/[MITgcm]/manual/s_phys_pkgs/text/gmredi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/gmredi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Tue Apr 20 23:32:59 2004 UTC (21 years, 3 months ago) by edhill
Branch: MAIN
Changes since 1.6: +3 -0 lines
File MIME type: application/x-tex
 o add more CMIREDIR tags for updates to the CMI web site

1 adcroft 1.1 \section{Gent/McWiliams/Redi SGS Eddy parameterization}
2 edhill 1.7 \begin{rawhtml}
3     <!-- CMIREDIR:gmredi: -->
4     \end{rawhtml}
5 adcroft 1.1
6     There are two parts to the Redi/GM parameterization of geostrophic
7     eddies. The first aims to mix tracer properties along isentropes
8     (neutral surfaces) by means of a diffusion operator oriented along the
9     local isentropic surface (Redi). The second part, adiabatically
10     re-arranges tracers through an advective flux where the advecting flow
11     is a function of slope of the isentropic surfaces (GM).
12    
13     The first GCM implementation of the Redi scheme was by Cox 1987 in the
14     GFDL ocean circulation model. The original approach failed to
15     distinguish between isopycnals and surfaces of locally referenced
16     potential density (now called neutral surfaces) which are proper
17     isentropes for the ocean. As will be discussed later, it also appears
18     that the Cox implementation is susceptible to a computational mode.
19     Due to this mode, the Cox scheme requires a background lateral
20     diffusion to be present to conserve the integrity of the model fields.
21    
22     The GM parameterization was then added to the GFDL code in the form of
23     a non-divergent bolus velocity. The method defines two
24     stream-functions expressed in terms of the isoneutral slopes subject
25     to the boundary condition of zero value on upper and lower
26     boundaries. The horizontal bolus velocities are then the vertical
27     derivative of these functions. Here in lies a problem highlighted by
28     Griffies et al., 1997: the bolus velocities involve multiple
29     derivatives on the potential density field, which can consequently
30     give rise to noise. Griffies et al. point out that the GM bolus fluxes
31     can be identically written as a skew flux which involves fewer
32     differential operators. Further, combining the skew flux formulation
33     and Redi scheme, substantial cancellations take place to the point
34     that the horizontal fluxes are unmodified from the lateral diffusion
35     parameterization.
36    
37     \subsection{Redi scheme: Isopycnal diffusion}
38    
39     The Redi scheme diffuses tracers along isopycnals and introduces a
40     term in the tendency (rhs) of such a tracer (here $\tau$) of the form:
41     \begin{equation}
42     \bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
43     \end{equation}
44     where $\kappa_\rho$ is the along isopycnal diffusivity and
45     $\bf{K}_{Redi}$ is a rank 2 tensor that projects the gradient of
46     $\tau$ onto the isopycnal surface. The unapproximated projection tensor is:
47     \begin{equation}
48     \bf{K}_{Redi} = \left(
49     \begin{array}{ccc}
50     1 + S_x& S_x S_y & S_x \\
51     S_x S_y & 1 + S_y & S_y \\
52     S_x & S_y & |S|^2 \\
53     \end{array}
54     \right)
55     \end{equation}
56     Here, $S_x = -\partial_x \sigma / \partial_z \sigma$ and $S_y =
57     -\partial_y \sigma / \partial_z \sigma$ are the components of the
58     isoneutral slope.
59    
60     The first point to note is that a typical slope in the ocean interior
61     is small, say of the order $10^{-4}$. A maximum slope might be of
62     order $10^{-2}$ and only exceeds such in unstratified regions where
63     the slope is ill defined. It is therefore justifiable, and
64     customary, to make the small slope approximation, $|S| << 1$. The Redi
65     projection tensor then becomes:
66     \begin{equation}
67     \bf{K}_{Redi} = \left(
68     \begin{array}{ccc}
69     1 & 0 & S_x \\
70     0 & 1 & S_y \\
71     S_x & S_y & |S|^2 \\
72     \end{array}
73     \right)
74     \end{equation}
75    
76    
77     \subsection{GM parameterization}
78    
79     The GM parameterization aims to parameterise the ``advective'' or
80     ``transport'' effect of geostrophic eddies by means of a ``bolus''
81     velocity, $\bf{u}^*$. The divergence of this advective flux is added
82     to the tracer tendency equation (on the rhs):
83     \begin{equation}
84     - \bf{\nabla} \cdot \tau \bf{u}^*
85     \end{equation}
86    
87     The bolus velocity is defined as:
88     \begin{eqnarray}
89     u^* & = & - \partial_z F_x \\
90     v^* & = & - \partial_z F_y \\
91     w^* & = & \partial_x F_x + \partial_y F_y
92     \end{eqnarray}
93     where $F_x$ and $F_y$ are stream-functions with boundary conditions
94     $F_x=F_y=0$ on upper and lower boundaries. The virtue of casting the
95     bolus velocity in terms of these stream-functions is that they are
96     automatically non-divergent ($\partial_x u^* + \partial_y v^* = -
97     \partial_{xz} F_x - \partial_{yz} F_y = - \partial_z w^*$). $F_x$ and
98     $F_y$ are specified in terms of the isoneutral slopes $S_x$ and $S_y$:
99     \begin{eqnarray}
100     F_x & = & \kappa_{GM} S_x \\
101     F_y & = & \kappa_{GM} S_y
102     \end{eqnarray}
103     This is the form of the GM parameterization as applied by Donabasaglu,
104     1997, in MOM versions 1 and 2.
105    
106     \subsection{Griffies Skew Flux}
107    
108     Griffies notes that the discretisation of bolus velocities involves
109     multiple layers of differencing and interpolation that potentially
110     lead to noisy fields and computational modes. He pointed out that the
111     bolus flux can be re-written in terms of a non-divergent flux and a
112     skew-flux:
113     \begin{eqnarray*}
114     \bf{u}^* \tau
115     & = &
116     \left( \begin{array}{c}
117     - \partial_z ( \kappa_{GM} S_x ) \tau \\
118     - \partial_z ( \kappa_{GM} S_y ) \tau \\
119     (\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau
120     \end{array} \right)
121     \\
122     & = &
123     \left( \begin{array}{c}
124     - \partial_z ( \kappa_{GM} S_x \tau) \\
125     - \partial_z ( \kappa_{GM} S_y \tau) \\
126     \partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y) \tau)
127     \end{array} \right)
128     + \left( \begin{array}{c}
129     \kappa_{GM} S_x \partial_z \tau \\
130     \kappa_{GM} S_y \partial_z \tau \\
131     - \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y) \partial_y \tau
132     \end{array} \right)
133     \end{eqnarray*}
134     The first vector is non-divergent and thus has no effect on the tracer
135     field and can be dropped. The remaining flux can be written:
136     \begin{equation}
137     \bf{u}^* \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau
138     \end{equation}
139     where
140     \begin{equation}
141     \bf{K}_{GM} =
142     \left(
143     \begin{array}{ccc}
144     0 & 0 & -S_x \\
145     0 & 0 & -S_y \\
146     S_x & S_y & 0
147     \end{array}
148     \right)
149     \end{equation}
150     is an anti-symmetric tensor.
151    
152     This formulation of the GM parameterization involves fewer derivatives
153     than the original and also involves only terms that already appear in
154     the Redi mixing scheme. Indeed, a somewhat fortunate cancellation
155     becomes apparent when we use the GM parameterization in conjunction
156     with the Redi isoneutral mixing scheme:
157     \begin{equation}
158     \kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
159     - u^* \tau =
160     ( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau
161     \end{equation}
162     In the instance that $\kappa_{GM} = \kappa_{\rho}$ then
163     \begin{equation}
164     \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} =
165     \kappa_\rho
166     \left( \begin{array}{ccc}
167     1 & 0 & 0 \\
168     0 & 1 & 0 \\
169     2 S_x & 2 S_y & |S|^2
170     \end{array}
171     \right)
172     \end{equation}
173 cnh 1.3 which differs from the variable Laplacian diffusion tensor by only
174 adcroft 1.1 two non-zero elements in the $z$-row.
175    
176 adcroft 1.2 \fbox{ \begin{minipage}{4.75in}
177     {\em S/R GMREDI\_CALC\_TENSOR} ({\em pkg/gmredi/gmredi\_calc\_tensor.F})
178    
179     $\sigma_x$: {\bf SlopeX} (argument on entry)
180    
181     $\sigma_y$: {\bf SlopeY} (argument on entry)
182    
183     $\sigma_z$: {\bf SlopeY} (argument)
184    
185     $S_x$: {\bf SlopeX} (argument on exit)
186    
187     $S_y$: {\bf SlopeY} (argument on exit)
188    
189     \end{minipage} }
190    
191    
192    
193 adcroft 1.1 \subsection{Variable $\kappa_{GM}$}
194    
195     Visbeck et al., 1996, suggest making the eddy coefficient,
196     $\kappa_{GM}$, a function of the Eady growth rate,
197     $|f|/\sqrt{Ri}$. The formula involves a non-dimensional constant,
198     $\alpha$, and a length-scale $L$:
199     \begin{displaymath}
200     \kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z
201     \end{displaymath}
202     where the Eady growth rate has been depth averaged (indicated by the
203     over-line). A local Richardson number is defined $Ri = N^2 / (\partial
204     u/\partial z)^2$ which, when combined with thermal wind gives:
205     \begin{displaymath}
206     \frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} =
207     \frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} =
208     \frac{ M^4 }{ |f|^2 N^2 }
209     \end{displaymath}
210     where $M^2$ is defined $M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|$.
211     Substituting into the formula for $\kappa_{GM}$ gives:
212     \begin{displaymath}
213     \kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z =
214     \alpha L^2 \overline{ \frac{M^2}{N^2} N }^z =
215     \alpha L^2 \overline{ |S| N }^z
216     \end{displaymath}
217    
218    
219     \subsection{Tapering and stability}
220    
221     Experience with the GFDL model showed that the GM scheme has to be
222     matched to the convective parameterization. This was originally
223     expressed in connection with the introduction of the KPP boundary
224 cnh 1.3 layer scheme (Large et al., 97) but in fact, as subsequent experience
225 adcroft 1.1 with the MIT model has found, is necessary for any convective
226     parameterization.
227    
228     \fbox{ \begin{minipage}{4.75in}
229     {\em S/R GMREDI\_SLOPE\_LIMIT} ({\em
230     pkg/gmredi/gmredi\_slope\_limit.F})
231    
232     $\sigma_x, s_x$: {\bf SlopeX} (argument)
233    
234     $\sigma_y, s_y$: {\bf SlopeY} (argument)
235    
236     $\sigma_z$: {\bf dSigmadRReal} (argument)
237    
238     $z_\sigma^{*}$: {\bf dRdSigmaLtd} (argument)
239    
240     \end{minipage} }
241    
242 adcroft 1.2 \begin{figure}
243     \begin{center}
244     \resizebox{5.0in}{3.0in}{\includegraphics{part6/tapers.eps}}
245     \end{center}
246 adcroft 1.5 \caption{Taper functions used in GKW99 and DM95.}
247 adcroft 1.2 \label{fig:tapers}
248     \end{figure}
249    
250     \begin{figure}
251     \begin{center}
252     \resizebox{5.0in}{3.0in}{\includegraphics{part6/effective_slopes.eps}}
253     \end{center}
254     \caption{Effective slope as a function of ``true'' slope using Cox
255     slope clipping, GKW91 limiting and DM95 limiting.}
256     \label{fig:effective_slopes}
257     \end{figure}
258    
259 adcroft 1.1
260     \subsubsection{Slope clipping}
261    
262     Deep convection sites and the mixed layer are indicated by
263     homogenized, unstable or nearly unstable stratification. The slopes in
264     such regions can be either infinite, very large with a sign reversal
265     or simply very large. From a numerical point of view, large slopes
266     lead to large variations in the tensor elements (implying large bolus
267 cnh 1.3 flow) and can be numerically unstable. This was first recognized by
268 adcroft 1.1 Cox, 1987, who implemented ``slope clipping'' in the isopycnal mixing
269     tensor. Here, the slope magnitude is simply restricted by an upper
270     limit:
271     \begin{eqnarray}
272     |\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\
273     S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} }
274     \;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\
275     \sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\
276     {[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star}
277     \end{eqnarray}
278     Notice that this algorithm assumes stable stratification through the
279     ``min'' function. In the case where the fluid is well stratified ($\sigma_z < S_{lim}$) then the slopes evaluate to:
280     \begin{equation}
281     {[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z}
282     \end{equation}
283     while in the limited regions ($\sigma_z > S_{lim}$) the slopes become:
284     \begin{equation}
285     {[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}}
286     \end{equation}
287     so that the slope magnitude is limited $\sqrt{s_x^2 + s_y^2} =
288     S_{max}$.
289    
290     The slope clipping scheme is activated in the model by setting {\bf
291     GM\_tap\-er\_scheme = 'clipping'} in {\em data.gmredi}.
292    
293     Even using slope clipping, it is normally the case that the vertical
294     diffusion term (with coefficient $\kappa_\rho{\bf K}_{33} =
295     \kappa_\rho S_{max}^2$) is large and must be time-stepped using an
296     implicit procedure (see section on discretisation and code later).
297     Fig. \ref{fig-mixedlayer} shows the mixed layer depth resulting from
298     a) using the GM scheme with clipping and b) no GM scheme (horizontal
299     diffusion). The classic result of dramatically reduced mixed layers is
300     evident. Indeed, the deep convection sites to just one or two points
301     each and are much shallower than we might prefer. This, it turns out,
302 cnh 1.3 is due to the over zealous re-stratification due to the bolus transport
303 adcroft 1.1 parameterization. Limiting the slopes also breaks the adiabatic nature
304     of the GM/Redi parameterization, re-introducing diabatic fluxes in
305     regions where the limiting is in effect.
306    
307     \subsubsection{Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991}
308    
309 adcroft 1.5 The tapering scheme used in Gerdes et al., 1999, (\cite{gkw:99})
310 adcroft 1.1 addressed two issues with the clipping method: the introduction of
311     large vertical fluxes in addition to convective adjustment fluxes is
312     avoided by tapering the GM/Redi slopes back to zero in
313     low-stratification regions; the adjustment of slopes is replaced by a
314     tapering of the entire GM/Redi tensor. This means the direction of
315     fluxes is unaffected as the amplitude is scaled.
316    
317     The scheme inserts a tapering function, $f_1(S)$, in front of the
318     GM/Redi tensor:
319     \begin{equation}
320     f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right]
321     \end{equation}
322     where $S_{max}$ is the maximum slope you want allowed. Where the
323     slopes, $|S|<S_{max}$ then $f_1(S) = 1$ and the tensor is un-tapered
324     but where $|S| \ge S_{max}$ then $f_1(S)$ scales down the tensor so
325     that the effective vertical diffusivity term $\kappa f_1(S) |S|^2 =
326     \kappa S_{max}^2$.
327    
328     The GKW tapering scheme is activated in the model by setting {\bf
329     GM\_tap\-er\_scheme = 'gkw91'} in {\em data.gmredi}.
330    
331     \subsection{Tapering: Danabasoglu and McWilliams, J. Clim. 1995}
332    
333     The tapering scheme used by Danabasoglu and McWilliams, 1995,
334 adcroft 1.5 \cite{dm:95}, followed a similar procedure but used a different
335 adcroft 1.1 tapering function, $f_1(S)$:
336     \begin{equation}
337     f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right)
338     \end{equation}
339     where $S_c = 0.004$ is a cut-off slope and $S_d=0.001$ is a scale over
340     which the slopes are smoothly tapered. Functionally, the operates in
341     the same way as the GKW91 scheme but has a substantially lower
342     cut-off, turning off the GM/Redi SGS parameterization for weaker
343     slopes.
344    
345     The DM tapering scheme is activated in the model by setting {\bf
346     GM\_tap\-er\_scheme = 'dm95'} in {\em data.gmredi}.
347    
348     \subsection{Tapering: Large, Danabasoglu and Doney, JPO 1997}
349    
350 adcroft 1.5 The tapering used in Large et al., 1997, \cite{ldd:97}, is based on the
351 adcroft 1.1 DM95 tapering scheme, but also tapers the scheme with an additional
352     function of height, $f_2(z)$, so that the GM/Redi SGS fluxes are
353     reduced near the surface:
354     \begin{equation}
355     f_2(S) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \pi/2)\right)
356     \end{equation}
357     where $D = L_\rho |S|$ is a depth-scale and $L_\rho=c/f$ with
358     $c=2$~m~s$^{-1}$. This tapering with height was introduced to fix
359     some spurious interaction with the mixed-layer KPP parameterization.
360    
361     The LDD tapering scheme is activated in the model by setting {\bf
362     GM\_tap\-er\_scheme = 'ldd97'} in {\em data.gmredi}.
363    
364    
365    
366 adcroft 1.2
367 adcroft 1.1 \begin{figure}
368 adcroft 1.4 \begin{center}
369 adcroft 1.1 %\includegraphics{mixedlayer-cox.eps}
370     %\includegraphics{mixedlayer-diff.eps}
371 adcroft 1.4 Figure missing.
372     \end{center}
373 adcroft 1.1 \caption{Mixed layer depth using GM parameterization with a) Cox slope
374     clipping and for comparison b) using horizontal constant diffusion.}
375 adcroft 1.4 \label{fig-mixedlayer}
376 adcroft 1.1 \end{figure}
377    
378 cnh 1.6 \subsection{Package Reference}
379     % DO NOT EDIT HERE
380 adcroft 1.1
381    
382    

  ViewVC Help
Powered by ViewVC 1.1.22