level along the line-of-site, ie.
2757    
2758     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2759    
2760     The total cloud fraction at a given level associated with a line-
2761     of-site calculation is given by
2762    
2763     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2764     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2765    
2766    
2767     \noindent
2768     The 2-dimensional net cloud fraction as seen from the top of the
2769     atmosphere is given by
2770     \[
2771     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2772     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2773     \]
2774     \\
2775     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2776    
2777    
2778     \noindent
2779     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2780    
2781     \noindent
2782     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2783     given by:
2784     \begin{eqnarray*}
2785     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2786     & = & {\pi \over g} \int_0^1 q dp
2787     \end{eqnarray*}
2788     where we have used the hydrostatic relation
2789     $\rho \delta z = -{\delta p \over g} $.
2790     \\
2791    
2792    
2793     \noindent
2794     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2795    
2796     \noindent
2797     The u-wind at the 2-meter depth is determined from the similarity theory:
2798     \[
2799     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2800     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2801     \]
2802    
2803     \noindent
2804     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2805     $sl$ refers to the height of the top of the surface layer. If the roughness height
2806     is above two meters, ${\bf U2M}$ is undefined.
2807     \\
2808    
2809     \noindent
2810     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2811    
2812     \noindent
2813     The v-wind at the 2-meter depth is a determined from the similarity theory:
2814     \[
2815     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2816     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2817     \]
2818    
2819     \noindent
2820     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2821     $sl$ refers to the height of the top of the surface layer. If the roughness height
2822     is above two meters, ${\bf V2M}$ is undefined.
2823     \\
2824    
2825     \noindent
2826     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2827    
2828     \noindent
2829     The temperature at the 2-meter depth is a determined from the similarity theory:
2830     \[
2831     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2832     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2833     (\theta_{sl} - \theta_{surf}))
2834     \]
2835     where:
2836     \[
2837     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2838     \]
2839    
2840     \noindent
2841     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2842     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2843     $sl$ refers to the height of the top of the surface layer. If the roughness height
2844     is above two meters, ${\bf T2M}$ is undefined.
2845     \\
2846    
2847     \noindent
2848     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2849    
2850     \noindent
2851     The specific humidity at the 2-meter depth is determined from the similarity theory:
2852     \[
2853     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2854     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2855     (q_{sl} - q_{surf}))
2856     \]
2857     where:
2858     \[
2859     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2860     \]
2861    
2862     \noindent
2863     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2864     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2865     $sl$ refers to the height of the top of the surface layer. If the roughness height
2866     is above two meters, ${\bf Q2M}$ is undefined.
2867     \\
2868    
2869     \noindent
2870     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2871    
2872     \noindent
2873     The u-wind at the 10-meter depth is an interpolation between the surface wind
2874     and the model lowest level wind using the ratio of the non-dimensional wind shear
2875     at the two levels:
2876     \[
2877     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2878     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2879     \]
2880    
2881     \noindent
2882     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2883     $sl$ refers to the height of the top of the surface layer.
2884     \\
2885    
2886     \noindent
2887     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2888    
2889     \noindent
2890     The v-wind at the 10-meter depth is an interpolation between the surface wind
2891     and the model lowest level wind using the ratio of the non-dimensional wind shear
2892     at the two levels:
2893     \[
2894     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2895     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2896     \]
2897    
2898     \noindent
2899     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2900     $sl$ refers to the height of the top of the surface layer.
2901     \\
2902    
2903     \noindent
2904     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2905    
2906     \noindent
2907     The temperature at the 10-meter depth is an interpolation between the surface potential
2908     temperature and the model lowest level potential temperature using the ratio of the
2909     non-dimensional temperature gradient at the two levels:
2910     \[
2911     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2912     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2913     (\theta_{sl} - \theta_{surf}))
2914     \]
2915     where:
2916     \[
2917     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2918     \]
2919    
2920     \noindent
2921     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2922     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2923     $sl$ refers to the height of the top of the surface layer.
2924     \\
2925    
2926     \noindent
2927     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2928    
2929     \noindent
2930     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2931     humidity and the model lowest level specific humidity using the ratio of the
2932     non-dimensional temperature gradient at the two levels:
2933     \[
2934     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2935     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2936     (q_{sl} - q_{surf}))
2937     \]
2938     where:
2939     \[
2940     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2941     \]
2942    
2943     \noindent
2944     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2945     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2946     $sl$ refers to the height of the top of the surface layer.
2947     \\
2948    
2949     \noindent
2950     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2951    
2952     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2953     \[
2954     {\bf DTRAIN} = \eta_{r_D}m_B
2955     \]
2956     \noindent
2957     where $r_D$ is the detrainment level,
2958     $m_B$ is the cloud base mass flux, and $\eta$
2959     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2960     \\
2961    
2962     \noindent
2963     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2964    
2965     \noindent
2966     Due to computational errors associated with the numerical scheme used for
2967     the advection of moisture, negative values of specific humidity may be generated. The
2968     specific humidity is checked for negative values after every dynamics timestep. If negative
2969     values have been produced, a filling algorithm is invoked which redistributes moisture from
2970     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2971     to eliminate negative specific humidity, scaled to a per-day rate:
2972     \[
2973     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2974     \]
2975     where
2976     \[
2977     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2978     \]
2979    
2980    
2981 molod 1.9 \subsubsection{Key subroutines, parameters and files}
2982 molod 1.6
2983 molod 1.9 \subsubsection{Dos and donts}
2984 molod 1.6
2985 molod 1.9 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22