/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download) (as text)
Thu May 14 15:35:17 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.8: +59 -60 lines
File MIME type: application/x-tex
small changes: numbering etc.

1 mlosch 1.9 % $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.8 2009/05/13 12:54:45 mlosch Exp $
2 edhill 1.1 % $Name: $
3    
4     %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5     %%EH3 which was written by Dimitris M.
6    
7    
8 molod 1.4 \subsection{SEAICE Package}
9 edhill 1.1 \label{sec:pkg:seaice}
10 edhill 1.2 \begin{rawhtml}
11     <!-- CMIREDIR:package_seaice: -->
12     \end{rawhtml}
13 edhill 1.1
14 heimbach 1.6 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15     Patrick Heimbach, Chris Hill and Jinlun Zhang
16    
17     %----------------------------------------------------------------------
18     \subsubsection{Introduction
19     \label{sec:pkg:exf:intro}}
20    
21    
22 edhill 1.1 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 heimbach 1.6 sea-ice model.
24    
25     CPP options enable or disable different aspects of the package
26     (Section \ref{sec:pkg:seaice:config}).
27 mlosch 1.8 Run-Time options, flags, filenames and field-related dates/times are
28 mlosch 1.9 set in \code{data.seaice}
29 heimbach 1.6 (Section \ref{sec:pkg:seaice:runtime}).
30     A description of key subroutines is given in Section
31     \ref{sec:pkg:seaice:subroutines}.
32     Input fields, units and sign conventions are summarized in
33     Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34     output is listed in Section \ref{sec:pkg:seaice:fields_diagnostics}.
35    
36     %----------------------------------------------------------------------
37    
38     \subsubsection{SEAICE configuration, compiling \& running}
39    
40     \paragraph{Compile-time options
41     \label{sec:pkg:seaice:config}}
42     ~
43    
44     As with all MITgcm packages, SEAICE can be turned on or off at compile time
45     %
46     \begin{itemize}
47     %
48     \item
49 mlosch 1.9 using the \code{packages.conf} file by adding \code{seaice} to it,
50 heimbach 1.6 %
51     \item
52 mlosch 1.9 or using \code{genmake2} adding
53     \code{-enable=seaice} or \code{-disable=seaice} switches
54 heimbach 1.6 %
55     \item
56     \textit{required packages and CPP options}: \\
57 mlosch 1.9 SEAICE requires the external forcing package \code{exf} to be enabled;
58 heimbach 1.6 no additional CPP options are required.
59     %
60     \end{itemize}
61     (see Section \ref{sect:buildingCode}).
62    
63     Parts of the SEAICE code can be enabled or disabled at compile time
64     via CPP preprocessor flags. These options are set in either
65 mlosch 1.9 \code{SEAICE\_OPTIONS.h} or in \code{ECCO\_CPPOPTIONS.h}.
66 heimbach 1.6 Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67    
68     \begin{table}[h!]
69     \centering
70     \label{tab:pkg:seaice:cpp}
71     {\footnotesize
72 mlosch 1.8 \begin{tabular}{|l|p{10cm}|}
73 heimbach 1.6 \hline
74     \textbf{CPP option} & \textbf{Description} \\
75     \hline \hline
76 mlosch 1.9 \code{SEAICE\_DEBUG} &
77 heimbach 1.6 Enhance STDOUT for debugging \\
78 mlosch 1.9 \code{SEAICE\_ALLOW\_DYNAMICS} &
79 heimbach 1.6 sea-ice dynamics code \\
80 mlosch 1.9 \code{SEAICE\_CGRID} &
81 mlosch 1.8 LSR solver on C-grid (rather than original B-grid) \\
82 mlosch 1.9 \code{SEAICE\_ALLOW\_EVP} &
83 heimbach 1.6 use EVP rather than LSR rheology solver \\
84 mlosch 1.9 \code{SEAICE\_EXTERNAL\_FLUXES} &
85 heimbach 1.6 use EXF-computed fluxes as starting point \\
86 mlosch 1.9 \code{SEAICE\_MULTICATEGORY} &
87 mlosch 1.8 enable 8-category thermodynamics (by default undefined)\\
88 mlosch 1.9 \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 mlosch 1.8 enable linear dependence of the freezing point on salinity
90     (by default undefined)\\
91 mlosch 1.9 \code{ALLOW\_SEAICE\_FLOODING} &
92 heimbach 1.6 enable snow to ice conversion for submerged sea-ice \\
93 mlosch 1.9 \code{SEAICE\_SALINITY} &
94 mlosch 1.8 enable "salty" sea-ice (by default undefined) \\
95 mlosch 1.9 \code{SEAICE\_AGE} &
96 mlosch 1.8 enable "age tracer" sea-ice (by default undefined) \\
97 mlosch 1.9 \code{SEAICE\_CAP\_HEFF} &
98 mlosch 1.8 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99 mlosch 1.9 \code{SEAICE\_BICE\_STRESS} &
100 mlosch 1.8 B-grid only for backward compatiblity: turn on ice-stress on
101     ocean\\
102 mlosch 1.9 \code{EXPLICIT\_SSH\_SLOPE} &
103 mlosch 1.8 B-grid only for backward compatiblity: use ETAN for tilt
104     computations rather than geostrophic velocities \\
105 heimbach 1.6 \hline
106     \end{tabular}
107     }
108     \caption{~}
109     \end{table}
110    
111     %----------------------------------------------------------------------
112    
113     \subsubsection{Run-time parameters
114     \label{sec:pkg:seaice:runtime}}
115    
116     Run-time parameters are set in files
117 mlosch 1.9 \code{data.pkg} (read in \code{packages\_readparms.F}),
118     and \code{data.seaice} (read in \code{seaice\_readparms.F}).
119 heimbach 1.6
120     \paragraph{Enabling the package}
121     ~ \\
122     %
123 mlosch 1.8 A package is switched on/off at run-time by setting
124 mlosch 1.9 (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
125 heimbach 1.6
126     \paragraph{General flags and parameters}
127     ~ \\
128     %
129 mlosch 1.8 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 heimbach 1.6 \input{part6/seaice-parms.tex}
131    
132    
133    
134     %----------------------------------------------------------------------
135     \subsubsection{Description
136     \label{sec:pkg:seaice:descr}}
137    
138     [TO BE CONTINUED/MODIFIED]
139    
140 mlosch 1.8 % Sea-ice model thermodynamics are based on Hibler
141     % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142     % and concentration. Snow is simulated as per Zhang et al.
143     % \cite{zha98a}. Although recent years have seen an increased use of
144     % multi-category thickness distribution sea-ice models for climate
145     % studies, the Hibler 2-category ice model is still the most widely used
146     % model and has resulted in realistic simulation of sea-ice variability
147     % on regional and global scales. Being less complicated, compared to
148     % multi-category models, the 2-category model permits easier application
149     % of adjoint model optimization methods.
150    
151     % Note, however, that the Hibler 2-category model and its variants use a
152     % so-called zero-layer thermodynamic model to estimate ice growth and
153     % decay. The zero-layer thermodynamic model assumes that ice does not
154     % store heat and, therefore, tends to exaggerate the seasonal
155     % variability in ice thickness. This exaggeration can be significantly
156     % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157     % model that permits heat storage in ice. Recently, the three-layer
158     % thermodynamic model has been reformulated by Winton \cite{win00}. The
159     % reformulation improves model physics by representing the brine content
160     % of the upper ice with a variable heat capacity. It also improves
161     % model numerics and consumes less computer time and memory. The Winton
162     % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163     % reside under pkg/thsice. The package pkg/thsice is fully
164     % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165     % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166     % Winton thermodynamics
167    
168     The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169     viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170     first introduced by \citet{hib79, hib80}. In order to adapt this model
171     to the requirements of coupled ice-ocean state estimation, many
172     important aspects of the original code have been modified and
173     improved:
174     \begin{itemize}
175     \item the code has been rewritten for an Arakawa C-grid, both B- and
176     C-grid variants are available; the C-grid code allows for no-slip
177     and free-slip lateral boundary conditions;
178     \item two different solution methods for solving the nonlinear
179     momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180     \citep{hun97};
181     \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182     \citet{cam08};
183     \item ice variables are advected by sophisticated, conservative
184     advection schemes with flux limiting;
185     \item growth and melt parameterizations have been refined and extended
186     in order to allow for more stable automatic differentiation of the code.
187     \end{itemize}
188     The sea ice model is tightly coupled to the ocean compontent of the
189     MITgcm. Heat, fresh water fluxes and surface stresses are computed
190     from the atmospheric state and -- by default -- modified by the ice
191     model at every time step.
192 edhill 1.1
193     The ice dynamics models that are most widely used for large-scale
194 mlosch 1.8 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195     cavitating fluid (CF) model \citep{fla92}, and the
196     elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
197 edhill 1.1 model, the CF model does not allow ice shear in calculating ice
198     motion, stress, and deformation. EVP models approximate VP by adding
199     an elastic term to the equations for easier adaptation to parallel
200     computers. Because of its higher accuracy in plastic solution and
201     relatively simpler formulation, compared to the EVP model, we decided
202 mlosch 1.8 to use the VP model as the default dynamic component of our ice
203     model. To do this we extended the line successive over relaxation
204     (LSOR) method of \citet{zhang97} for use in a parallel
205     configuration.
206    
207     Note, that by default the seaice-package includes the orginial
208     so-called zero-layer thermodynamics following \citet{hib80} with a
209     snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210     assumes that ice does not store heat and, therefore, tends to
211     exaggerate the seasonal variability in ice thickness. This
212     exaggeration can be significantly reduced by using
213     \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214     that permits heat storage in ice. Recently, the three-layer
215     thermodynamic model has been reformulated by \citet{win00}. The
216     reformulation improves model physics by representing the brine content
217     of the upper ice with a variable heat capacity. It also improves
218     model numerics and consumes less computer time and memory. The Winton
219     sea-ice thermodynamics have been ported to the MIT GCM; they currently
220     reside under pkg/thsice. The package pkg/thsice is fully compatible
221     with pkg/seaice and with pkg/exf. When turned on together with
222     pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223     thermodynamics.
224 edhill 1.1
225     The sea ice model requires the following input fields: 10-m winds, 2-m
226     air temperature and specific humidity, downward longwave and shortwave
227     radiations, precipitation, evaporation, and river and glacier runoff.
228     The sea ice model also requires surface temperature from the ocean
229 mlosch 1.8 model and the top level horizontal velocity. Output fields are
230     surface wind stress, evaporation minus precipitation minus runoff, net
231     surface heat flux, and net shortwave flux. The sea-ice model is
232     global: in ice-free regions bulk formulae are used to estimate oceanic
233     forcing from the atmospheric fields.
234    
235 mlosch 1.9 \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}
236 mlosch 1.8
237     \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
238     \newcommand{\vtau}{\vek{\mathbf{\tau}}}
239     The momentum equation of the sea-ice model is
240     \begin{equation}
241     \label{eq:momseaice}
242     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
243     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
244     \end{equation}
245     where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
246     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
247     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
248     directions, respectively;
249     $f$ is the Coriolis parameter;
250     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
251     respectively;
252     $g$ is the gravity accelation;
253     $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
254     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
255     height potential in response to ocean dynamics ($g\eta$), to
256     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
257     reference density) and a term due to snow and ice loading \citep{cam08};
258     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
259     stress tensor $\sigma_{ij}$. %
260     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
261     terms are given by
262     \begin{align*}
263     \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
264     R_{air} (\vek{U}_{air} -\vek{u}), \\
265     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
266 mlosch 1.9 R_{ocean}(\vek{U}_{ocean}-\vek{u}),
267 mlosch 1.8 \end{align*}
268     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
269     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
270     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
271     densities; and $R_{air/ocean}$ are rotation matrices that act on the
272     wind/current vectors.
273    
274     For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
275     be related to the ice strain rate and strength by a nonlinear
276     viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
277     \begin{equation}
278     \label{eq:vpequation}
279     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
280     + \left[\zeta(\dot{\epsilon}_{ij},P) -
281     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
282     - \frac{P}{2}\delta_{ij}.
283     \end{equation}
284     The ice strain rate is given by
285     \begin{equation*}
286     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
287     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
288     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
289     \end{equation*}
290     The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
291     both thickness $h$ and compactness (concentration) $c$:
292     \begin{equation}
293     P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
294     \label{eq:icestrength}
295     \end{equation}
296 mlosch 1.9 with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
297 mlosch 1.8 $C^{*}=20$. The nonlinear bulk and shear
298     viscosities $\eta$ and $\zeta$ are functions of ice strain rate
299     invariants and ice strength such that the principal components of the
300     stress lie on an elliptical yield curve with the ratio of major to
301     minor axis $e$ equal to $2$; they are given by:
302     \begin{align*}
303     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
304     \zeta_{\max}\right) \\
305     \eta =& \frac{\zeta}{e^2} \\
306     \intertext{with the abbreviation}
307     \Delta = & \left[
308     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
309     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
310     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
311     \right]^{\frac{1}{2}}.
312     \end{align*}
313     The bulk viscosities are bounded above by imposing both a minimum
314     $\Delta_{\min}$ (for numerical reasons, run-time parameter
315 mlosch 1.9 \code{SEAICE\_EPS} with a default value of
316 mlosch 1.8 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
317     P_{\max}/\Delta^*$, where
318     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
319     the option of bounding $\zeta$ from below by setting run-time
320 mlosch 1.9 parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
321 mlosch 1.8 recommended). For stress tensor computation the replacement pressure $P
322     = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
323     always lies on the elliptic yield curve by definition.
324    
325     In the so-called truncated ellipse method the shear viscosity $\eta$
326     is capped to suppress any tensile stress \citep{hibler97, geiger98}:
327     \begin{equation}
328     \label{eq:etatem}
329     \eta = \min\left(\frac{\zeta}{e^2},
330     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
331     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
332     +4\dot{\epsilon}_{12}^2}}\right).
333     \end{equation}
334 mlosch 1.9 To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
335     \code{SEAICE\_OPTIONS.h} and turn it on with
336     \code{SEAICEuseTEM=.TRUE.} in \code{data.seaice}.
337 mlosch 1.8
338     In the current implementation, the VP-model is integrated with the
339     semi-implicit line successive over relaxation (LSOR)-solver of
340     \citet{zhang97}, which allows for long time steps that, in our case,
341     are limited by the explicit treatment of the Coriolis term. The
342     explicit treatment of the Coriolis term does not represent a severe
343     limitation because it restricts the time step to approximately the
344     same length as in the ocean model where the Coriolis term is also
345     treated explicitly.
346    
347     \citet{hun97}'s introduced an elastic contribution to the strain
348     rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
349     the resulting elastic-viscous-plastic (EVP) and VP models are
350     identical at steady state,
351     \begin{equation}
352     \label{eq:evpequation}
353     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
354     \frac{1}{2\eta}\sigma_{ij}
355     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
356     + \frac{P}{4\zeta}\delta_{ij}
357     = \dot{\epsilon}_{ij}.
358     \end{equation}
359     %In the EVP model, equations for the components of the stress tensor
360     %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
361     %used and compared the present sea-ice model study.
362     The EVP-model uses an explicit time stepping scheme with a short
363     timestep. According to the recommendation of \citet{hun97}, the
364     EVP-model is stepped forward in time 120 times within the physical
365     ocean model time step (although this parameter is under debate), to
366     allow for elastic waves to disappear. Because the scheme does not
367     require a matrix inversion it is fast in spite of the small internal
368     timestep and simple to implement on parallel computers
369     \citep{hun97}. For completeness, we repeat the equations for the
370     components of the stress tensor $\sigma_{1} =
371     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
372     $\sigma_{12}$. Introducing the divergence $D_D =
373     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
374     and shearing strain rates, $D_T =
375     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
376     2\dot{\epsilon}_{12}$, respectively, and using the above
377     abbreviations, the equations~\ref{eq:evpequation} can be written as:
378     \begin{align}
379     \label{eq:evpstresstensor1}
380     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
381     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
382     \label{eq:evpstresstensor2}
383     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
384     &= \frac{P}{2T\Delta} D_T \\
385     \label{eq:evpstresstensor12}
386     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
387     &= \frac{P}{4T\Delta} D_S
388     \end{align}
389     Here, the elastic parameter $E$ is redefined in terms of a damping timescale
390     $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
391     $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
392     the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
393     $E_{0} = \frac{1}{3}$ (which is the default value in the code).
394    
395 mlosch 1.9 To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
396     \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
397 mlosch 1.8 (default). The solver is turned on by setting the sub-cycling time
398 mlosch 1.9 step \code{SEAICE\_deltaTevp} to a value larger than zero. The
399 mlosch 1.8 choice of this time step is under debate. \citet{hun97} recommend
400     order(120) time steps for the EVP solver within one model time step
401 mlosch 1.9 $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
402 mlosch 1.8 steps within the forcing time scale, but then we recommend adjusting
403     the damping time scale $T$ accordingly, by setting either
404 mlosch 1.9 \code{SEAICE\_elasticParm} ($E_{0}$), so that
405 mlosch 1.8 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
406 mlosch 1.9 \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
407 mlosch 1.8
408     Moving sea ice exerts a stress on the ocean which is the opposite of
409     the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
410     applied directly to the surface layer of the ocean model. An
411     alternative ocean stress formulation is given by \citet{hibler87}.
412     Rather than applying $\vtau_{ocean}$ directly, the stress is derived
413     from integrating over the ice thickness to the bottom of the oceanic
414     surface layer. In the resulting equation for the \emph{combined}
415     ocean-ice momentum, the interfacial stress cancels and the total
416     stress appears as the sum of windstress and divergence of internal ice
417     stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
418     Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
419     now the velocity in the surface layer of the ocean that is used to
420     advect tracers, is really an average over the ocean surface
421     velocity and the ice velocity leading to an inconsistency as the ice
422     temperature and salinity are different from the oceanic variables.
423     To turn on the stress formulation of \citet{hibler87}, set
424 mlosch 1.9 \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
425 mlosch 1.8
426    
427     % Our discretization differs from \citet{zhang97, zhang03} in the
428     % underlying grid, namely the Arakawa C-grid, but is otherwise
429     % straightforward. The EVP model, in particular, is discretized
430     % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
431     % center points and $\sigma_{12}$ on the corner (or vorticity) points of
432     % the grid. With this choice all derivatives are discretized as central
433     % differences and averaging is only involved in computing $\Delta$ and
434     % $P$ at vorticity points.
435    
436 mlosch 1.9 \paragraph{Finite-volume discretization of the stress tensor
437     divergence\label{sec:pkg:seaice:discretization}}
438 mlosch 1.8 On an Arakawa C~grid, ice thickness and concentration and thus ice
439     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
440     naturally defined a C-points in the center of the grid
441     cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
442     vorticity or Z-points (or $\zeta$-points, but here we use Z in order
443     avoid confusion with the bulk viscosity) at the bottom left corner of
444     the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
445     the following, the superscripts indicate location at Z or C points,
446     distance across the cell (F), along the cell edge (G), between
447     $u$-points (U), $v$-points (V), and C-points (C). The control volumes
448     of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
449     $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
450     (which follow the model code documentation except that $\zeta$-points
451     have been renamed to Z-points), the strain rates are discretized as:
452     \begin{align}
453     \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
454     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
455     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
456     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
457     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
458     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
459     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
460     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
461     \biggr) \\ \notag
462     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
463     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
464     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
465     &\phantom{=\frac{1}{2}\biggl(}
466     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
467     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
468     \biggr),
469     \end{align}
470     so that the diagonal terms of the strain rate tensor are naturally
471     defined at C-points and the symmetric off-diagonal term at
472     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
473     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
474     ``ghost-points''; for free slip boundary conditions
475     $(\epsilon_{12})^Z=0$ on boundaries.
476    
477     For a spherical polar grid, the coefficients of the metric terms are
478     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
479     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
480     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
481     general orthogonal curvilinear grid, $k_{1}$ and
482     $k_{2}$ can be approximated by finite differences of the cell widths:
483     \begin{align}
484     k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
485     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
486     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
487     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
488     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
489     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
490     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
491     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
492     \end{align}
493    
494     The stress tensor is given by the constitutive viscous-plastic
495     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
496     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
497     ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
498     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
499     discretized in finite volumes. This conveniently avoids dealing with
500     further metric terms, as these are ``hidden'' in the differential cell
501     widths. For the $u$-equation ($\alpha=1$) we have:
502     \begin{align}
503     (\nabla\sigma)_{1}: \phantom{=}&
504     \frac{1}{A_{i,j}^w}
505     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
506     \\\notag
507     =& \frac{1}{A_{i,j}^w} \biggl\{
508     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
509     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
510     \biggr\} \\ \notag
511     \approx& \frac{1}{A_{i,j}^w} \biggl\{
512     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
513     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
514     \biggr\} \\ \notag
515     =& \frac{1}{A_{i,j}^w} \biggl\{
516 mlosch 1.9 (\Delta{x}_2\sigma_{11})_{i,j}^C -
517     (\Delta{x}_2\sigma_{11})_{i-1,j}^C
518     \\\notag
519 mlosch 1.8 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521     \biggr\}
522     \intertext{with}
523     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
534     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
535     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
536     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
537     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
538     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
539     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
540     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
541     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
542     \end{align}
543    
544     Similarly, we have for the $v$-equation ($\alpha=2$):
545     \begin{align}
546     (\nabla\sigma)_{2}: \phantom{=}&
547     \frac{1}{A_{i,j}^s}
548     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
549     \\\notag
550     =& \frac{1}{A_{i,j}^s} \biggl\{
551     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
552     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
553     \biggr\} \\ \notag
554     \approx& \frac{1}{A_{i,j}^s} \biggl\{
555     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
556     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
557     \biggr\} \\ \notag
558     =& \frac{1}{A_{i,j}^s} \biggl\{
559     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
560     \\ \notag
561     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
562     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
563     \biggr\}
564     \intertext{with}
565     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
566     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
567 mlosch 1.9 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
568     \\\notag &
569     + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
571 mlosch 1.8 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572 mlosch 1.9 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
573     \\\notag &
574     - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
575 mlosch 1.8 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
576     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586     \end{align}
587    
588     Again, no slip boundary conditions are realized via ghost points and
589     $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590     free slip boundary conditions the lateral stress is set to zeros. In
591     analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592     $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593    
594 mlosch 1.9 \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}
595 mlosch 1.8
596     In its original formulation the sea ice model \citep{menemenlis05}
597     uses simple thermodynamics following the appendix of
598     \citet{sem76}. This formulation does not allow storage of heat,
599     that is, the heat capacity of ice is zero. Upward conductive heat flux
600     is parameterized assuming a linear temperature profile and together
601     with a constant ice conductivity. It is expressed as
602     $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
603     thickness, and $T_{w}-T_{0}$ the difference between water and ice
604     surface temperatures. This type of model is often refered to as a
605     ``zero-layer'' model. The surface heat flux is computed in a similar
606     way to that of \citet{parkinson79} and \citet{manabe79}.
607    
608     The conductive heat flux depends strongly on the ice thickness $h$.
609     However, the ice thickness in the model represents a mean over a
610     potentially very heterogeneous thickness distribution. In order to
611     parameterize a sub-grid scale distribution for heat flux
612     computations, the mean ice thickness $h$ is split into seven thickness
613     categories $H_{n}$ that are equally distributed between $2h$ and a
614     minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
615     \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
616     thickness category is area-averaged to give the total heat flux
617     \citep{hibler84}. To use this thickness category parameterization set
618 mlosch 1.9 \code{\#define SEAICE\_MULTICATEGORY}; note that this requires
619 mlosch 1.8 different restart files and switching this flag on in the middle of an
620     integration is not possible.
621    
622     The atmospheric heat flux is balanced by an oceanic heat flux from
623     below. The oceanic flux is proportional to
624     $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
625     the density and heat capacity of sea water and $T_{fr}$ is the local
626     freezing point temperature that is a function of salinity. This flux
627     is not assumed to instantaneously melt or create ice, but a time scale
628 mlosch 1.9 of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
629 mlosch 1.8 to relax $T_{w}$ to the freezing point.
630     %
631     The parameterization of lateral and vertical growth of sea ice follows
632     that of \citet{hib79, hib80}; the so-called lead closing parameter
633 mlosch 1.9 $h_{0}$ (run-time parameter \code{HO}) has a default value of
634 mlosch 1.8 0.5~meters.
635    
636     On top of the ice there is a layer of snow that modifies the heat flux
637     and the albedo \citep{zha98a}. Snow modifies the effective
638     conductivity according to
639     \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
640     where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
641     If enough snow accumulates so that its weight submerges the ice and
642     the snow is flooded, a simple mass conserving parameterization of
643     snowice formation (a flood-freeze algorithm following Archimedes'
644     principle) turns snow into ice until the ice surface is back at $z=0$
645     \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
646 mlosch 1.9 \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
647     \code{SEAICEuseFlooding=.true.}.
648 mlosch 1.8
649     Effective ice thickness (ice volume per unit area,
650     $c\cdot{h}$), concentration $c$ and effective snow thickness
651     ($c\cdot{h}_{s}$) are advected by ice velocities:
652     \begin{equation}
653     \label{eq:advection}
654     \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
655     \Gamma_{X} + D_{X}
656     \end{equation}
657     where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
658     diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
659     %
660     From the various advection scheme that are available in the MITgcm, we
661     choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
662     advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
663     preserve sharp gradients and edges that are typical of sea ice
664     distributions and to rule out unphysical over- and undershoots
665     (negative thickness or concentration). These scheme conserve volume
666     and horizontal area and are unconditionally stable, so that we can set
667 mlosch 1.9 $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2),
668     \code{DIFF1} (default=0.004).
669 mlosch 1.8
670     There is considerable doubt about the reliability of a ``zero-layer''
671     thermodynamic model --- \citet{semtner84} found significant errors in
672     phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
673     such models --- so that today many sea ice models employ more complex
674     thermodynamics. The MITgcm sea ice model provides the option to use
675     the thermodynamics model of \citet{win00}, which in turn is based
676     on the 3-layer model of \citet{sem76} and which treats brine
677     content by means of enthalpy conservation. This scheme requires
678     additional state variables, namely the enthalpy of the two ice layers
679     (instead of effective ice salinity), to be advected by ice velocities.
680     %
681     The internal sea ice temperature is inferred from ice enthalpy. To
682     avoid unphysical (negative) values for ice thickness and
683     concentration, a positive 2nd-order advection scheme with a SuperBee
684     flux limiter \citep{roe:85} is used in this study to advect all
685     sea-ice-related quantities of the \citet{win00} thermodynamic
686     model. Because of the non-linearity of the advection scheme, care
687     must be taken in advecting these quantities: when simply using ice
688     velocity to advect enthalpy, the total energy (i.e., the volume
689     integral of enthalpy) is not conserved. Alternatively, one can advect
690     the energy content (i.e., product of ice-volume and enthalpy) but then
691     false enthalpy extrema can occur, which then leads to unrealistic ice
692     temperature. In the currently implemented solution, the sea-ice mass
693     flux is used to advect the enthalpy in order to ensure conservation of
694     enthalpy and to prevent false enthalpy extrema.
695 edhill 1.1
696 heimbach 1.6 %----------------------------------------------------------------------
697    
698     \subsubsection{Key subroutines
699     \label{sec:pkg:seaice:subroutines}}
700    
701 mlosch 1.9 Top-level routine: \code{seaice\_model.F}
702 heimbach 1.6
703     {\footnotesize
704     \begin{verbatim}
705    
706     C !CALLING SEQUENCE:
707     c ...
708     c seaice_model (TOP LEVEL ROUTINE)
709     c |
710     c |-- #ifdef SEAICE_CGRID
711     c | SEAICE_DYNSOLVER
712 heimbach 1.7 c | |
713     c | |-- < compute proxy for geostrophic velocity >
714     c | |
715     c | |-- < set up mass per unit area and Coriolis terms >
716     c | |
717     c | |-- < dynamic masking of areas with no ice >
718     c | |
719     c | |
720    
721 heimbach 1.6 c | #ELSE
722     c | DYNSOLVER
723     c | #ENDIF
724     c |
725 heimbach 1.7 c |-- if ( useOBCS )
726     c | OBCS_APPLY_UVICE
727     c |
728     c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
729     c | SEAICE_ADVDIFF
730     c |
731     c |-- if ( usePW79thermodynamics )
732     c | SEAICE_GROWTH
733     c |
734     c |-- if ( useOBCS )
735     c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
736     c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
737     c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
738     c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
739     c |
740     c |-- < do various exchanges >
741     c |
742     c |-- < do additional diagnostics >
743     c |
744     c o
745 heimbach 1.6
746     \end{verbatim}
747     }
748    
749    
750     %----------------------------------------------------------------------
751    
752 mlosch 1.8 \subsubsection{SEAICE diagnostics
753 heimbach 1.6 \label{sec:pkg:seaice:diagnostics}}
754    
755     Diagnostics output is available via the diagnostics package
756     (see Section \ref{sec:pkg:diagnostics}).
757     Available output fields are summarized in
758     Table \ref{tab:pkg:seaice:diagnostics}.
759    
760     \begin{table}[h!]
761     \centering
762     \label{tab:pkg:seaice:diagnostics}
763     {\footnotesize
764     \begin{verbatim}
765     ---------+----+----+----------------+-----------------
766     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
767     ---------+----+----+----------------+-----------------
768     SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
769     SIheff | 1 |SM |m |SEAICE effective ice thickness
770     SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
771     SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
772     SIhsnow | 1 |SM |m |SEAICE snow thickness
773     SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
774 mlosch 1.8 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
775 heimbach 1.6 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
776     SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
777     SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
778     SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
779 mlosch 1.8 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
780 heimbach 1.6 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
781     SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
782     SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
783     SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
784     SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
785     SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
786     SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
787     SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
788     SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
789     SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
790     SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
791     ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
792     ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
793     DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
794     DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
795     ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
796     ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
797     DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
798     DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
799     ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
800     ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
801     DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
802     DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
803     ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
804     ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
805     DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
806     DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
807     \end{verbatim}
808     }
809 mlosch 1.8 \caption{Available diagnostics of the seaice-package}
810 heimbach 1.6 \end{table}
811    
812    
813 molod 1.4 %\subsubsection{Package Reference}
814 edhill 1.1
815 molod 1.5 \subsubsection{Experiments and tutorials that use seaice}
816     \label{sec:pkg:seaice:experiments}
817    
818     \begin{itemize}
819     \item{Labrador Sea experiment in lab\_sea verification directory. }
820     \end{itemize}
821    
822 mlosch 1.8
823     %%% Local Variables:
824     %%% mode: latex
825     %%% TeX-master: "../manual"
826     %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22