/[MITgcm]/manual/s_phys_pkgs/text/gmredi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/gmredi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (hide annotations) (download) (as text)
Wed Jun 28 15:35:07 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.12: +10 -1 lines
File MIME type: application/x-tex
Rename files, connect packages and epxeriments that use them.

1 molod 1.10 \subsection{GMREDI: Gent/McWiliams/Redi SGS Eddy Parameterization}
2 edhill 1.8 \label{sec:pkg:gmredi}
3 edhill 1.7 \begin{rawhtml}
4     <!-- CMIREDIR:gmredi: -->
5     \end{rawhtml}
6 adcroft 1.1
7     There are two parts to the Redi/GM parameterization of geostrophic
8     eddies. The first aims to mix tracer properties along isentropes
9     (neutral surfaces) by means of a diffusion operator oriented along the
10     local isentropic surface (Redi). The second part, adiabatically
11     re-arranges tracers through an advective flux where the advecting flow
12     is a function of slope of the isentropic surfaces (GM).
13    
14     The first GCM implementation of the Redi scheme was by Cox 1987 in the
15     GFDL ocean circulation model. The original approach failed to
16     distinguish between isopycnals and surfaces of locally referenced
17     potential density (now called neutral surfaces) which are proper
18     isentropes for the ocean. As will be discussed later, it also appears
19     that the Cox implementation is susceptible to a computational mode.
20     Due to this mode, the Cox scheme requires a background lateral
21     diffusion to be present to conserve the integrity of the model fields.
22    
23     The GM parameterization was then added to the GFDL code in the form of
24     a non-divergent bolus velocity. The method defines two
25     stream-functions expressed in terms of the isoneutral slopes subject
26     to the boundary condition of zero value on upper and lower
27     boundaries. The horizontal bolus velocities are then the vertical
28     derivative of these functions. Here in lies a problem highlighted by
29     Griffies et al., 1997: the bolus velocities involve multiple
30     derivatives on the potential density field, which can consequently
31     give rise to noise. Griffies et al. point out that the GM bolus fluxes
32     can be identically written as a skew flux which involves fewer
33     differential operators. Further, combining the skew flux formulation
34     and Redi scheme, substantial cancellations take place to the point
35     that the horizontal fluxes are unmodified from the lateral diffusion
36     parameterization.
37    
38 molod 1.10 \subsubsection{Redi scheme: Isopycnal diffusion}
39 adcroft 1.1
40     The Redi scheme diffuses tracers along isopycnals and introduces a
41     term in the tendency (rhs) of such a tracer (here $\tau$) of the form:
42     \begin{equation}
43     \bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
44     \end{equation}
45     where $\kappa_\rho$ is the along isopycnal diffusivity and
46     $\bf{K}_{Redi}$ is a rank 2 tensor that projects the gradient of
47     $\tau$ onto the isopycnal surface. The unapproximated projection tensor is:
48     \begin{equation}
49     \bf{K}_{Redi} = \left(
50     \begin{array}{ccc}
51     1 + S_x& S_x S_y & S_x \\
52     S_x S_y & 1 + S_y & S_y \\
53     S_x & S_y & |S|^2 \\
54     \end{array}
55     \right)
56     \end{equation}
57     Here, $S_x = -\partial_x \sigma / \partial_z \sigma$ and $S_y =
58     -\partial_y \sigma / \partial_z \sigma$ are the components of the
59     isoneutral slope.
60    
61     The first point to note is that a typical slope in the ocean interior
62     is small, say of the order $10^{-4}$. A maximum slope might be of
63     order $10^{-2}$ and only exceeds such in unstratified regions where
64     the slope is ill defined. It is therefore justifiable, and
65     customary, to make the small slope approximation, $|S| << 1$. The Redi
66     projection tensor then becomes:
67     \begin{equation}
68     \bf{K}_{Redi} = \left(
69     \begin{array}{ccc}
70     1 & 0 & S_x \\
71     0 & 1 & S_y \\
72     S_x & S_y & |S|^2 \\
73     \end{array}
74     \right)
75     \end{equation}
76    
77    
78 molod 1.10 \subsubsection{GM parameterization}
79 adcroft 1.1
80     The GM parameterization aims to parameterise the ``advective'' or
81     ``transport'' effect of geostrophic eddies by means of a ``bolus''
82     velocity, $\bf{u}^*$. The divergence of this advective flux is added
83     to the tracer tendency equation (on the rhs):
84     \begin{equation}
85     - \bf{\nabla} \cdot \tau \bf{u}^*
86     \end{equation}
87    
88     The bolus velocity is defined as:
89     \begin{eqnarray}
90     u^* & = & - \partial_z F_x \\
91     v^* & = & - \partial_z F_y \\
92     w^* & = & \partial_x F_x + \partial_y F_y
93     \end{eqnarray}
94     where $F_x$ and $F_y$ are stream-functions with boundary conditions
95     $F_x=F_y=0$ on upper and lower boundaries. The virtue of casting the
96     bolus velocity in terms of these stream-functions is that they are
97     automatically non-divergent ($\partial_x u^* + \partial_y v^* = -
98     \partial_{xz} F_x - \partial_{yz} F_y = - \partial_z w^*$). $F_x$ and
99     $F_y$ are specified in terms of the isoneutral slopes $S_x$ and $S_y$:
100     \begin{eqnarray}
101     F_x & = & \kappa_{GM} S_x \\
102     F_y & = & \kappa_{GM} S_y
103     \end{eqnarray}
104     This is the form of the GM parameterization as applied by Donabasaglu,
105     1997, in MOM versions 1 and 2.
106    
107 molod 1.10 \subsubsection{Griffies Skew Flux}
108 adcroft 1.1
109     Griffies notes that the discretisation of bolus velocities involves
110     multiple layers of differencing and interpolation that potentially
111     lead to noisy fields and computational modes. He pointed out that the
112     bolus flux can be re-written in terms of a non-divergent flux and a
113     skew-flux:
114     \begin{eqnarray*}
115     \bf{u}^* \tau
116     & = &
117     \left( \begin{array}{c}
118     - \partial_z ( \kappa_{GM} S_x ) \tau \\
119     - \partial_z ( \kappa_{GM} S_y ) \tau \\
120     (\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau
121     \end{array} \right)
122     \\
123     & = &
124     \left( \begin{array}{c}
125     - \partial_z ( \kappa_{GM} S_x \tau) \\
126     - \partial_z ( \kappa_{GM} S_y \tau) \\
127     \partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y) \tau)
128     \end{array} \right)
129     + \left( \begin{array}{c}
130     \kappa_{GM} S_x \partial_z \tau \\
131     \kappa_{GM} S_y \partial_z \tau \\
132     - \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y) \partial_y \tau
133     \end{array} \right)
134     \end{eqnarray*}
135     The first vector is non-divergent and thus has no effect on the tracer
136     field and can be dropped. The remaining flux can be written:
137     \begin{equation}
138     \bf{u}^* \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau
139     \end{equation}
140     where
141     \begin{equation}
142     \bf{K}_{GM} =
143     \left(
144     \begin{array}{ccc}
145     0 & 0 & -S_x \\
146     0 & 0 & -S_y \\
147     S_x & S_y & 0
148     \end{array}
149     \right)
150     \end{equation}
151     is an anti-symmetric tensor.
152    
153     This formulation of the GM parameterization involves fewer derivatives
154     than the original and also involves only terms that already appear in
155     the Redi mixing scheme. Indeed, a somewhat fortunate cancellation
156     becomes apparent when we use the GM parameterization in conjunction
157     with the Redi isoneutral mixing scheme:
158     \begin{equation}
159     \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
160     - u^* \tau =
161     ( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau
162     \end{equation}
163     In the instance that $\kappa_{GM} = \kappa_{\rho}$ then
164     \begin{equation}
165     \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} =
166     \kappa_\rho
167     \left( \begin{array}{ccc}
168     1 & 0 & 0 \\
169     0 & 1 & 0 \\
170     2 S_x & 2 S_y & |S|^2
171     \end{array}
172     \right)
173     \end{equation}
174 cnh 1.3 which differs from the variable Laplacian diffusion tensor by only
175 adcroft 1.1 two non-zero elements in the $z$-row.
176    
177 adcroft 1.2 \fbox{ \begin{minipage}{4.75in}
178     {\em S/R GMREDI\_CALC\_TENSOR} ({\em pkg/gmredi/gmredi\_calc\_tensor.F})
179    
180     $\sigma_x$: {\bf SlopeX} (argument on entry)
181    
182     $\sigma_y$: {\bf SlopeY} (argument on entry)
183    
184     $\sigma_z$: {\bf SlopeY} (argument)
185    
186     $S_x$: {\bf SlopeX} (argument on exit)
187    
188     $S_y$: {\bf SlopeY} (argument on exit)
189    
190     \end{minipage} }
191    
192    
193    
194 molod 1.10 \subsubsection{Variable $\kappa_{GM}$}
195 adcroft 1.1
196     Visbeck et al., 1996, suggest making the eddy coefficient,
197     $\kappa_{GM}$, a function of the Eady growth rate,
198     $|f|/\sqrt{Ri}$. The formula involves a non-dimensional constant,
199     $\alpha$, and a length-scale $L$:
200     \begin{displaymath}
201     \kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z
202     \end{displaymath}
203     where the Eady growth rate has been depth averaged (indicated by the
204     over-line). A local Richardson number is defined $Ri = N^2 / (\partial
205     u/\partial z)^2$ which, when combined with thermal wind gives:
206     \begin{displaymath}
207     \frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} =
208     \frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} =
209     \frac{ M^4 }{ |f|^2 N^2 }
210     \end{displaymath}
211     where $M^2$ is defined $M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|$.
212     Substituting into the formula for $\kappa_{GM}$ gives:
213     \begin{displaymath}
214     \kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z =
215     \alpha L^2 \overline{ \frac{M^2}{N^2} N }^z =
216     \alpha L^2 \overline{ |S| N }^z
217     \end{displaymath}
218    
219    
220 molod 1.10 \subsubsection{Tapering and stability}
221 adcroft 1.1
222     Experience with the GFDL model showed that the GM scheme has to be
223     matched to the convective parameterization. This was originally
224     expressed in connection with the introduction of the KPP boundary
225 cnh 1.3 layer scheme (Large et al., 97) but in fact, as subsequent experience
226 adcroft 1.1 with the MIT model has found, is necessary for any convective
227     parameterization.
228    
229     \fbox{ \begin{minipage}{4.75in}
230     {\em S/R GMREDI\_SLOPE\_LIMIT} ({\em
231     pkg/gmredi/gmredi\_slope\_limit.F})
232    
233     $\sigma_x, s_x$: {\bf SlopeX} (argument)
234    
235     $\sigma_y, s_y$: {\bf SlopeY} (argument)
236    
237     $\sigma_z$: {\bf dSigmadRReal} (argument)
238    
239     $z_\sigma^{*}$: {\bf dRdSigmaLtd} (argument)
240    
241     \end{minipage} }
242    
243 adcroft 1.2 \begin{figure}
244     \begin{center}
245     \resizebox{5.0in}{3.0in}{\includegraphics{part6/tapers.eps}}
246     \end{center}
247 adcroft 1.5 \caption{Taper functions used in GKW99 and DM95.}
248 adcroft 1.2 \label{fig:tapers}
249     \end{figure}
250    
251     \begin{figure}
252     \begin{center}
253     \resizebox{5.0in}{3.0in}{\includegraphics{part6/effective_slopes.eps}}
254     \end{center}
255     \caption{Effective slope as a function of ``true'' slope using Cox
256     slope clipping, GKW91 limiting and DM95 limiting.}
257     \label{fig:effective_slopes}
258     \end{figure}
259    
260 adcroft 1.1
261 molod 1.10 Slope clipping:
262 adcroft 1.1
263     Deep convection sites and the mixed layer are indicated by
264     homogenized, unstable or nearly unstable stratification. The slopes in
265     such regions can be either infinite, very large with a sign reversal
266     or simply very large. From a numerical point of view, large slopes
267     lead to large variations in the tensor elements (implying large bolus
268 cnh 1.3 flow) and can be numerically unstable. This was first recognized by
269 adcroft 1.1 Cox, 1987, who implemented ``slope clipping'' in the isopycnal mixing
270     tensor. Here, the slope magnitude is simply restricted by an upper
271     limit:
272     \begin{eqnarray}
273     |\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\
274     S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} }
275     \;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\
276     \sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\
277     {[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star}
278     \end{eqnarray}
279     Notice that this algorithm assumes stable stratification through the
280     ``min'' function. In the case where the fluid is well stratified ($\sigma_z < S_{lim}$) then the slopes evaluate to:
281     \begin{equation}
282     {[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z}
283     \end{equation}
284     while in the limited regions ($\sigma_z > S_{lim}$) the slopes become:
285     \begin{equation}
286     {[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}}
287     \end{equation}
288     so that the slope magnitude is limited $\sqrt{s_x^2 + s_y^2} =
289     S_{max}$.
290    
291     The slope clipping scheme is activated in the model by setting {\bf
292     GM\_tap\-er\_scheme = 'clipping'} in {\em data.gmredi}.
293    
294     Even using slope clipping, it is normally the case that the vertical
295     diffusion term (with coefficient $\kappa_\rho{\bf K}_{33} =
296     \kappa_\rho S_{max}^2$) is large and must be time-stepped using an
297     implicit procedure (see section on discretisation and code later).
298     Fig. \ref{fig-mixedlayer} shows the mixed layer depth resulting from
299     a) using the GM scheme with clipping and b) no GM scheme (horizontal
300     diffusion). The classic result of dramatically reduced mixed layers is
301     evident. Indeed, the deep convection sites to just one or two points
302     each and are much shallower than we might prefer. This, it turns out,
303 cnh 1.3 is due to the over zealous re-stratification due to the bolus transport
304 adcroft 1.1 parameterization. Limiting the slopes also breaks the adiabatic nature
305     of the GM/Redi parameterization, re-introducing diabatic fluxes in
306     regions where the limiting is in effect.
307    
308 molod 1.10 Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991:
309 adcroft 1.1
310 adcroft 1.5 The tapering scheme used in Gerdes et al., 1999, (\cite{gkw:99})
311 adcroft 1.1 addressed two issues with the clipping method: the introduction of
312     large vertical fluxes in addition to convective adjustment fluxes is
313     avoided by tapering the GM/Redi slopes back to zero in
314     low-stratification regions; the adjustment of slopes is replaced by a
315     tapering of the entire GM/Redi tensor. This means the direction of
316     fluxes is unaffected as the amplitude is scaled.
317    
318     The scheme inserts a tapering function, $f_1(S)$, in front of the
319     GM/Redi tensor:
320     \begin{equation}
321     f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right]
322     \end{equation}
323     where $S_{max}$ is the maximum slope you want allowed. Where the
324     slopes, $|S|<S_{max}$ then $f_1(S) = 1$ and the tensor is un-tapered
325     but where $|S| \ge S_{max}$ then $f_1(S)$ scales down the tensor so
326     that the effective vertical diffusivity term $\kappa f_1(S) |S|^2 =
327     \kappa S_{max}^2$.
328    
329     The GKW tapering scheme is activated in the model by setting {\bf
330     GM\_tap\-er\_scheme = 'gkw91'} in {\em data.gmredi}.
331    
332 molod 1.10 \subsubsection{Tapering: Danabasoglu and McWilliams, J. Clim. 1995}
333 adcroft 1.1
334     The tapering scheme used by Danabasoglu and McWilliams, 1995,
335 adcroft 1.5 \cite{dm:95}, followed a similar procedure but used a different
336 adcroft 1.1 tapering function, $f_1(S)$:
337     \begin{equation}
338     f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right)
339     \end{equation}
340     where $S_c = 0.004$ is a cut-off slope and $S_d=0.001$ is a scale over
341     which the slopes are smoothly tapered. Functionally, the operates in
342     the same way as the GKW91 scheme but has a substantially lower
343     cut-off, turning off the GM/Redi SGS parameterization for weaker
344     slopes.
345    
346     The DM tapering scheme is activated in the model by setting {\bf
347     GM\_tap\-er\_scheme = 'dm95'} in {\em data.gmredi}.
348    
349 molod 1.10 \subsubsection{Tapering: Large, Danabasoglu and Doney, JPO 1997}
350 adcroft 1.1
351 adcroft 1.5 The tapering used in Large et al., 1997, \cite{ldd:97}, is based on the
352 adcroft 1.1 DM95 tapering scheme, but also tapers the scheme with an additional
353     function of height, $f_2(z)$, so that the GM/Redi SGS fluxes are
354     reduced near the surface:
355     \begin{equation}
356     f_2(S) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \pi/2)\right)
357     \end{equation}
358     where $D = L_\rho |S|$ is a depth-scale and $L_\rho=c/f$ with
359     $c=2$~m~s$^{-1}$. This tapering with height was introduced to fix
360     some spurious interaction with the mixed-layer KPP parameterization.
361    
362     The LDD tapering scheme is activated in the model by setting {\bf
363     GM\_tap\-er\_scheme = 'ldd97'} in {\em data.gmredi}.
364    
365    
366    
367 adcroft 1.2
368 adcroft 1.1 \begin{figure}
369 adcroft 1.4 \begin{center}
370 adcroft 1.1 %\includegraphics{mixedlayer-cox.eps}
371     %\includegraphics{mixedlayer-diff.eps}
372 adcroft 1.4 Figure missing.
373     \end{center}
374 adcroft 1.1 \caption{Mixed layer depth using GM parameterization with a) Cox slope
375     clipping and for comparison b) using horizontal constant diffusion.}
376 adcroft 1.4 \label{fig-mixedlayer}
377 adcroft 1.1 \end{figure}
378    
379 molod 1.10 \subsubsection{Package Reference}
380 molod 1.11 \label{sec:pkg:gmredi:diagnostics}
381    
382 edhill 1.12 {\footnotesize
383 molod 1.11 \begin{verbatim}
384     ------------------------------------------------------------------------
385     <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
386     ------------------------------------------------------------------------
387     GM_VisbK| 1 |SM P M1 |m^2/s |Mixing coefficient from Visbeck etal parameterization
388     GM_Kux | 15 |UU P 177MR |m^2/s |K_11 element (U.point, X.dir) of GM-Redi tensor
389     GM_Kvy | 15 |VV P 176MR |m^2/s |K_22 element (V.point, Y.dir) of GM-Redi tensor
390     GM_Kuz | 15 |UU 179MR |m^2/s |K_13 element (U.point, Z.dir) of GM-Redi tensor
391     GM_Kvz | 15 |VV 178MR |m^2/s |K_23 element (V.point, Z.dir) of GM-Redi tensor
392     GM_Kwx | 15 |UM 181LR |m^2/s |K_31 element (W.point, X.dir) of GM-Redi tensor
393     GM_Kwy | 15 |VM 180LR |m^2/s |K_32 element (W.point, Y.dir) of GM-Redi tensor
394     GM_Kwz | 15 |WM P LR |m^2/s |K_33 element (W.point, Z.dir) of GM-Redi tensor
395     GM_PsiX | 15 |UU 184LR |m^2/s |GM Bolus transport stream-function : X component
396     GM_PsiY | 15 |VV 183LR |m^2/s |GM Bolus transport stream-function : Y component
397     GM_KuzTz| 15 |UU 186MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: X component
398     GM_KvzTz| 15 |VV 185MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: Y component
399     \end{verbatim}
400 edhill 1.12 }
401 molod 1.11
402 molod 1.13 \subsubsection{Experiments and tutorials that use gmredi}
403     \label{sec:pkg:gmredi:experiments}
404    
405     \begin{itemize}
406     \item{Global Ocean tutorial, in tutorial\_global\_oce\_latlon verification directory,
407     described in section \ref{sect:eg-global} }
408     \item{ Front Relax experiment, in front\_relax verification directory.}
409     \item{ Ideal 2D Ocean experiment, in ideal\_2D\_oce verification directory.}
410     \end{itemize}
411    
412 cnh 1.6 % DO NOT EDIT HERE
413 adcroft 1.1
414    
415    

  ViewVC Help
Powered by ViewVC 1.1.22