/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download) (as text)
Wed Mar 2 13:46:38 2011 UTC (14 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.15: +94 -67 lines
File MIME type: application/x-tex
reorder text a little, clean up text for combining seaice and thsice,
add more headings/paragraph-commands

1 mlosch 1.16 % $Header: /u/gcmpack/manual/s_phys_pkgs/text/seaice.tex,v 1.15 2011/02/28 16:27:56 mlosch Exp $
2 edhill 1.1 % $Name: $
3    
4     %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5     %%EH3 which was written by Dimitris M.
6    
7    
8 molod 1.4 \subsection{SEAICE Package}
9 edhill 1.1 \label{sec:pkg:seaice}
10 edhill 1.2 \begin{rawhtml}
11     <!-- CMIREDIR:package_seaice: -->
12     \end{rawhtml}
13 edhill 1.1
14 heimbach 1.6 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15     Patrick Heimbach, Chris Hill and Jinlun Zhang
16    
17     %----------------------------------------------------------------------
18     \subsubsection{Introduction
19 jmc 1.12 \label{sec:pkg:seaice:intro}}
20 heimbach 1.6
21    
22 edhill 1.1 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 heimbach 1.6 sea-ice model.
24    
25     CPP options enable or disable different aspects of the package
26     (Section \ref{sec:pkg:seaice:config}).
27 mlosch 1.8 Run-Time options, flags, filenames and field-related dates/times are
28 mlosch 1.9 set in \code{data.seaice}
29 heimbach 1.6 (Section \ref{sec:pkg:seaice:runtime}).
30     A description of key subroutines is given in Section
31     \ref{sec:pkg:seaice:subroutines}.
32     Input fields, units and sign conventions are summarized in
33     Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34 mlosch 1.10 output is listed in Section \ref{sec:pkg:seaice:diagnostics}.
35 heimbach 1.6
36     %----------------------------------------------------------------------
37    
38     \subsubsection{SEAICE configuration, compiling \& running}
39    
40     \paragraph{Compile-time options
41     \label{sec:pkg:seaice:config}}
42     ~
43    
44     As with all MITgcm packages, SEAICE can be turned on or off at compile time
45     %
46     \begin{itemize}
47     %
48     \item
49 mlosch 1.9 using the \code{packages.conf} file by adding \code{seaice} to it,
50 heimbach 1.6 %
51     \item
52 mlosch 1.9 or using \code{genmake2} adding
53     \code{-enable=seaice} or \code{-disable=seaice} switches
54 heimbach 1.6 %
55     \item
56     \textit{required packages and CPP options}: \\
57 mlosch 1.9 SEAICE requires the external forcing package \code{exf} to be enabled;
58 heimbach 1.6 no additional CPP options are required.
59     %
60     \end{itemize}
61 jmc 1.12 (see Section \ref{sec:buildingCode}).
62 heimbach 1.6
63     Parts of the SEAICE code can be enabled or disabled at compile time
64     via CPP preprocessor flags. These options are set in either
65 mlosch 1.9 \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66 heimbach 1.6 Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67    
68 jmc 1.12 \begin{table}[!ht]
69 heimbach 1.6 \centering
70     \label{tab:pkg:seaice:cpp}
71     {\footnotesize
72 mlosch 1.8 \begin{tabular}{|l|p{10cm}|}
73 heimbach 1.6 \hline
74     \textbf{CPP option} & \textbf{Description} \\
75     \hline \hline
76 mlosch 1.9 \code{SEAICE\_DEBUG} &
77 heimbach 1.6 Enhance STDOUT for debugging \\
78 mlosch 1.9 \code{SEAICE\_ALLOW\_DYNAMICS} &
79 heimbach 1.6 sea-ice dynamics code \\
80 mlosch 1.9 \code{SEAICE\_CGRID} &
81 mlosch 1.8 LSR solver on C-grid (rather than original B-grid) \\
82 mlosch 1.9 \code{SEAICE\_ALLOW\_EVP} &
83 heimbach 1.6 use EVP rather than LSR rheology solver \\
84 mlosch 1.9 \code{SEAICE\_EXTERNAL\_FLUXES} &
85 heimbach 1.6 use EXF-computed fluxes as starting point \\
86 mlosch 1.9 \code{SEAICE\_MULTICATEGORY} &
87 mlosch 1.8 enable 8-category thermodynamics (by default undefined)\\
88 mlosch 1.9 \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 mlosch 1.8 enable linear dependence of the freezing point on salinity
90     (by default undefined)\\
91 mlosch 1.9 \code{ALLOW\_SEAICE\_FLOODING} &
92 heimbach 1.6 enable snow to ice conversion for submerged sea-ice \\
93 mlosch 1.9 \code{SEAICE\_SALINITY} &
94 mlosch 1.8 enable "salty" sea-ice (by default undefined) \\
95 mlosch 1.9 \code{SEAICE\_AGE} &
96 mlosch 1.8 enable "age tracer" sea-ice (by default undefined) \\
97 mlosch 1.9 \code{SEAICE\_CAP\_HEFF} &
98 mlosch 1.8 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99 mlosch 1.9 \code{SEAICE\_BICE\_STRESS} &
100 mlosch 1.8 B-grid only for backward compatiblity: turn on ice-stress on
101     ocean\\
102 mlosch 1.9 \code{EXPLICIT\_SSH\_SLOPE} &
103 mlosch 1.8 B-grid only for backward compatiblity: use ETAN for tilt
104     computations rather than geostrophic velocities \\
105 heimbach 1.6 \hline
106     \end{tabular}
107     }
108     \caption{~}
109     \end{table}
110    
111     %----------------------------------------------------------------------
112    
113     \subsubsection{Run-time parameters
114     \label{sec:pkg:seaice:runtime}}
115    
116 mlosch 1.16 Run-time parameters (see Table~\ref{tab:pkg:seaice:runtimeparms}) are set
117     in files \code{data.pkg} (read in \code{packages\_readparms.F}), and
118     \code{data.seaice} (read in \code{seaice\_readparms.F}).
119 heimbach 1.6
120     \paragraph{Enabling the package}
121     ~ \\
122     %
123 mlosch 1.8 A package is switched on/off at run-time by setting
124 mlosch 1.9 (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125 heimbach 1.6
126     \paragraph{General flags and parameters}
127     ~ \\
128     %
129 mlosch 1.8 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 jmc 1.11 \input{s_phys_pkgs/text/seaice-parms.tex}
131 heimbach 1.6
132 mlosch 1.10 \paragraph{Input fields and units\label{sec:pkg:seaice:fields_units}}
133     \begin{description}
134     \item[\code{HeffFile}:] Initial sea ice thickness averaged over grid cell
135     in meters; initializes variable \code{HEFF};
136     \item[\code{AreaFile}:] Initial fractional sea ice cover, range $[0,1]$;
137     initializes variable \code{AREA};
138     \item[\code{HsnowFile}:] Initial snow thickness on sea ice averaged
139     over grid cell in meters; initializes variable \code{HSNOW};
140     \item[\code{HsaltFile}:] Initial salinity of sea ice averaged over grid
141     cell in g/m$^2$; initializes variable \code{HSALT};
142     \item[\code{IceAgeFile}:] Initial ice age of sea ice averaged over grid
143     cell in seconds; initializes variable \code{ICEAGE};
144     \end{description}
145 heimbach 1.6
146     %----------------------------------------------------------------------
147     \subsubsection{Description
148     \label{sec:pkg:seaice:descr}}
149    
150     [TO BE CONTINUED/MODIFIED]
151    
152 mlosch 1.8 % Sea-ice model thermodynamics are based on Hibler
153     % \cite{hib80}, that is, a 2-category model that simulates ice thickness
154     % and concentration. Snow is simulated as per Zhang et al.
155     % \cite{zha98a}. Although recent years have seen an increased use of
156     % multi-category thickness distribution sea-ice models for climate
157     % studies, the Hibler 2-category ice model is still the most widely used
158     % model and has resulted in realistic simulation of sea-ice variability
159     % on regional and global scales. Being less complicated, compared to
160     % multi-category models, the 2-category model permits easier application
161     % of adjoint model optimization methods.
162    
163     % Note, however, that the Hibler 2-category model and its variants use a
164     % so-called zero-layer thermodynamic model to estimate ice growth and
165     % decay. The zero-layer thermodynamic model assumes that ice does not
166     % store heat and, therefore, tends to exaggerate the seasonal
167     % variability in ice thickness. This exaggeration can be significantly
168     % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
169     % model that permits heat storage in ice. Recently, the three-layer
170     % thermodynamic model has been reformulated by Winton \cite{win00}. The
171     % reformulation improves model physics by representing the brine content
172     % of the upper ice with a variable heat capacity. It also improves
173     % model numerics and consumes less computer time and memory. The Winton
174     % sea-ice thermodynamics have been ported to the MIT GCM; they currently
175     % reside under pkg/thsice. The package pkg/thsice is fully
176     % compatible with pkg/seaice and with pkg/exf. When turned on togeter
177     % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
178     % Winton thermodynamics
179    
180     The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
181     viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
182     first introduced by \citet{hib79, hib80}. In order to adapt this model
183     to the requirements of coupled ice-ocean state estimation, many
184     important aspects of the original code have been modified and
185     improved:
186     \begin{itemize}
187     \item the code has been rewritten for an Arakawa C-grid, both B- and
188     C-grid variants are available; the C-grid code allows for no-slip
189     and free-slip lateral boundary conditions;
190     \item two different solution methods for solving the nonlinear
191     momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
192     \citep{hun97};
193     \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
194     \citet{cam08};
195     \item ice variables are advected by sophisticated, conservative
196     advection schemes with flux limiting;
197     \item growth and melt parameterizations have been refined and extended
198     in order to allow for more stable automatic differentiation of the code.
199     \end{itemize}
200     The sea ice model is tightly coupled to the ocean compontent of the
201     MITgcm. Heat, fresh water fluxes and surface stresses are computed
202     from the atmospheric state and -- by default -- modified by the ice
203     model at every time step.
204 edhill 1.1
205     The ice dynamics models that are most widely used for large-scale
206 mlosch 1.8 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
207     cavitating fluid (CF) model \citep{fla92}, and the
208     elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
209 edhill 1.1 model, the CF model does not allow ice shear in calculating ice
210     motion, stress, and deformation. EVP models approximate VP by adding
211     an elastic term to the equations for easier adaptation to parallel
212     computers. Because of its higher accuracy in plastic solution and
213     relatively simpler formulation, compared to the EVP model, we decided
214 mlosch 1.8 to use the VP model as the default dynamic component of our ice
215     model. To do this we extended the line successive over relaxation
216     (LSOR) method of \citet{zhang97} for use in a parallel
217 mlosch 1.16 configuration. An EVP model and a free-drift implemtation can be
218     selected with runtime flags.
219 mlosch 1.8
220 mlosch 1.16 \paragraph{Compatibility with ice-thermodynamics package \code{thsice}\label{sec:pkg:seaice:thsice}}~\\
221     %
222     Note, that by default the \code{seaice}-package includes the orginial
223 mlosch 1.8 so-called zero-layer thermodynamics following \citet{hib80} with a
224     snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
225     assumes that ice does not store heat and, therefore, tends to
226     exaggerate the seasonal variability in ice thickness. This
227     exaggeration can be significantly reduced by using
228 mlosch 1.16 \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic
229     model that permits heat storage in ice. Recently, the three-layer thermodynamic model has been reformulated by
230     \citet{win00}. The reformulation improves model physics by
231     representing the brine content of the upper ice with a variable heat
232     capacity. It also improves model numerics and consumes less computer
233     time and memory.
234    
235     The Winton sea-ice thermodynamics have been ported to the MIT GCM;
236     they currently reside under \code{pkg/thsice}. The package
237     \code{thsice} is described in section~\ref{sec:pkg:thsice}; it is
238     fully compatible with the packages \code{seaice} and \code{exf}. When
239     turned on together with \code{seaice}, the zero-layer thermodynamics
240     are replaced by the Winton thermodynamics. In order to use the
241     \code{seaice}-package with the thermodynamics of \code{thsice},
242     compile both packages and turn both package on in \code{data.pkg}; see
243     an example in \code{global\_ocean.cs32x15/input.icedyn}. Note, that
244     once \code{thsice} is turned on, the variables and diagnostics
245     associated to the default thermodynamics are meaningless, and the
246     diagnostics of \code{thsice} have to be used instead.
247 edhill 1.1
248 mlosch 1.16 \paragraph{Surface forcing\label{sec:pkg:seaice:surfaceforcing}}~\\
249     %
250 edhill 1.1 The sea ice model requires the following input fields: 10-m winds, 2-m
251     air temperature and specific humidity, downward longwave and shortwave
252     radiations, precipitation, evaporation, and river and glacier runoff.
253     The sea ice model also requires surface temperature from the ocean
254 mlosch 1.8 model and the top level horizontal velocity. Output fields are
255     surface wind stress, evaporation minus precipitation minus runoff, net
256     surface heat flux, and net shortwave flux. The sea-ice model is
257     global: in ice-free regions bulk formulae are used to estimate oceanic
258     forcing from the atmospheric fields.
259    
260 mlosch 1.16 \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}~\\
261     %
262 mlosch 1.8 \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
263     \newcommand{\vtau}{\vek{\mathbf{\tau}}}
264     The momentum equation of the sea-ice model is
265     \begin{equation}
266     \label{eq:momseaice}
267     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
268     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
269     \end{equation}
270     where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
271     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
272     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
273     directions, respectively;
274     $f$ is the Coriolis parameter;
275     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
276     respectively;
277     $g$ is the gravity accelation;
278     $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
279     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
280     height potential in response to ocean dynamics ($g\eta$), to
281     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
282     reference density) and a term due to snow and ice loading \citep{cam08};
283     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
284     stress tensor $\sigma_{ij}$. %
285     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
286     terms are given by
287     \begin{align*}
288     \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
289     R_{air} (\vek{U}_{air} -\vek{u}), \\
290     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
291 mlosch 1.9 R_{ocean}(\vek{U}_{ocean}-\vek{u}),
292 mlosch 1.8 \end{align*}
293     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
294     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
295     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
296     densities; and $R_{air/ocean}$ are rotation matrices that act on the
297     wind/current vectors.
298    
299 mlosch 1.16 \paragraph{Viscous-Plastic (VP) Rheology and LSOR solver \label{sec:pkg:seaice:VPdynamics}}~\\
300     %
301 mlosch 1.8 For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
302     be related to the ice strain rate and strength by a nonlinear
303     viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
304     \begin{equation}
305     \label{eq:vpequation}
306     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
307     + \left[\zeta(\dot{\epsilon}_{ij},P) -
308     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
309     - \frac{P}{2}\delta_{ij}.
310     \end{equation}
311     The ice strain rate is given by
312     \begin{equation*}
313     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
314     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
315     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
316     \end{equation*}
317     The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
318     both thickness $h$ and compactness (concentration) $c$:
319     \begin{equation}
320     P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
321     \label{eq:icestrength}
322     \end{equation}
323 mlosch 1.9 with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
324 mlosch 1.8 $C^{*}=20$. The nonlinear bulk and shear
325     viscosities $\eta$ and $\zeta$ are functions of ice strain rate
326     invariants and ice strength such that the principal components of the
327     stress lie on an elliptical yield curve with the ratio of major to
328     minor axis $e$ equal to $2$; they are given by:
329     \begin{align*}
330     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
331     \zeta_{\max}\right) \\
332     \eta =& \frac{\zeta}{e^2} \\
333     \intertext{with the abbreviation}
334     \Delta = & \left[
335     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
336     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
337     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
338     \right]^{\frac{1}{2}}.
339     \end{align*}
340     The bulk viscosities are bounded above by imposing both a minimum
341     $\Delta_{\min}$ (for numerical reasons, run-time parameter
342 mlosch 1.9 \code{SEAICE\_EPS} with a default value of
343 mlosch 1.8 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
344     P_{\max}/\Delta^*$, where
345     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
346     the option of bounding $\zeta$ from below by setting run-time
347 mlosch 1.9 parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
348 mlosch 1.8 recommended). For stress tensor computation the replacement pressure $P
349     = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
350     always lies on the elliptic yield curve by definition.
351    
352     In the current implementation, the VP-model is integrated with the
353     semi-implicit line successive over relaxation (LSOR)-solver of
354     \citet{zhang97}, which allows for long time steps that, in our case,
355     are limited by the explicit treatment of the Coriolis term. The
356     explicit treatment of the Coriolis term does not represent a severe
357     limitation because it restricts the time step to approximately the
358     same length as in the ocean model where the Coriolis term is also
359     treated explicitly.
360    
361 mlosch 1.16 \paragraph{Elastic-Viscous-Plastic (EVP) Dynamics\label{sec:pkg:seaice:EVPdynamics}}~\\
362     %
363 mlosch 1.8 \citet{hun97}'s introduced an elastic contribution to the strain
364     rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
365     the resulting elastic-viscous-plastic (EVP) and VP models are
366     identical at steady state,
367     \begin{equation}
368     \label{eq:evpequation}
369     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
370     \frac{1}{2\eta}\sigma_{ij}
371     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
372     + \frac{P}{4\zeta}\delta_{ij}
373     = \dot{\epsilon}_{ij}.
374     \end{equation}
375     %In the EVP model, equations for the components of the stress tensor
376     %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
377     %used and compared the present sea-ice model study.
378     The EVP-model uses an explicit time stepping scheme with a short
379     timestep. According to the recommendation of \citet{hun97}, the
380 mlosch 1.16 EVP-model should be stepped forward in time 120 times
381     ($\code{SEAICE\_deltaTevp} = \code{SEAICIE\_deltaTdyn}/120$) within
382     the physical ocean model time step (although this parameter is under
383     debate), to allow for elastic waves to disappear. Because the scheme
384     does not require a matrix inversion it is fast in spite of the small
385     internal timestep and simple to implement on parallel computers
386 mlosch 1.8 \citep{hun97}. For completeness, we repeat the equations for the
387     components of the stress tensor $\sigma_{1} =
388     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
389     $\sigma_{12}$. Introducing the divergence $D_D =
390     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
391     and shearing strain rates, $D_T =
392     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
393     2\dot{\epsilon}_{12}$, respectively, and using the above
394     abbreviations, the equations~\ref{eq:evpequation} can be written as:
395     \begin{align}
396     \label{eq:evpstresstensor1}
397     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
398     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
399     \label{eq:evpstresstensor2}
400     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
401     &= \frac{P}{2T\Delta} D_T \\
402     \label{eq:evpstresstensor12}
403     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
404     &= \frac{P}{4T\Delta} D_S
405     \end{align}
406 mlosch 1.16 Here, the elastic parameter $E$ is redefined in terms of a damping
407     timescale $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
408     $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external
409     (long) timestep $\Delta{t}$. $E_{0} = \frac{1}{3}$ is the default
410     value in the code and close to what \citet{hun97} and
411     \citet{hun01} recommend.
412 mlosch 1.8
413 mlosch 1.9 To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
414     \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
415 mlosch 1.8 (default). The solver is turned on by setting the sub-cycling time
416 mlosch 1.9 step \code{SEAICE\_deltaTevp} to a value larger than zero. The
417 mlosch 1.8 choice of this time step is under debate. \citet{hun97} recommend
418     order(120) time steps for the EVP solver within one model time step
419 mlosch 1.9 $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
420 mlosch 1.8 steps within the forcing time scale, but then we recommend adjusting
421     the damping time scale $T$ accordingly, by setting either
422 mlosch 1.9 \code{SEAICE\_elasticParm} ($E_{0}$), so that
423 mlosch 1.8 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
424 mlosch 1.9 \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
425 mlosch 1.8
426 mlosch 1.16 \paragraph{Truncated ellipse method (TEM) for yield curve \label{sec:pkg:seaice:TEM}}~\\
427     %
428     In the so-called truncated ellipse method the shear viscosity $\eta$
429     is capped to suppress any tensile stress \citep{hibler97, geiger98}:
430     \begin{equation}
431     \label{eq:etatem}
432     \eta = \min\left(\frac{\zeta}{e^2},
433     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
434     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
435     +4\dot{\epsilon}_{12}^2}}\right).
436     \end{equation}
437     To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
438     \code{SEAICE\_OPTIONS.h} and turn it on with
439     \code{SEAICEuseTEM} in \code{data.seaice}.
440    
441     \paragraph{Ice-Ocean stress \label{sec:pkg:seaice:iceoceanstress}}~\\
442     %
443 mlosch 1.8 Moving sea ice exerts a stress on the ocean which is the opposite of
444     the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
445     applied directly to the surface layer of the ocean model. An
446     alternative ocean stress formulation is given by \citet{hibler87}.
447     Rather than applying $\vtau_{ocean}$ directly, the stress is derived
448     from integrating over the ice thickness to the bottom of the oceanic
449     surface layer. In the resulting equation for the \emph{combined}
450     ocean-ice momentum, the interfacial stress cancels and the total
451     stress appears as the sum of windstress and divergence of internal ice
452     stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
453     Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
454     now the velocity in the surface layer of the ocean that is used to
455     advect tracers, is really an average over the ocean surface
456     velocity and the ice velocity leading to an inconsistency as the ice
457     temperature and salinity are different from the oceanic variables.
458     To turn on the stress formulation of \citet{hibler87}, set
459 mlosch 1.9 \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
460 mlosch 1.8
461    
462     % Our discretization differs from \citet{zhang97, zhang03} in the
463     % underlying grid, namely the Arakawa C-grid, but is otherwise
464     % straightforward. The EVP model, in particular, is discretized
465     % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
466     % center points and $\sigma_{12}$ on the corner (or vorticity) points of
467     % the grid. With this choice all derivatives are discretized as central
468     % differences and averaging is only involved in computing $\Delta$ and
469     % $P$ at vorticity points.
470    
471 mlosch 1.9 \paragraph{Finite-volume discretization of the stress tensor
472 mlosch 1.16 divergence\label{sec:pkg:seaice:discretization}}~\\
473     %
474 mlosch 1.8 On an Arakawa C~grid, ice thickness and concentration and thus ice
475     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
476     naturally defined a C-points in the center of the grid
477     cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
478     vorticity or Z-points (or $\zeta$-points, but here we use Z in order
479     avoid confusion with the bulk viscosity) at the bottom left corner of
480     the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
481     the following, the superscripts indicate location at Z or C points,
482     distance across the cell (F), along the cell edge (G), between
483     $u$-points (U), $v$-points (V), and C-points (C). The control volumes
484     of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
485     $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
486     (which follow the model code documentation except that $\zeta$-points
487     have been renamed to Z-points), the strain rates are discretized as:
488     \begin{align}
489     \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
490     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
491     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
492     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
493     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
494     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
495     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
496     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
497     \biggr) \\ \notag
498     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
499     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
500     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
501     &\phantom{=\frac{1}{2}\biggl(}
502     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
503     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
504     \biggr),
505     \end{align}
506     so that the diagonal terms of the strain rate tensor are naturally
507     defined at C-points and the symmetric off-diagonal term at
508     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
509     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
510     ``ghost-points''; for free slip boundary conditions
511     $(\epsilon_{12})^Z=0$ on boundaries.
512    
513     For a spherical polar grid, the coefficients of the metric terms are
514     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
515     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
516     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
517     general orthogonal curvilinear grid, $k_{1}$ and
518     $k_{2}$ can be approximated by finite differences of the cell widths:
519     \begin{align}
520     k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
521     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
522     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
523     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
524     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
525     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
526     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
527     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
528     \end{align}
529    
530     The stress tensor is given by the constitutive viscous-plastic
531     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
532     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
533     ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
534     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
535     discretized in finite volumes. This conveniently avoids dealing with
536     further metric terms, as these are ``hidden'' in the differential cell
537     widths. For the $u$-equation ($\alpha=1$) we have:
538     \begin{align}
539     (\nabla\sigma)_{1}: \phantom{=}&
540     \frac{1}{A_{i,j}^w}
541     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
542     \\\notag
543     =& \frac{1}{A_{i,j}^w} \biggl\{
544     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
545     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
546     \biggr\} \\ \notag
547     \approx& \frac{1}{A_{i,j}^w} \biggl\{
548     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
549     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
550     \biggr\} \\ \notag
551     =& \frac{1}{A_{i,j}^w} \biggl\{
552 mlosch 1.9 (\Delta{x}_2\sigma_{11})_{i,j}^C -
553     (\Delta{x}_2\sigma_{11})_{i-1,j}^C
554     \\\notag
555 mlosch 1.8 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
556     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
557     \biggr\}
558 mlosch 1.13 \end{align}
559     with
560     \begin{align}
561 mlosch 1.8 (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
562     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
563     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
564     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
565     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
566     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
567     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
568     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
569     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
570     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
571     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
572     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
573     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
574     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
575     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
576     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
577     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
578     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
579     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
580     \end{align}
581    
582     Similarly, we have for the $v$-equation ($\alpha=2$):
583     \begin{align}
584     (\nabla\sigma)_{2}: \phantom{=}&
585     \frac{1}{A_{i,j}^s}
586     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
587     \\\notag
588     =& \frac{1}{A_{i,j}^s} \biggl\{
589     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
590     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
591     \biggr\} \\ \notag
592     \approx& \frac{1}{A_{i,j}^s} \biggl\{
593     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
594     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
595     \biggr\} \\ \notag
596     =& \frac{1}{A_{i,j}^s} \biggl\{
597     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
598     \\ \notag
599     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
600     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
601     \biggr\}
602 mlosch 1.13 \end{align}
603     with
604     \begin{align}
605 mlosch 1.8 (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
606     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
607 mlosch 1.9 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
608     \\\notag &
609     + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
610     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
611 mlosch 1.8 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
612 mlosch 1.9 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
613     \\\notag &
614     - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
615 mlosch 1.8 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
616     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
617     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
618     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
619     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
620     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
621     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
622     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
623     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
624     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
625     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
626     \end{align}
627    
628     Again, no slip boundary conditions are realized via ghost points and
629     $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
630     free slip boundary conditions the lateral stress is set to zeros. In
631     analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
632     $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
633    
634 mlosch 1.16 \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}~\\
635     %
636 mlosch 1.8 In its original formulation the sea ice model \citep{menemenlis05}
637     uses simple thermodynamics following the appendix of
638     \citet{sem76}. This formulation does not allow storage of heat,
639     that is, the heat capacity of ice is zero. Upward conductive heat flux
640     is parameterized assuming a linear temperature profile and together
641     with a constant ice conductivity. It is expressed as
642     $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
643     thickness, and $T_{w}-T_{0}$ the difference between water and ice
644     surface temperatures. This type of model is often refered to as a
645     ``zero-layer'' model. The surface heat flux is computed in a similar
646     way to that of \citet{parkinson79} and \citet{manabe79}.
647    
648     The conductive heat flux depends strongly on the ice thickness $h$.
649     However, the ice thickness in the model represents a mean over a
650     potentially very heterogeneous thickness distribution. In order to
651     parameterize a sub-grid scale distribution for heat flux
652     computations, the mean ice thickness $h$ is split into seven thickness
653     categories $H_{n}$ that are equally distributed between $2h$ and a
654     minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
655     \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
656     thickness category is area-averaged to give the total heat flux
657     \citep{hibler84}. To use this thickness category parameterization set
658 mlosch 1.9 \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
659 mlosch 1.8 different restart files and switching this flag on in the middle of an
660     integration is not possible.
661    
662     The atmospheric heat flux is balanced by an oceanic heat flux from
663     below. The oceanic flux is proportional to
664     $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
665     the density and heat capacity of sea water and $T_{fr}$ is the local
666     freezing point temperature that is a function of salinity. This flux
667     is not assumed to instantaneously melt or create ice, but a time scale
668 mlosch 1.9 of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
669 mlosch 1.8 to relax $T_{w}$ to the freezing point.
670     %
671     The parameterization of lateral and vertical growth of sea ice follows
672     that of \citet{hib79, hib80}; the so-called lead closing parameter
673 mlosch 1.9 $h_{0}$ (run-time parameter \code{HO}) has a default value of
674 mlosch 1.8 0.5~meters.
675    
676     On top of the ice there is a layer of snow that modifies the heat flux
677     and the albedo \citep{zha98a}. Snow modifies the effective
678     conductivity according to
679     \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
680     where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
681     If enough snow accumulates so that its weight submerges the ice and
682     the snow is flooded, a simple mass conserving parameterization of
683     snowice formation (a flood-freeze algorithm following Archimedes'
684     principle) turns snow into ice until the ice surface is back at $z=0$
685     \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
686 mlosch 1.9 \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
687     \code{SEAICEuseFlooding=.true.}.
688 mlosch 1.8
689 mlosch 1.16 \paragraph{Advection of thermodynamic variables\label{sec:pkg:seaice:advection}}~\\
690     %
691 mlosch 1.8 Effective ice thickness (ice volume per unit area,
692     $c\cdot{h}$), concentration $c$ and effective snow thickness
693     ($c\cdot{h}_{s}$) are advected by ice velocities:
694     \begin{equation}
695     \label{eq:advection}
696     \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
697     \Gamma_{X} + D_{X}
698     \end{equation}
699     where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
700     diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
701     %
702     From the various advection scheme that are available in the MITgcm, we
703 mlosch 1.14 recommend flux-limited schemes \citep[multidimensional 2nd and
704     3rd-order advection scheme with flux limiter][]{roe:85, hundsdorfer94}
705     to preserve sharp gradients and edges that are typical of sea ice
706 mlosch 1.8 distributions and to rule out unphysical over- and undershoots
707 mlosch 1.14 (negative thickness or concentration). These schemes conserve volume
708 mlosch 1.8 and horizontal area and are unconditionally stable, so that we can set
709 mlosch 1.14 $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2, is the
710 mlosch 1.16 historic 2nd-order, centered difference scheme), \code{DIFF1} =
711     $D_{X}/\Delta{x}$
712 mlosch 1.14 (default=0.004).
713 mlosch 1.8
714 mlosch 1.16 The MITgcm sea ice model provides the option to use
715 mlosch 1.15 the thermodynamics model of \citet{win00}, which in turn is based on
716     the 3-layer model of \citet{sem76} and which treats brine content by
717     means of enthalpy conservation; the corresponding package
718     \code{thsice} is described in section~\ref{sec:pkg:thsice}. This
719     scheme requires additional state variables, namely the enthalpy of the
720     two ice layers (instead of effective ice salinity), to be advected by
721     ice velocities.
722 mlosch 1.8 %
723     The internal sea ice temperature is inferred from ice enthalpy. To
724     avoid unphysical (negative) values for ice thickness and
725     concentration, a positive 2nd-order advection scheme with a SuperBee
726 mlosch 1.16 flux limiter \citep{roe:85} should be used to advect all
727     sea-ice-related quantities of the \citet{win00} thermodynamic model
728     (runtime flag \code{thSIceAdvScheme=77} and
729     \code{thSIce\_diffK}=$D_{X}$=0 in \code{data.ice}, defaults are 0). Because of the
730     non-linearity of the advection scheme, care must be taken in advecting
731     these quantities: when simply using ice velocity to advect enthalpy,
732     the total energy (i.e., the volume integral of enthalpy) is not
733     conserved. Alternatively, one can advect the energy content (i.e.,
734     product of ice-volume and enthalpy) but then false enthalpy extrema
735     can occur, which then leads to unrealistic ice temperature. In the
736     currently implemented solution, the sea-ice mass flux is used to
737     advect the enthalpy in order to ensure conservation of enthalpy and to
738     prevent false enthalpy extrema. %
739 edhill 1.1
740 heimbach 1.6 %----------------------------------------------------------------------
741    
742     \subsubsection{Key subroutines
743     \label{sec:pkg:seaice:subroutines}}
744    
745 mlosch 1.9 Top-level routine: \code{seaice\_model.F}
746 heimbach 1.6
747     {\footnotesize
748     \begin{verbatim}
749    
750     C !CALLING SEQUENCE:
751     c ...
752     c seaice_model (TOP LEVEL ROUTINE)
753     c |
754     c |-- #ifdef SEAICE_CGRID
755     c | SEAICE_DYNSOLVER
756 heimbach 1.7 c | |
757     c | |-- < compute proxy for geostrophic velocity >
758     c | |
759     c | |-- < set up mass per unit area and Coriolis terms >
760     c | |
761     c | |-- < dynamic masking of areas with no ice >
762     c | |
763     c | |
764    
765 heimbach 1.6 c | #ELSE
766     c | DYNSOLVER
767     c | #ENDIF
768     c |
769 heimbach 1.7 c |-- if ( useOBCS )
770     c | OBCS_APPLY_UVICE
771     c |
772     c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
773     c | SEAICE_ADVDIFF
774     c |
775     c |-- if ( usePW79thermodynamics )
776     c | SEAICE_GROWTH
777     c |
778     c |-- if ( useOBCS )
779     c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
780     c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
781     c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
782     c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
783     c |
784     c |-- < do various exchanges >
785     c |
786     c |-- < do additional diagnostics >
787     c |
788     c o
789 heimbach 1.6
790     \end{verbatim}
791     }
792    
793    
794     %----------------------------------------------------------------------
795    
796 mlosch 1.8 \subsubsection{SEAICE diagnostics
797 heimbach 1.6 \label{sec:pkg:seaice:diagnostics}}
798    
799     Diagnostics output is available via the diagnostics package
800     (see Section \ref{sec:pkg:diagnostics}).
801     Available output fields are summarized in
802     Table \ref{tab:pkg:seaice:diagnostics}.
803    
804 jmc 1.12 \begin{table}[!ht]
805 heimbach 1.6 \centering
806     \label{tab:pkg:seaice:diagnostics}
807     {\footnotesize
808     \begin{verbatim}
809     ---------+----+----+----------------+-----------------
810     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
811     ---------+----+----+----------------+-----------------
812     SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
813     SIheff | 1 |SM |m |SEAICE effective ice thickness
814     SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
815     SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
816     SIhsnow | 1 |SM |m |SEAICE snow thickness
817     SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
818 mlosch 1.8 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
819 heimbach 1.6 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
820     SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
821     SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
822     SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
823 mlosch 1.8 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
824 heimbach 1.6 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
825     SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
826     SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
827     SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
828     SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
829     SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
830     SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
831     SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
832     SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
833     SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
834     SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
835     ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
836     ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
837     DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
838     DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
839     ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
840     ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
841     DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
842     DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
843     ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
844     ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
845     DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
846     DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
847     ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
848     ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
849     DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
850     DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
851     \end{verbatim}
852     }
853 mlosch 1.8 \caption{Available diagnostics of the seaice-package}
854 heimbach 1.6 \end{table}
855    
856    
857 molod 1.4 %\subsubsection{Package Reference}
858 edhill 1.1
859 molod 1.5 \subsubsection{Experiments and tutorials that use seaice}
860     \label{sec:pkg:seaice:experiments}
861    
862     \begin{itemize}
863 mlosch 1.16 \item{Labrador Sea experiment in \code{lab\_sea} verification directory. }
864     \item \code{seaice\_obcs}, based on \code{lab\_sea}
865     \item \code{offline\_exf\_seaice/input.seaicetd}, based on \code{lab\_sea}
866     \item \code{global\_ocean.cs32x15/input.icedyn} and
867     \code{global\_ocean.cs32x15/input.seaice}, global
868     cubed-sphere-experiment with combinations of \code{seaice} and
869     \code{thsice}
870 molod 1.5 \end{itemize}
871    
872 mlosch 1.8
873     %%% Local Variables:
874     %%% mode: latex
875 mlosch 1.13 %%% TeX-master: "../../manual"
876 mlosch 1.8 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22