/[MITgcm]/manual/s_phys_pkgs/text/obcs.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/obcs.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download) (as text)
Wed Mar 16 10:39:25 2011 UTC (14 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.10: +18 -18 lines
File MIME type: application/x-tex
fix some grammar and other details

1 heimbach 1.1 \subsection{OBCS: Open boundary conditions for regional modeling}
2    
3     \label{sec:pkg:obcs}
4     \begin{rawhtml}
5     <!-- CMIREDIR:package_obcs: -->
6     \end{rawhtml}
7    
8 heimbach 1.2 Authors:
9     Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch
10 heimbach 1.1
11     \subsubsection{Introduction
12     \label{sec:pkg:obcs:intro}}
13    
14 mlosch 1.7 The OBCS-package is fundamental to regional ocean modelling with the
15 mlosch 1.9 MITgcm, but there are so many details to be considered in
16 mlosch 1.7 regional ocean modelling that this package cannot accomodate all
17     imaginable and possible options. Therefore, for a regional simulation
18     with very particular details, it is recommended to familiarize oneself
19     not only with the compile- and runtime-options of this package, but
20     also with the code itself. In many cases it will be necessary to adapt
21     the obcs-code (in particular \code{S/R OBCS\_CALC}) to the application
22     in question; in these cases the obcs-package (together with the
23     rbcs-package, section \ref{sec:pkg:rbcs}) is a very
24     useful infrastructure for implementing special regional models.
25 heimbach 1.1
26     %----------------------------------------------------------------------
27    
28     \subsubsection{OBCS configuration and compiling
29 jmc 1.4 \label{sec:pkg:obcs:comp}}
30 heimbach 1.1
31     As with all MITgcm packages, OBCS can be turned on or off
32     at compile time
33     %
34     \begin{itemize}
35     %
36     \item
37 mlosch 1.6 using the \code{packages.conf} file by adding \code{obcs} to it,
38 heimbach 1.1 %
39     \item
40 mlosch 1.6 or using \code{genmake2} adding
41     \code{-enable=obcs} or \code{-disable=obcs} switches
42 heimbach 1.1 %
43     \item
44     \textit{Required packages and CPP options:} \\
45     %
46     To alternatives are available for prescribing open boundary values,
47     which differ in the way how OB's are treated in time:
48     A simple time-management (e.g. constant in time, or cyclic with
49     fixed fequency) is provided through
50 mlosch 1.6 S/R \code{obcs\_external\_fields\_load}.
51 heimbach 1.1 More sophisticated ``real-time'' (i.e. calendar time) management is
52 mlosch 1.6 available through \code{obcs\_prescribe\_read}.
53 heimbach 1.1 The latter case requires
54 mlosch 1.6 packages \code{cal} and \code{exf} to be enabled.
55 heimbach 1.1 %
56     \end{itemize}
57 jmc 1.5 (see also Section \ref{sec:buildingCode}).
58 heimbach 1.1
59     Parts of the OBCS code can be enabled or disabled at compile time
60     via CPP preprocessor flags. These options are set in
61 mlosch 1.6 \code{OBCS\_OPTIONS.h}. Table \ref{tab:pkg:obcs:cpp} summarizes them.
62 heimbach 1.1
63 jmc 1.5 \begin{table}[!ht]
64 heimbach 1.1 \centering
65     \label{tab:pkg:obcs:cpp}
66     {\footnotesize
67     \begin{tabular}{|l|l|}
68     \hline
69     \textbf{CPP option} & \textbf{Description} \\
70     \hline \hline
71 mlosch 1.6 \code{ALLOW\_OBCS\_NORTH} &
72 heimbach 1.1 enable Northern OB \\
73 mlosch 1.6 \code{ALLOW\_OBCS\_SOUTH} &
74 heimbach 1.1 enable Southern OB \\
75 mlosch 1.6 \code{ALLOW\_OBCS\_EAST} &
76 heimbach 1.1 enable Eastern OB \\
77 mlosch 1.6 \code{ALLOW\_OBCS\_WEST} &
78 heimbach 1.1 enable Western OB \\
79     \hline
80 mlosch 1.6 \code{ALLOW\_OBCS\_PRESCRIBE} &
81 heimbach 1.1 enable code for prescribing OB's \\
82 mlosch 1.6 \code{ALLOW\_OBCS\_SPONGE} &
83 heimbach 1.1 enable sponge layer code \\
84 mlosch 1.6 \code{ALLOW\_OBCS\_BALANCE} &
85 heimbach 1.1 enable code for balancing transports through OB's \\
86 mlosch 1.6 \code{ALLOW\_ORLANSKI} &
87 heimbach 1.1 enable Orlanski radiation conditions at OB's \\
88 mlosch 1.6 \code{ALLOW\_OBCS\_STEVENS} &
89     enable Stevens (1990) boundary conditions at OB's \\
90     & (currently only implemented for eastern and western \\
91     & boundaries and NOT for ptracers) \\
92 heimbach 1.1 \hline
93     \end{tabular}
94     }
95     \caption{~}
96     \end{table}
97    
98    
99     %----------------------------------------------------------------------
100    
101     \subsubsection{Run-time parameters
102     \label{sec:pkg:obcs:runtime}}
103    
104     Run-time parameters are set in files
105 mlosch 1.6 \code{data.pkg}, \code{data.obcs}, and \code{data.exf}
106 heimbach 1.1 if ``real-time'' prescription is requested
107 mlosch 1.6 (i.e. package \code{exf} enabled).
108 mlosch 1.8 vThese parameter files are read in S/R
109 mlosch 1.6 \code{packages\_readparms.F}, \code{obcs\_readparms.F}, and
110     \code{exf\_readparms.F}, respectively.
111 heimbach 1.1 Run-time parameters may be broken into 3 categories:
112     (i) switching on/off the package at runtime,
113     (ii) OBCS package flags and parameters,
114 mlosch 1.6 (iii) additional timing flags in \code{data.exf}, if selected.
115 heimbach 1.1
116     \paragraph{Enabling the package}
117     ~ \\
118     %
119     The OBCS package is switched on at runtime by setting
120 mlosch 1.6 \code{useOBCS = .TRUE.} in \code{data.pkg}.
121 heimbach 1.1
122     \paragraph{Package flags and parameters}
123     ~ \\
124     %
125     Table \ref{tab:pkg:obcs:runtime_flags} summarizes the
126 mlosch 1.6 runtime flags that are set in \code{data.obcs}, and
127 heimbach 1.1 their default values.
128    
129 jmc 1.5 \begin{table}[!ht]
130 heimbach 1.1 \centering
131     {\footnotesize
132     \begin{tabular}{|l|c|l|}
133     \hline
134     \textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\
135     \hline \hline
136 mlosch 1.6 \multicolumn{3}{|c|}{\textit{basic flags \& parameters} (OBCS\_PARM01) } \\
137 heimbach 1.1 \hline
138     OB\_Jnorth & 0 &
139     Nx-vector of J-indices (w.r.t. Ny) of Northern OB
140     at each I-position (w.r.t. Nx) \\
141     OB\_Jsouth & 0 &
142     Nx-vector of J-indices (w.r.t. Ny) of Southern OB
143     at each I-position (w.r.t. Nx) \\
144     OB\_Ieast & 0 &
145     Ny-vector of I-indices (w.r.t. Nx) of Eastern OB
146     at each J-position (w.r.t. Ny) \\
147     OB\_Iwest & 0 &
148     Ny-vector of I-indices (w.r.t. Nx) of Western OB
149     at each J-position (w.r.t. Ny) \\
150 mlosch 1.6 useOBCSprescribe & \code{.FALSE.} &
151 heimbach 1.1 ~ \\
152 mlosch 1.6 useOBCSsponge & \code{.FALSE.} &
153 heimbach 1.1 ~ \\
154 mlosch 1.6 useOBCSbalance & \code{.FALSE.} &
155 heimbach 1.1 ~ \\
156 mlosch 1.10 OBCS\_balanceFacN/S/E/W & 1 & factor(s) determining the details
157 mlosch 1.8 of the balaning code \\
158 mlosch 1.6 useOrlanskiNorth/South/EastWest & \code{.FALSE.} &
159     turn on Orlanski boundary conditions for individual boundary\\
160     useStevensNorth/South/EastWest & \code{.FALSE.} &
161     turn on Stevens boundary conditions for individual boundary\\
162 heimbach 1.1 OB\textbf{X}\textbf{y}File & ~ &
163     file name of OB field \\
164     ~ & ~ &
165     \textbf{X}: \textbf{N}(orth), \textbf{S}(outh),
166     \textbf{E}(ast), \textbf{W}(est) \\
167     ~ & ~ &
168     \textbf{y}: \textbf{t}(emperature), \textbf{s}(salinity),
169 mlosch 1.6 \textbf{u}(-velocity), \textbf{v}(-velocity), \\
170     ~ & ~ &
171     \textbf{w}(-velocity), \textbf{eta}(sea surface height)\\
172     ~ & ~ &
173     \textbf{a}(sea ice area), \textbf{h}(sea ice thickness),
174     \textbf{sn}(snow thickness), \textbf{sl}(sea ice salinity)\\
175 heimbach 1.1 \hline
176 mlosch 1.6 \multicolumn{3}{|c|}{\textit{Orlanski parameters} (OBCS\_PARM02) } \\
177 heimbach 1.1 \hline
178     cvelTimeScale & 2000 sec &
179     averaging period for phase speed \\
180     CMAX & 0.45 m/s &
181     maximum allowable phase speed-CFL for AB-II \\
182     CFIX & 0.8 m/s &
183     fixed boundary phase speed \\
184 mlosch 1.6 useFixedCEast & \code{.FALSE.} &
185 heimbach 1.1 ~ \\
186 mlosch 1.6 useFixedCWest & \code{.FALSE.} &
187 heimbach 1.1 ~ \\
188     \hline
189 mlosch 1.6 \multicolumn{3}{|c|}{\textit{Sponge-layer parameters} (OBCS\_PARM03)} \\
190 heimbach 1.1 \hline
191     spongeThickness & 0 &
192     sponge layer thickness (in \# grid points) \\
193     Urelaxobcsinner & 0 sec &
194     relaxation time scale at the
195     innermost sponge layer point of a meridional OB \\
196     Vrelaxobcsinner & 0 sec &
197     relaxation time scale at the
198     innermost sponge layer point of a zonal OB \\
199     Urelaxobcsbound & 0 sec &
200     relaxation time scale at the
201     outermost sponge layer point of a meridional OB \\
202     Vrelaxobcsbound & 0 sec &
203     relaxation time scale at the
204     outermost sponge layer point of a zonal OB \\
205 mlosch 1.6 \hline
206     \multicolumn{3}{|c|}{\textit{Stevens parameters} (OBCS\_PARM04) } \\
207     \hline
208     T/SrelaxStevens & 0~sec & relaxation time scale for
209     temperature/salinity \\
210     useStevensPhaseVel & \code{.TRUE.} & \\
211     useStevensAdvection & \code{.TRUE.} & \\
212 heimbach 1.1 \hline
213     \hline
214     \end{tabular}
215     }
216 jmc 1.5 \caption{pkg OBCS run-time parameters}
217     \label{tab:pkg:obcs:runtime_flags}
218 heimbach 1.1 \end{table}
219    
220    
221    
222     %----------------------------------------------------------------------
223    
224 heimbach 1.2 \subsubsection{Defining open boundary positions
225     \label{sec:pkg:obcs:defining}}
226    
227     There are four open boundaries (OBs), a
228     Northern, Southern, Eastern, and Western.
229     All OB locations are specified by their absolute
230     meridional (Northern/Southern) or zonal (Eastern/Western) indices.
231 mlosch 1.6 Thus, for each zonal position $i=1,\ldots,N_x$ a meridional index
232 heimbach 1.2 $j$ specifies the Northern/Southern OB position,
233 mlosch 1.6 and for each meridional position $j=1,\ldots,N_y$, a zonal index
234 heimbach 1.2 $i$ specifies the Eastern/Western OB position.
235 mlosch 1.6 For Northern/Southern OB this defines an $N_x$-dimensional
236 heimbach 1.2 ``row'' array $\tt OB\_Jnorth(Ny)$ / $\tt OB\_Jsouth(Ny)$,
237 mlosch 1.6 and an $N_y$-dimenisonal
238     ``column'' array $\tt OB\_Ieast(Nx)$ / $\tt OB\_Iwest(Nx)$.
239 heimbach 1.2 Positions determined in this way allows Northern/Southern
240     OBs to be at variable $j$ (or $y$) positions, and Eastern/Western
241     OBs at variable $i$ (or $x$) positions.
242     Here, indices refer to tracer points on the C-grid.
243     A zero (0) element in $\tt OB\_I\ldots$, $\tt OB\_J\ldots$
244     means there is no corresponding OB in that column/row.
245     For a Northern/Southern OB, the OB V point is to the South/North.
246     For an Eastern/Western OB, the OB U point is to the West/East.
247 mlosch 1.8 For example,
248     \begin{tabbing}
249     \code{OB\_Jnorth(3)=34} \= means that: \= \\
250     \> \code{T(3,34)} \> is a an OB point \\
251     \> \code{U(3,34)} \> is a an OB point \\
252     \> \code{V(3,34)} \> is a an OB point \\
253     \code{OB\_Jsouth(3)=1} \> means that: \\
254     \> \code{T(3,1)} \> is a an OB point \\
255     \> \code{U(3,1)} \> is a an OB point \\
256     \> \code{V(3,2)} \> is a an OB point \\
257     \code{OB\_Ieast(10)=69} \> means that: \> \\
258     \> \code{T(69,10)} \> is a an OB point \\
259     \> \code{U(69,10)} \> is a an OB point \\
260     \> \code{V(69,10)} \> is a an OB point \\
261     \code{OB\_Iwest(10)=1} \> means that: \> \\
262     \> \code{T(1,10)} \> is a an OB point \\
263     \> \code{U(2,10)} \> is a an OB point \\
264     \> \code{V(1,10)} \> is a an OB point
265     \end{tabbing}
266     For convenience, negative values for \code{Jnorth}/\code{Ieast} refer to
267 heimbach 1.2 points relative to the Northern/Eastern edges of the model
268     eg. $\tt OB\_Jnorth(3)=-1$ means that the point $\tt (3,Ny)$
269     is a northern OB.
270    
271     \noindent
272     \textsf{Add special comments for case \#define NONLIN\_FRSURF,
273     see obcs\_ini\_fixed.F}
274    
275     %----------------------------------------------------------------------
276    
277 heimbach 1.1 \subsubsection{Equations and key routines
278     \label{sec:pkg:obcs:equations}}
279    
280 heimbach 1.2 \paragraph{OBCS\_READPARMS:} ~ \\
281     Set OB positions through arrays
282     {\tt OB\_Jnorth(Ny), OB\_Jsouth(Ny), OB\_Ieast(Nx), OB\_Iwest(Nx)},
283 jmc 1.5 and runtime flags (see Table \ref{tab:pkg:obcs:runtime_flags}).
284 heimbach 1.1
285     \paragraph{OBCS\_CALC:} ~ \\
286 heimbach 1.2 %
287     Top-level routine for filling values to be applied at OB for
288     $T,S,U,V,\eta$ into corresponding
289     ``slice'' arrays $(x,z)$, $(y,z)$ for each OB:
290     $\tt OB[N/S/E/W][t/s/u/v]$; e.g. for salinity array at
291     Southern OB, array name is $\tt OBSt$.
292     Values filled are either
293     %
294     \begin{itemize}
295     %
296     \item
297     constant vertical $T,S$ profiles as specified in file
298     {\tt data} ({\tt tRef(Nr), sRef(Nr)}) with zero velocities $U,V$,
299     %
300     \item
301     $T,S,U,V$ values determined via Orlanski radiation conditions
302     (see below),
303     %
304     \item
305     prescribed time-constant or time-varying fields (see below).
306     %
307 mlosch 1.6 \item
308     use prescribed boundary fields to compute Stevens boundary conditions.
309 heimbach 1.2 \end{itemize}
310    
311 mlosch 1.6 \paragraph{ORLANSKI:} ~ \\
312 heimbach 1.2 %
313 mlosch 1.6 Orlanski radiation conditions \citep{orl:76}, examples can be found in
314     \code{verification/dome} and
315     \code{verification/tutorial\_plume\_on\_slope}
316     (\ref{sec:eg-gravityplume}).
317    
318     \paragraph{OBCS\_PRESCRIBE\_READ:} ~ \\
319     %
320     When \code{useOBCSprescribe = .TRUE.} the model tries to read
321     temperature, salinity, u- and v-velocities from files specified in the
322     runtime parameters \code{OB[N/S/E/W][t/s/u/v]File}. These files are
323     the usual IEEE, big-endian files with dimensions of a section along an
324     open boundary:
325     \begin{itemize}
326     \item For North/South boundary files the dimensions are
327     $(N_x\times N_r\times\mbox{time levels})$, for East/West boundary
328     files the dimensions are $(N_y\times N_r\times\mbox{time levels})$.
329     \item If a non-linear free surface is used
330     (\ref{sec:nonlinear-freesurface}), additional files
331     \code{OB[N/S/E/W]etaFile} for the sea surface height $\eta$ with
332     dimension $(N_{x/y}\times\mbox{time levels})$ may be specified.
333     \item If non-hydrostatic dynamics are used
334     (\ref{sec:non-hydrostatic}), additional files
335     \code{OB[N/S/E/W]wFile} for the vertical velocity $w$ with
336 mlosch 1.7 dimensions $(N_{x/y}\times N_r\times\mbox{time levels})$ can be
337 mlosch 1.6 specified.
338     \item If \code{useSEAICE=.TRUE.} then additional files
339     \code{OB[N/S/E/W][a,h,sl,sn,uice,vice]} for sea ice area, thickness
340     (\code{HEFF}), seaice salinity, snow and ice velocities
341 mlosch 1.7 $(N_{x/y}\times\mbox{time levels})$ can be specified.
342 mlosch 1.6 \end{itemize}
343 mlosch 1.7 As in \code{S/R external\_fields\_load} or the \code{exf}-package, the
344     code reads two time levels for each variable, e.g.\ \code{OBNu0} and
345     \code{OBNu1}, and interpolates linearly between these time levels to
346     obtain the value \code{OBNu} at the current model time (step). When the
347     \code{exf}-package is used, the time levels are controlled for each
348     boundary separately in the same way as the \code{exf}-fields in
349     \code{data.exf}, namelist \code{EXF\_NML\_OBCS}. The runtime flags
350 mlosch 1.6 follow the above naming conventions, e.g. for the western boundary the
351     corresponding flags are \code{OBCWstartdate1/2} and
352     \code{OBCWperiod}. Sea-ice boundary values are controlled separately
353 mlosch 1.7 with \code{siobWstartdate1/2} and \code{siobWperiod}. When the
354     \code{exf}-package is not used, the time levels are controlled by the
355     runtime flags \code{externForcingPeriod} and \code{externForcingCycle}
356     in \code{data}, see \code{verification/exp4} for an example.
357 mlosch 1.6
358     \paragraph{OBCS\_CALC\_STEVENS:} ~ \\
359     (THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. SO
360     FAR ONLY EASTERN AND WESTERN BOUNDARIES ARE SUPPORTED.) \\
361     The boundary conditions following \citet{stevens:90} require the
362     vertically averaged normal velocity (originally specified as a stream
363     function along the open boundary) $\bar{u}_{ob}$ and the tracer fields
364     $\chi_{ob}$ (note: passive tracers are currently not implemented and
365     the code stops when package \code{ptracers} is used together with this
366     option). Currently, the code vertically averages the normal velocity
367     as specified. From these prescribed values the code computes the
368     boundary values for the next timestep $n+1$ as follows (as an
369     example, we use the notation for an eastern or western boundary):
370     \begin{itemize}
371     \item $u^{n+1}(y,z) = \bar{u}_{ob}(y) + u'(y,z)$, where $u_{n}'$ is the
372     deviation from the vertically averaged velocity one grid point
373     inward from the boundary.
374     \item If $u^{n+1}$ is directed into the model domain, the boudary
375     value for tracer $\chi$ is restored to the prescribed values:
376     \[\chi^{n+1} = \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} -
377     \chi^{n}),\] where $\tau_\chi$ is the relaxation time
378     scale \texttt{T/SrelaxStevens}.
379     \item If $u^{n+1}$ is directed out of the model domain, the tracer is
380     advected out of the domain with $u^{n+1}+c$, where $c$ is a phase
381     velocity estimated as
382     $\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}$.
383     For test purposes, the phase velocity contribution or the entire
384     advection can
385     be turned off by setting the corresponding parameters
386     \texttt{useStevensPhaseVel} and \texttt{useStevensAdvection} to
387     \texttt{.FALSE.}.\end{itemize} See \citet{stevens:90} for details.
388 heimbach 1.1
389 mlosch 1.10 \paragraph{OBCS\_BALANCE\_FLOW:} ~ \\
390 heimbach 1.1 %
391 mlosch 1.10 When turned on (\code{ALLOW\_OBCS\_BALANCE}
392 mlosch 1.7 defined in \code{OBCS\_OPTIONS.h} and \code{useOBCSbalance=.true.} in
393 mlosch 1.10 \code{data.obcs/OBCS\_PARM01}), this routine balances the net flow
394     across the open boundaries. By default the net flow across the
395     boundaries is computed and all normal velocities on boundaries are
396     adjusted to obtain zero net inflow.
397    
398     This behavior can be controlled with the runtime flags
399     \code{OBCS\_balanceFacN/S/E/W}. The values of these flags determine
400     how the net inflow is redistributed as small correction velocities
401     between the individual sections. A value ``\code{-1}'' balances an
402     individual boundary, values $>0$ determine the relative size of the
403 mlosch 1.11 correction. For example, the values
404 mlosch 1.10 \begin{tabbing}
405 mlosch 1.11 \code{OBCS\_balanceFacE}\code{ = 1.,} \\
406     \code{OBCS\_balanceFacW}\code{ = -1.,} \\
407     \code{OBCS\_balanceFacN}\code{ = 2.,} \\
408     \code{OBCS\_balanceFacS}\code{ = 0.,}
409 mlosch 1.10 \end{tabbing}
410 mlosch 1.11 make the model
411 mlosch 1.10 \begin{itemize}
412     \item correct Western \code{OBWu} by substracting a uniform velocity to
413 mlosch 1.11 ensure zero net transport through the Western open boundary;
414 mlosch 1.10 \item correct Eastern and Northern normal flow, with the Northern
415 mlosch 1.11 velocity correction two times larger than the Eastern correction, but
416     \emph{not} the Southern normal flow, to ensure that the total inflow through
417     East, Northern, and Southern open boundary is balanced.
418 mlosch 1.10 \end{itemize}
419    
420     The old method of balancing the net flow for all sections individually
421     can be recovered by setting all flags to -1. Then the normal
422     velocities across each of the four boundaries are modified separately,
423     so that the net volume transport across \emph{each} boundary is
424     zero. For example, for the western boundary at $i=i_{b}$, the modified
425     velocity is:
426 mlosch 1.7 \[
427     u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k}
428     OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}.
429     \]
430 mlosch 1.11 This also ensures a net total inflow of zero through all boundaries,
431     but this combination of flags is \emph{not} useful if you want to
432     simulate, say, a sector of the Southern Ocean with a strong ACC
433     entering through the western and leaving through the eastern boundary,
434     because the value of ``\code{-1}'' for these flags will make sure that
435     the strong inflow is removed. Clearly, gobal balancing with
436     \code{OBCS\_balanceFacE/W/N/S} $\ge0$ is the preferred method.
437 heimbach 1.1
438 heimbach 1.2 \paragraph{OBCS\_APPLY\_*:} ~ \\
439 heimbach 1.1 ~
440    
441 mlosch 1.10 \paragraph{OBCS\_SPONGE:} ~ \\
442 heimbach 1.1 %
443 mlosch 1.10 The sponge layer code (turned on with \code{ALLOW\_OBCS\_SPONGE} and
444     \code{useOBCSsponge}) adds a relaxation term to the right-hand-side of
445     the momentum and tracer equations. The variables are relaxed towards
446     the boundary values with a relaxation time scale that increases
447     linearly with distance from the boundary
448     \[
449     G_{\chi}^{\mbox{(sponge)}} =
450     - \frac{\chi - [( L - \delta{L} ) \chi_{BC} + \delta{L}\chi]/L}
451     {[(L-\delta{L})\tau_{b}+\delta{L}\tau_{i}]/L}
452     = - \frac{\chi - [( 1 - l ) \chi_{BC} + l\chi]}
453     {[(1-l)\tau_{b}+l\tau_{i}]}
454     \]
455     where $\chi$ is the model variable (U/V/T/S) in the interior,
456     $\chi_{BC}$ the boundary value, $L$ the thickness of the sponge layer
457     (runtime parameter \code{spongeThickness} in number of grid points),
458 mlosch 1.11 $\delta{L}\in[0,L]$ ($\frac{\delta{L}}{L}=l\in[0,1]$) the distance from the boundary (also in grid points), and
459 mlosch 1.10 $\tau_{b}$ (runtime parameters \code{Urelaxobcsbound} and
460     \code{Vrelaxobcsbound}) and $\tau_{i}$ (runtime parameters
461     \code{Urelaxobcsinner} and \code{Vrelaxobcsinner}) the relaxation time
462     scales on the boundary and at the interior termination of the sponge
463     layer. The parameters \code{Urelaxobcsbound/inner} set the relaxation
464     time scales for the Eastern and Western boundaries,
465     \code{Vrelaxobcsbound/inner} for the Northern and Southern boundaries.
466 heimbach 1.1
467     \paragraph{OB's with nonlinear free surface} ~ \\
468     %
469     ~
470    
471    
472     %----------------------------------------------------------------------
473    
474     \subsubsection{Flow chart
475     \label{sec:pkg:obcs:flowchart}}
476    
477    
478     {\footnotesize
479     \begin{verbatim}
480    
481     C !CALLING SEQUENCE:
482     c ...
483    
484     \end{verbatim}
485     }
486    
487     %----------------------------------------------------------------------
488    
489     \subsubsection{OBCS diagnostics
490     \label{sec:pkg:obcs:diagnostics}}
491    
492     Diagnostics output is available via the diagnostics package
493     (see Section \ref{sec:pkg:diagnostics}).
494     Available output fields are summarized in
495     Table \ref{tab:pkg:obcs:diagnostics}.
496    
497 jmc 1.5 \begin{table}[!ht]
498 heimbach 1.1 \centering
499     \label{tab:pkg:obcs:diagnostics}
500     {\footnotesize
501     \begin{verbatim}
502     ------------------------------------------------------
503     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
504     ------------------------------------------------------
505    
506     \end{verbatim}
507     }
508     \caption{~}
509     \end{table}
510    
511     %----------------------------------------------------------------------
512    
513     \subsubsection{Reference experiments}
514 mlosch 1.7 In the directory \code{verifcation}, the following experiments use
515     \code{obcs}:
516     \begin{itemize}
517     \item \code{exp4}: box with 4 open boundaries, simulating flow over a
518     Gaussian bump based on \citet{adcroft:97}, also tests
519     Stevens-boundary conditions;
520 mlosch 1.8 \item \code{dome}: based on the project ``Dynamics of Overflow Mixing
521     and Entrainment''
522     (\url{http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html}), uses
523     Orlanski-BCs;
524 mlosch 1.7 \item \code{internal\_wave}: uses a heavily modified \code{S/R~OBCS\_CALC}
525     \item \code{seaice\_obcs}: simple example who to use the sea-ice
526     related code, based on \code{lab\_sea};
527     \item \code{tutorial\_plume\_on\_slope}: uses Orlanski-BCs, see also
528     section~\ref{sec:eg-gravityplume}.
529     \end{itemize}
530 heimbach 1.1
531    
532    
533     %----------------------------------------------------------------------
534    
535     \subsubsection{References}
536    
537 molod 1.3 \subsubsection{Experiments and tutorials that use obcs}
538     \label{sec:pkg:obcs:experiments}
539    
540     \begin{itemize}
541 mlosch 1.7 \item \code{tutorial\_plume\_on\_slope} (section~\ref{sec:eg-gravityplume})
542 molod 1.3 \end{itemize}
543    
544 mlosch 1.6
545     %%% Local Variables:
546     %%% mode: latex
547     %%% TeX-master: "../../manual"
548     %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22