/[MITgcm]/manual/s_phys_pkgs/text/gmredi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/gmredi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Tue Nov 13 14:54:50 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.3: +4 -1 lines
File MIME type: application/x-tex
Added placeholder so figure does not appear empty to l2h.

1 adcroft 1.1 \section{Gent/McWiliams/Redi SGS Eddy parameterization}
2    
3     There are two parts to the Redi/GM parameterization of geostrophic
4     eddies. The first aims to mix tracer properties along isentropes
5     (neutral surfaces) by means of a diffusion operator oriented along the
6     local isentropic surface (Redi). The second part, adiabatically
7     re-arranges tracers through an advective flux where the advecting flow
8     is a function of slope of the isentropic surfaces (GM).
9    
10     The first GCM implementation of the Redi scheme was by Cox 1987 in the
11     GFDL ocean circulation model. The original approach failed to
12     distinguish between isopycnals and surfaces of locally referenced
13     potential density (now called neutral surfaces) which are proper
14     isentropes for the ocean. As will be discussed later, it also appears
15     that the Cox implementation is susceptible to a computational mode.
16     Due to this mode, the Cox scheme requires a background lateral
17     diffusion to be present to conserve the integrity of the model fields.
18    
19     The GM parameterization was then added to the GFDL code in the form of
20     a non-divergent bolus velocity. The method defines two
21     stream-functions expressed in terms of the isoneutral slopes subject
22     to the boundary condition of zero value on upper and lower
23     boundaries. The horizontal bolus velocities are then the vertical
24     derivative of these functions. Here in lies a problem highlighted by
25     Griffies et al., 1997: the bolus velocities involve multiple
26     derivatives on the potential density field, which can consequently
27     give rise to noise. Griffies et al. point out that the GM bolus fluxes
28     can be identically written as a skew flux which involves fewer
29     differential operators. Further, combining the skew flux formulation
30     and Redi scheme, substantial cancellations take place to the point
31     that the horizontal fluxes are unmodified from the lateral diffusion
32     parameterization.
33    
34     \subsection{Redi scheme: Isopycnal diffusion}
35    
36     The Redi scheme diffuses tracers along isopycnals and introduces a
37     term in the tendency (rhs) of such a tracer (here $\tau$) of the form:
38     \begin{equation}
39     \bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
40     \end{equation}
41     where $\kappa_\rho$ is the along isopycnal diffusivity and
42     $\bf{K}_{Redi}$ is a rank 2 tensor that projects the gradient of
43     $\tau$ onto the isopycnal surface. The unapproximated projection tensor is:
44     \begin{equation}
45     \bf{K}_{Redi} = \left(
46     \begin{array}{ccc}
47     1 + S_x& S_x S_y & S_x \\
48     S_x S_y & 1 + S_y & S_y \\
49     S_x & S_y & |S|^2 \\
50     \end{array}
51     \right)
52     \end{equation}
53     Here, $S_x = -\partial_x \sigma / \partial_z \sigma$ and $S_y =
54     -\partial_y \sigma / \partial_z \sigma$ are the components of the
55     isoneutral slope.
56    
57     The first point to note is that a typical slope in the ocean interior
58     is small, say of the order $10^{-4}$. A maximum slope might be of
59     order $10^{-2}$ and only exceeds such in unstratified regions where
60     the slope is ill defined. It is therefore justifiable, and
61     customary, to make the small slope approximation, $|S| << 1$. The Redi
62     projection tensor then becomes:
63     \begin{equation}
64     \bf{K}_{Redi} = \left(
65     \begin{array}{ccc}
66     1 & 0 & S_x \\
67     0 & 1 & S_y \\
68     S_x & S_y & |S|^2 \\
69     \end{array}
70     \right)
71     \end{equation}
72    
73    
74     \subsection{GM parameterization}
75    
76     The GM parameterization aims to parameterise the ``advective'' or
77     ``transport'' effect of geostrophic eddies by means of a ``bolus''
78     velocity, $\bf{u}^*$. The divergence of this advective flux is added
79     to the tracer tendency equation (on the rhs):
80     \begin{equation}
81     - \bf{\nabla} \cdot \tau \bf{u}^*
82     \end{equation}
83    
84     The bolus velocity is defined as:
85     \begin{eqnarray}
86     u^* & = & - \partial_z F_x \\
87     v^* & = & - \partial_z F_y \\
88     w^* & = & \partial_x F_x + \partial_y F_y
89     \end{eqnarray}
90     where $F_x$ and $F_y$ are stream-functions with boundary conditions
91     $F_x=F_y=0$ on upper and lower boundaries. The virtue of casting the
92     bolus velocity in terms of these stream-functions is that they are
93     automatically non-divergent ($\partial_x u^* + \partial_y v^* = -
94     \partial_{xz} F_x - \partial_{yz} F_y = - \partial_z w^*$). $F_x$ and
95     $F_y$ are specified in terms of the isoneutral slopes $S_x$ and $S_y$:
96     \begin{eqnarray}
97     F_x & = & \kappa_{GM} S_x \\
98     F_y & = & \kappa_{GM} S_y
99     \end{eqnarray}
100     This is the form of the GM parameterization as applied by Donabasaglu,
101     1997, in MOM versions 1 and 2.
102    
103     \subsection{Griffies Skew Flux}
104    
105     Griffies notes that the discretisation of bolus velocities involves
106     multiple layers of differencing and interpolation that potentially
107     lead to noisy fields and computational modes. He pointed out that the
108     bolus flux can be re-written in terms of a non-divergent flux and a
109     skew-flux:
110     \begin{eqnarray*}
111     \bf{u}^* \tau
112     & = &
113     \left( \begin{array}{c}
114     - \partial_z ( \kappa_{GM} S_x ) \tau \\
115     - \partial_z ( \kappa_{GM} S_y ) \tau \\
116     (\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau
117     \end{array} \right)
118     \\
119     & = &
120     \left( \begin{array}{c}
121     - \partial_z ( \kappa_{GM} S_x \tau) \\
122     - \partial_z ( \kappa_{GM} S_y \tau) \\
123     \partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y) \tau)
124     \end{array} \right)
125     + \left( \begin{array}{c}
126     \kappa_{GM} S_x \partial_z \tau \\
127     \kappa_{GM} S_y \partial_z \tau \\
128     - \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y) \partial_y \tau
129     \end{array} \right)
130     \end{eqnarray*}
131     The first vector is non-divergent and thus has no effect on the tracer
132     field and can be dropped. The remaining flux can be written:
133     \begin{equation}
134     \bf{u}^* \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau
135     \end{equation}
136     where
137     \begin{equation}
138     \bf{K}_{GM} =
139     \left(
140     \begin{array}{ccc}
141     0 & 0 & -S_x \\
142     0 & 0 & -S_y \\
143     S_x & S_y & 0
144     \end{array}
145     \right)
146     \end{equation}
147     is an anti-symmetric tensor.
148    
149     This formulation of the GM parameterization involves fewer derivatives
150     than the original and also involves only terms that already appear in
151     the Redi mixing scheme. Indeed, a somewhat fortunate cancellation
152     becomes apparent when we use the GM parameterization in conjunction
153     with the Redi isoneutral mixing scheme:
154     \begin{equation}
155     \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
156     - u^* \tau =
157     ( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau
158     \end{equation}
159     In the instance that $\kappa_{GM} = \kappa_{\rho}$ then
160     \begin{equation}
161     \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} =
162     \kappa_\rho
163     \left( \begin{array}{ccc}
164     1 & 0 & 0 \\
165     0 & 1 & 0 \\
166     2 S_x & 2 S_y & |S|^2
167     \end{array}
168     \right)
169     \end{equation}
170 cnh 1.3 which differs from the variable Laplacian diffusion tensor by only
171 adcroft 1.1 two non-zero elements in the $z$-row.
172    
173 adcroft 1.2 \fbox{ \begin{minipage}{4.75in}
174     {\em S/R GMREDI\_CALC\_TENSOR} ({\em pkg/gmredi/gmredi\_calc\_tensor.F})
175    
176     $\sigma_x$: {\bf SlopeX} (argument on entry)
177    
178     $\sigma_y$: {\bf SlopeY} (argument on entry)
179    
180     $\sigma_z$: {\bf SlopeY} (argument)
181    
182     $S_x$: {\bf SlopeX} (argument on exit)
183    
184     $S_y$: {\bf SlopeY} (argument on exit)
185    
186     \end{minipage} }
187    
188    
189    
190 adcroft 1.1 \subsection{Variable $\kappa_{GM}$}
191    
192     Visbeck et al., 1996, suggest making the eddy coefficient,
193     $\kappa_{GM}$, a function of the Eady growth rate,
194     $|f|/\sqrt{Ri}$. The formula involves a non-dimensional constant,
195     $\alpha$, and a length-scale $L$:
196     \begin{displaymath}
197     \kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z
198     \end{displaymath}
199     where the Eady growth rate has been depth averaged (indicated by the
200     over-line). A local Richardson number is defined $Ri = N^2 / (\partial
201     u/\partial z)^2$ which, when combined with thermal wind gives:
202     \begin{displaymath}
203     \frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} =
204     \frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} =
205     \frac{ M^4 }{ |f|^2 N^2 }
206     \end{displaymath}
207     where $M^2$ is defined $M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|$.
208     Substituting into the formula for $\kappa_{GM}$ gives:
209     \begin{displaymath}
210     \kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z =
211     \alpha L^2 \overline{ \frac{M^2}{N^2} N }^z =
212     \alpha L^2 \overline{ |S| N }^z
213     \end{displaymath}
214    
215    
216     \subsection{Tapering and stability}
217    
218     Experience with the GFDL model showed that the GM scheme has to be
219     matched to the convective parameterization. This was originally
220     expressed in connection with the introduction of the KPP boundary
221 cnh 1.3 layer scheme (Large et al., 97) but in fact, as subsequent experience
222 adcroft 1.1 with the MIT model has found, is necessary for any convective
223     parameterization.
224    
225     \fbox{ \begin{minipage}{4.75in}
226     {\em S/R GMREDI\_SLOPE\_LIMIT} ({\em
227     pkg/gmredi/gmredi\_slope\_limit.F})
228    
229     $\sigma_x, s_x$: {\bf SlopeX} (argument)
230    
231     $\sigma_y, s_y$: {\bf SlopeY} (argument)
232    
233     $\sigma_z$: {\bf dSigmadRReal} (argument)
234    
235     $z_\sigma^{*}$: {\bf dRdSigmaLtd} (argument)
236    
237     \end{minipage} }
238    
239 adcroft 1.2 \begin{figure}
240     \begin{center}
241     \resizebox{5.0in}{3.0in}{\includegraphics{part6/tapers.eps}}
242     \end{center}
243     \caption{Taper functions used in GKW91 and DM95.}
244     \label{fig:tapers}
245     \end{figure}
246    
247     \begin{figure}
248     \begin{center}
249     \resizebox{5.0in}{3.0in}{\includegraphics{part6/effective_slopes.eps}}
250     \end{center}
251     \caption{Effective slope as a function of ``true'' slope using Cox
252     slope clipping, GKW91 limiting and DM95 limiting.}
253     \label{fig:effective_slopes}
254     \end{figure}
255    
256 adcroft 1.1
257     \subsubsection{Slope clipping}
258    
259     Deep convection sites and the mixed layer are indicated by
260     homogenized, unstable or nearly unstable stratification. The slopes in
261     such regions can be either infinite, very large with a sign reversal
262     or simply very large. From a numerical point of view, large slopes
263     lead to large variations in the tensor elements (implying large bolus
264 cnh 1.3 flow) and can be numerically unstable. This was first recognized by
265 adcroft 1.1 Cox, 1987, who implemented ``slope clipping'' in the isopycnal mixing
266     tensor. Here, the slope magnitude is simply restricted by an upper
267     limit:
268     \begin{eqnarray}
269     |\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\
270     S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} }
271     \;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\
272     \sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\
273     {[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star}
274     \end{eqnarray}
275     Notice that this algorithm assumes stable stratification through the
276     ``min'' function. In the case where the fluid is well stratified ($\sigma_z < S_{lim}$) then the slopes evaluate to:
277     \begin{equation}
278     {[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z}
279     \end{equation}
280     while in the limited regions ($\sigma_z > S_{lim}$) the slopes become:
281     \begin{equation}
282     {[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}}
283     \end{equation}
284     so that the slope magnitude is limited $\sqrt{s_x^2 + s_y^2} =
285     S_{max}$.
286    
287     The slope clipping scheme is activated in the model by setting {\bf
288     GM\_tap\-er\_scheme = 'clipping'} in {\em data.gmredi}.
289    
290     Even using slope clipping, it is normally the case that the vertical
291     diffusion term (with coefficient $\kappa_\rho{\bf K}_{33} =
292     \kappa_\rho S_{max}^2$) is large and must be time-stepped using an
293     implicit procedure (see section on discretisation and code later).
294     Fig. \ref{fig-mixedlayer} shows the mixed layer depth resulting from
295     a) using the GM scheme with clipping and b) no GM scheme (horizontal
296     diffusion). The classic result of dramatically reduced mixed layers is
297     evident. Indeed, the deep convection sites to just one or two points
298     each and are much shallower than we might prefer. This, it turns out,
299 cnh 1.3 is due to the over zealous re-stratification due to the bolus transport
300 adcroft 1.1 parameterization. Limiting the slopes also breaks the adiabatic nature
301     of the GM/Redi parameterization, re-introducing diabatic fluxes in
302     regions where the limiting is in effect.
303    
304     \subsubsection{Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991}
305    
306     The tapering scheme used in Gerdes et al., 1991, (\cite{gkw91})
307     addressed two issues with the clipping method: the introduction of
308     large vertical fluxes in addition to convective adjustment fluxes is
309     avoided by tapering the GM/Redi slopes back to zero in
310     low-stratification regions; the adjustment of slopes is replaced by a
311     tapering of the entire GM/Redi tensor. This means the direction of
312     fluxes is unaffected as the amplitude is scaled.
313    
314     The scheme inserts a tapering function, $f_1(S)$, in front of the
315     GM/Redi tensor:
316     \begin{equation}
317     f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right]
318     \end{equation}
319     where $S_{max}$ is the maximum slope you want allowed. Where the
320     slopes, $|S|<S_{max}$ then $f_1(S) = 1$ and the tensor is un-tapered
321     but where $|S| \ge S_{max}$ then $f_1(S)$ scales down the tensor so
322     that the effective vertical diffusivity term $\kappa f_1(S) |S|^2 =
323     \kappa S_{max}^2$.
324    
325     The GKW tapering scheme is activated in the model by setting {\bf
326     GM\_tap\-er\_scheme = 'gkw91'} in {\em data.gmredi}.
327    
328     \subsection{Tapering: Danabasoglu and McWilliams, J. Clim. 1995}
329    
330     The tapering scheme used by Danabasoglu and McWilliams, 1995,
331     \cite{DM95}, followed a similar procedure but used a different
332     tapering function, $f_1(S)$:
333     \begin{equation}
334     f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right)
335     \end{equation}
336     where $S_c = 0.004$ is a cut-off slope and $S_d=0.001$ is a scale over
337     which the slopes are smoothly tapered. Functionally, the operates in
338     the same way as the GKW91 scheme but has a substantially lower
339     cut-off, turning off the GM/Redi SGS parameterization for weaker
340     slopes.
341    
342     The DM tapering scheme is activated in the model by setting {\bf
343     GM\_tap\-er\_scheme = 'dm95'} in {\em data.gmredi}.
344    
345     \subsection{Tapering: Large, Danabasoglu and Doney, JPO 1997}
346    
347     The tapering used in Large et al., 1997, \cite{ldd97}, is based on the
348     DM95 tapering scheme, but also tapers the scheme with an additional
349     function of height, $f_2(z)$, so that the GM/Redi SGS fluxes are
350     reduced near the surface:
351     \begin{equation}
352     f_2(S) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \pi/2)\right)
353     \end{equation}
354     where $D = L_\rho |S|$ is a depth-scale and $L_\rho=c/f$ with
355     $c=2$~m~s$^{-1}$. This tapering with height was introduced to fix
356     some spurious interaction with the mixed-layer KPP parameterization.
357    
358     The LDD tapering scheme is activated in the model by setting {\bf
359     GM\_tap\-er\_scheme = 'ldd97'} in {\em data.gmredi}.
360    
361    
362    
363 adcroft 1.2
364 adcroft 1.1 \begin{figure}
365 adcroft 1.4 \begin{center}
366 adcroft 1.1 %\includegraphics{mixedlayer-cox.eps}
367     %\includegraphics{mixedlayer-diff.eps}
368 adcroft 1.4 Figure missing.
369     \end{center}
370 adcroft 1.1 \caption{Mixed layer depth using GM parameterization with a) Cox slope
371     clipping and for comparison b) using horizontal constant diffusion.}
372 adcroft 1.4 \label{fig-mixedlayer}
373 adcroft 1.1 \end{figure}
374    
375    
376    
377    

  ViewVC Help
Powered by ViewVC 1.1.22