/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.25 - (show annotations) (download) (as text)
Tue Mar 29 14:50:54 2016 UTC (9 years, 3 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.24: +32 -11 lines
File MIME type: application/x-tex
describe mEVP and aEVP parameters

1 % $Header: /u/gcmpack/manual/s_phys_pkgs/text/seaice.tex,v 1.24 2015/09/15 13:31:19 mlosch Exp $
2 % $Name: $
3
4 %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5 %%EH3 which was written by Dimitris M.
6
7
8 \subsection{SEAICE Package}
9 \label{sec:pkg:seaice}
10 \begin{rawhtml}
11 <!-- CMIREDIR:package_seaice: -->
12 \end{rawhtml}
13
14 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15 Patrick Heimbach, Chris Hill and Jinlun Zhang
16
17 %----------------------------------------------------------------------
18 \subsubsection{Introduction
19 \label{sec:pkg:seaice:intro}}
20
21
22 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 sea-ice model.
24
25 CPP options enable or disable different aspects of the package
26 (Section \ref{sec:pkg:seaice:config}).
27 Run-Time options, flags, filenames and field-related dates/times are
28 set in \code{data.seaice}
29 (Section \ref{sec:pkg:seaice:runtime}).
30 A description of key subroutines is given in Section
31 \ref{sec:pkg:seaice:subroutines}.
32 Input fields, units and sign conventions are summarized in
33 Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34 output is listed in Section \ref{sec:pkg:seaice:diagnostics}.
35
36 %----------------------------------------------------------------------
37
38 \subsubsection{SEAICE configuration, compiling \& running}
39
40 \paragraph{Compile-time options
41 \label{sec:pkg:seaice:config}}
42 ~
43
44 As with all MITgcm packages, SEAICE can be turned on or off at compile time
45 %
46 \begin{itemize}
47 %
48 \item
49 using the \code{packages.conf} file by adding \code{seaice} to it,
50 %
51 \item
52 or using \code{genmake2} adding
53 \code{-enable=seaice} or \code{-disable=seaice} switches
54 %
55 \item
56 \textit{required packages and CPP options}: \\
57 SEAICE requires the external forcing package \code{exf} to be enabled;
58 no additional CPP options are required.
59 %
60 \end{itemize}
61 (see Section \ref{sec:buildingCode}).
62
63 Parts of the SEAICE code can be enabled or disabled at compile time
64 via CPP preprocessor flags. These options are set in
65 \code{SEAICE\_OPTIONS.h}.
66 Table \ref{tab:pkg:seaice:cpp} summarizes the most important ones. For
67 more options see the default \code{pkg/seaice/SEAICE\_OPTIONS.h}.
68
69 \begin{table}[!ht]
70 \centering
71 \label{tab:pkg:seaice:cpp}
72 {\footnotesize
73 \begin{tabular}{|l|p{10cm}|}
74 \hline
75 \textbf{CPP option} & \textbf{Description} \\
76 \hline \hline
77 \code{SEAICE\_DEBUG} &
78 Enhance STDOUT for debugging \\
79 \code{SEAICE\_ALLOW\_DYNAMICS} &
80 sea-ice dynamics code \\
81 \code{SEAICE\_CGRID} &
82 LSR solver on C-grid (rather than original B-grid) \\
83 \code{SEAICE\_ALLOW\_EVP} &
84 enable use of EVP rheology solver \\
85 \code{SEAICE\_ALLOW\_JFNK} &
86 enable use of JFNK rheology solver \\
87 \code{SEAICE\_EXTERNAL\_FLUXES} &
88 use EXF-computed fluxes as starting point \\
89 \code{SEAICE\_ZETA\_SMOOTHREG} &
90 use differentialable regularization for viscosities \\
91 \code{SEAICE\_VARIABLE\_FREEZING\_POINT} &
92 enable linear dependence of the freezing point on salinity
93 (by default undefined)\\
94 \code{ALLOW\_SEAICE\_FLOODING} &
95 enable snow to ice conversion for submerged sea-ice \\
96 \code{SEAICE\_VARIABLE\_SALINITY} &
97 enable sea-ice with variable salinity (by default undefined) \\
98 \code{SEAICE\_SITRACER} &
99 enable sea-ice tracer package (by default undefined) \\
100 \code{SEAICE\_BICE\_STRESS} &
101 B-grid only for backward compatiblity: turn on ice-stress on
102 ocean\\
103 \code{EXPLICIT\_SSH\_SLOPE} &
104 B-grid only for backward compatiblity: use ETAN for tilt
105 computations rather than geostrophic velocities \\
106 \hline
107 \end{tabular}
108 }
109 \caption{Some of the most relevant CPP preprocessor flags in the
110 \code{seaice}-package.}
111 \end{table}
112
113 %----------------------------------------------------------------------
114
115 \subsubsection{Run-time parameters
116 \label{sec:pkg:seaice:runtime}}
117
118 Run-time parameters (see Table~\ref{tab:pkg:seaice:runtimeparms}) are set
119 in files \code{data.pkg} (read in \code{packages\_readparms.F}), and
120 \code{data.seaice} (read in \code{seaice\_readparms.F}).
121
122 \paragraph{Enabling the package}
123 ~ \\
124 %
125 A package is switched on/off at run-time by setting
126 (e.g. for SEAICE) \code{useSEAICE = .TRUE.} in \code{data.pkg}.
127
128 \paragraph{General flags and parameters}
129 ~ \\
130 %
131 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
132 \input{s_phys_pkgs/text/seaice-parms.tex}
133
134 \paragraph{Input fields and units\label{sec:pkg:seaice:fields_units}}
135 \begin{description}
136 \item[\code{HeffFile}:] Initial sea ice thickness averaged over grid cell
137 in meters; initializes variable \code{HEFF};
138 \item[\code{AreaFile}:] Initial fractional sea ice cover, range $[0,1]$;
139 initializes variable \code{AREA};
140 \item[\code{HsnowFile}:] Initial snow thickness on sea ice averaged
141 over grid cell in meters; initializes variable \code{HSNOW};
142 \item[\code{HsaltFile}:] Initial salinity of sea ice averaged over grid
143 cell in g/m$^2$; initializes variable \code{HSALT};
144 \end{description}
145
146 %----------------------------------------------------------------------
147 \subsubsection{Description
148 \label{sec:pkg:seaice:descr}}
149
150 [TO BE CONTINUED/MODIFIED]
151
152 % Sea-ice model thermodynamics are based on Hibler
153 % \cite{hib80}, that is, a 2-category model that simulates ice thickness
154 % and concentration. Snow is simulated as per Zhang et al.
155 % \cite{zha98a}. Although recent years have seen an increased use of
156 % multi-category thickness distribution sea-ice models for climate
157 % studies, the Hibler 2-category ice model is still the most widely used
158 % model and has resulted in realistic simulation of sea-ice variability
159 % on regional and global scales. Being less complicated, compared to
160 % multi-category models, the 2-category model permits easier application
161 % of adjoint model optimization methods.
162
163 % Note, however, that the Hibler 2-category model and its variants use a
164 % so-called zero-layer thermodynamic model to estimate ice growth and
165 % decay. The zero-layer thermodynamic model assumes that ice does not
166 % store heat and, therefore, tends to exaggerate the seasonal
167 % variability in ice thickness. This exaggeration can be significantly
168 % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
169 % model that permits heat storage in ice. Recently, the three-layer
170 % thermodynamic model has been reformulated by Winton \cite{win00}. The
171 % reformulation improves model physics by representing the brine content
172 % of the upper ice with a variable heat capacity. It also improves
173 % model numerics and consumes less computer time and memory. The Winton
174 % sea-ice thermodynamics have been ported to the MIT GCM; they currently
175 % reside under pkg/thsice. The package pkg/thsice is fully
176 % compatible with pkg/seaice and with pkg/exf. When turned on togeter
177 % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
178 % Winton thermodynamics
179
180 The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
181 viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
182 first introduced by \citet{hib79, hib80}. In order to adapt this model
183 to the requirements of coupled ice-ocean state estimation, many
184 important aspects of the original code have been modified and
185 improved \citep{losch10:_mitsim}:
186 \begin{itemize}
187 \item the code has been rewritten for an Arakawa C-grid, both B- and
188 C-grid variants are available; the C-grid code allows for no-slip
189 and free-slip lateral boundary conditions;
190 \item three different solution methods for solving the nonlinear
191 momentum equations have been adopted: LSOR \citep{zhang97}, EVP
192 \citep{hun97}, JFNK \citep{lemieux10,losch14:_jfnk};
193 \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
194 \citet{cam08};
195 \item ice variables are advected by sophisticated, conservative
196 advection schemes with flux limiting;
197 \item growth and melt parameterizations have been refined and extended
198 in order to allow for more stable automatic differentiation of the code.
199 \end{itemize}
200 The sea ice model is tightly coupled to the ocean compontent of the
201 MITgcm. Heat, fresh water fluxes and surface stresses are computed
202 from the atmospheric state and -- by default -- modified by the ice
203 model at every time step.
204
205 The ice dynamics models that are most widely used for large-scale
206 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
207 cavitating fluid (CF) model \citep{fla92}, and the
208 elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
209 model, the CF model does not allow ice shear in calculating ice
210 motion, stress, and deformation. EVP models approximate VP by adding
211 an elastic term to the equations for easier adaptation to parallel
212 computers. Because of its higher accuracy in plastic solution and
213 relatively simpler formulation, compared to the EVP model, we decided
214 to use the VP model as the default dynamic component of our ice
215 model. To do this we extended the line successive over relaxation
216 (LSOR) method of \citet{zhang97} for use in a parallel
217 configuration. An EVP model and a free-drift implemtation can be
218 selected with runtime flags.
219
220 \paragraph{Compatibility with ice-thermodynamics package \code{thsice}\label{sec:pkg:seaice:thsice}}~\\
221 %
222 Note, that by default the \code{seaice}-package includes the orginial
223 so-called zero-layer thermodynamics following \citet{hib80} with a
224 snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
225 assumes that ice does not store heat and, therefore, tends to
226 exaggerate the seasonal variability in ice thickness. This
227 exaggeration can be significantly reduced by using
228 \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic
229 model that permits heat storage in ice. Recently, the three-layer thermodynamic model has been reformulated by
230 \citet{win00}. The reformulation improves model physics by
231 representing the brine content of the upper ice with a variable heat
232 capacity. It also improves model numerics and consumes less computer
233 time and memory.
234
235 The Winton sea-ice thermodynamics have been ported to the MIT GCM;
236 they currently reside under \code{pkg/thsice}. The package
237 \code{thsice} is described in section~\ref{sec:pkg:thsice}; it is
238 fully compatible with the packages \code{seaice} and \code{exf}. When
239 turned on together with \code{seaice}, the zero-layer thermodynamics
240 are replaced by the Winton thermodynamics. In order to use the
241 \code{seaice}-package with the thermodynamics of \code{thsice},
242 compile both packages and turn both package on in \code{data.pkg}; see
243 an example in \code{global\_ocean.cs32x15/input.icedyn}. Note, that
244 once \code{thsice} is turned on, the variables and diagnostics
245 associated to the default thermodynamics are meaningless, and the
246 diagnostics of \code{thsice} have to be used instead.
247
248 \paragraph{Surface forcing\label{sec:pkg:seaice:surfaceforcing}}~\\
249 %
250 The sea ice model requires the following input fields: 10-m winds, 2-m
251 air temperature and specific humidity, downward longwave and shortwave
252 radiations, precipitation, evaporation, and river and glacier runoff.
253 The sea ice model also requires surface temperature from the ocean
254 model and the top level horizontal velocity. Output fields are
255 surface wind stress, evaporation minus precipitation minus runoff, net
256 surface heat flux, and net shortwave flux. The sea-ice model is
257 global: in ice-free regions bulk formulae are used to estimate oceanic
258 forcing from the atmospheric fields.
259
260 \paragraph{Dynamics\label{sec:pkg:seaice:dynamics}}~\\
261 %
262 \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
263 \newcommand{\vtau}{\vek{\mathbf{\tau}}}
264 The momentum equation of the sea-ice model is
265 \begin{equation}
266 \label{eq:momseaice}
267 m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
268 \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
269 \end{equation}
270 where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
271 $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
272 $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
273 directions, respectively;
274 $f$ is the Coriolis parameter;
275 $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
276 respectively;
277 $g$ is the gravity accelation;
278 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
279 $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
280 height potential in response to ocean dynamics ($g\eta$), to
281 atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
282 reference density) and a term due to snow and ice loading \citep{cam08};
283 and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
284 stress tensor $\sigma_{ij}$. %
285 Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
286 terms are given by
287 \begin{align*}
288 \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
289 R_{air} (\vek{U}_{air} -\vek{u}), \\
290 \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
291 R_{ocean}(\vek{U}_{ocean}-\vek{u}),
292 \end{align*}
293 where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
294 and surface currents of the ocean, respectively; $C_{air/ocean}$ are
295 air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
296 densities; and $R_{air/ocean}$ are rotation matrices that act on the
297 wind/current vectors.
298
299 \paragraph{Viscous-Plastic (VP) Rheology\label{sec:pkg:seaice:VPrheology}}~\\
300 %
301 For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
302 be related to the ice strain rate and strength by a nonlinear
303 viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
304 \begin{equation}
305 \label{eq:vpequation}
306 \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
307 + \left[\zeta(\dot{\epsilon}_{ij},P) -
308 \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
309 - \frac{P}{2}\delta_{ij}.
310 \end{equation}
311 The ice strain rate is given by
312 \begin{equation*}
313 \dot{\epsilon}_{ij} = \frac{1}{2}\left(
314 \frac{\partial{u_{i}}}{\partial{x_{j}}} +
315 \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
316 \end{equation*}
317 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
318 both thickness $h$ and compactness (concentration) $c$:
319 \begin{equation}
320 P_{\max} = P^{*}c\,h\,\exp\{-C^{*}\cdot(1-c)\},
321 \label{eq:icestrength}
322 \end{equation}
323 with the constants $P^{*}$ (run-time parameter \code{SEAICE\_strength}) and
324 $C^{*}=20$. The nonlinear bulk and shear
325 viscosities $\eta$ and $\zeta$ are functions of ice strain rate
326 invariants and ice strength such that the principal components of the
327 stress lie on an elliptical yield curve with the ratio of major to
328 minor axis $e$ equal to $2$; they are given by:
329 \begin{align*}
330 \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
331 \zeta_{\max}\right) \\
332 \eta =& \frac{\zeta}{e^2} \\
333 \intertext{with the abbreviation}
334 \Delta = & \left[
335 \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
336 (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
337 2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
338 \right]^{\frac{1}{2}}.
339 \end{align*}
340 The bulk viscosities are bounded above by imposing both a minimum
341 $\Delta_{\min}$ (for numerical reasons, run-time parameter
342 \code{SEAICE\_EPS} with a default value of
343 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
344 P_{\max}/\Delta^*$, where
345 $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
346 the option of bounding $\zeta$ from below by setting run-time
347 parameter \code{SEAICE\_zetaMin} $>0$, but this is generally not
348 recommended). For stress tensor computation the replacement pressure $P
349 = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
350 always lies on the elliptic yield curve by definition.
351
352 Defining the CPP-flag \code{SEAICE\_ZETA\_SMOOTHREG} in
353 \code{SEAICE\_OPTIONS.h} before compiling replaces the method for
354 bounding $\zeta$ by a smooth (differentiable) expression:
355 \begin{equation}
356 \label{eq:zetaregsmooth}
357 \begin{split}
358 \zeta &= \zeta_{\max}\tanh\left(\frac{P}{2\,\min(\Delta,\Delta_{\min})
359 \,\zeta_{\max}}\right)\\
360 &= \frac{P}{2\Delta^*}
361 \tanh\left(\frac{\Delta^*}{\min(\Delta,\Delta_{\min})}\right)
362 \end{split}
363 \end{equation}
364 where $\Delta_{\min}=10^{-20}\text{\,s}^{-1}$ is chosen to avoid divisions
365 by zero.
366
367 \paragraph{LSR and JFNK solver \label{sec:pkg:seaice:LSRJFNK}}~\\
368 %
369 % By default, the VP-model is integrated by a Pickwith the
370 % semi-implicit line successive over relaxation (LSOR)-solver of
371 % \citet{zhang97}, which allows for long time steps that, in our case,
372 % are limited by the explicit treatment of the Coriolis term. The
373 % explicit treatment of the Coriolis term does not represent a severe
374 % limitation because it restricts the time step to approximately the
375 % same length as in the ocean model where the Coriolis term is also
376 % treated explicitly.
377
378 \newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}}
379 %
380 In the matrix notation, the discretized momentum equations can be
381 written as
382 \begin{equation}
383 \label{eq:matrixmom}
384 \mat{A}(\vek{x})\,\vek{x} = \vek{b}(\vek{x}).
385 \end{equation}
386 The solution vector $\vek{x}$ consists of the two velocity components
387 $u$ and $v$ that contain the velocity variables at all grid points and
388 at one time level. The standard (and default) method for solving
389 Eq.\,(\ref{eq:matrixmom}) in the sea ice component of the
390 \mbox{MITgcm}, as in many sea ice models, is an iterative Picard
391 solver: in the $k$-th iteration a linearized form
392 $\mat{A}(\vek{x}^{k-1})\,\vek{x}^{k} = \vek{b}(\vek{x}^{k-1})$ is
393 solved (in the case of the MITgcm it is a Line Successive (over)
394 Relaxation (LSR) algorithm \citep{zhang97}). Picard solvers converge
395 slowly, but generally the iteration is terminated after only a few
396 non-linear steps \citep{zhang97, lemieux09} and the calculation
397 continues with the next time level. This method is the default method
398 in the MITgcm. The number of non-linear iteration steps or pseudo-time
399 steps can be controlled by the runtime parameter
400 \code{NPSEUDOTIMESTEPS} (default is 2).
401
402 In order to overcome the poor convergence of the Picard-solver,
403 \citet{lemieux10} introduced a Jacobian-free Newton-Krylov solver for
404 the sea ice momentum equations. This solver is also implemented in the
405 MITgcm \citep{losch14:_jfnk}. The Newton method transforms minimizing
406 the residual $\vek{F}(\vek{x}) = \mat{A}(\vek{x})\,\vek{x} -
407 \vek{b}(\vek{x})$ to finding the roots of a multivariate Taylor
408 expansion of the residual \vek{F} around the previous ($k-1$) estimate
409 $\vek{x}^{k-1}$:
410 \begin{equation}
411 \label{eq:jfnktaylor}
412 \vek{F}(\vek{x}^{k-1}+\delta\vek{x}^{k}) =
413 \vek{F}(\vek{x}^{k-1}) + \vek{F}'(\vek{x}^{k-1})\,\delta\vek{x}^{k}
414 \end{equation}
415 with the Jacobian $\mat{J}\equiv\vek{F}'$. The root
416 $\vek{F}(\vek{x}^{k-1}+\delta\vek{x}^{k})=0$ is found by solving
417 \begin{equation}
418 \label{eq:jfnklin}
419 \mat{J}(\vek{x}^{k-1})\,\delta\vek{x}^{k} = -\vek{F}(\vek{x}^{k-1})
420 \end{equation}
421 for $\delta\vek{x}^{k}$. The next ($k$-th) estimate is given by
422 $\vek{x}^{k}=\vek{x}^{k-1}+a\,\delta\vek{x}^{k}$. In order to avoid
423 overshoots the factor $a$ is iteratively reduced in a line search
424 ($a=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$) until
425 $\|\vek{F}(\vek{x}^k)\| < \|\vek{F}(\vek{x}^{k-1})\|$, where
426 $\|\cdot\|=\int\cdot\,dx^2$ is the $L_2$-norm. In practice, the line
427 search is stopped at $a=\frac{1}{8}$. The line search starts after
428 $\code{SEAICE\_JFNK\_lsIter}$ non-linear Newton iterations (off by
429 default).
430
431
432 Forming the Jacobian $\mat{J}$ explicitly is often avoided as ``too
433 error prone and time consuming'' \citep{knoll04:_jfnk}. Instead,
434 Krylov methods only require the action of \mat{J} on an arbitrary
435 vector \vek{w} and hence allow a matrix free algorithm for solving
436 Eq.\,(\ref{eq:jfnklin}) \citep{knoll04:_jfnk}. The action of \mat{J}
437 can be approximated by a first-order Taylor series expansion:
438 \begin{equation}
439 \label{eq:jfnkjacvecfd}
440 \mat{J}(\vek{x}^{k-1})\,\vek{w} \approx
441 \frac{\vek{F}(\vek{x}^{k-1}+\epsilon\vek{w}) - \vek{F}(\vek{x}^{k-1})}
442 {\epsilon}
443 \end{equation}
444 or computed exactly with the help of automatic differentiation (AD)
445 tools. \code{SEAICE\_JFNKepsilon} sets the step size
446 $\epsilon$.
447
448 We use the Flexible Generalized Minimum RESidual method
449 \citep[FGMRES,][]{saad93:_fgmres} with right-hand side preconditioning
450 to solve Eq.\,(\ref{eq:jfnklin}) iteratively starting from a first
451 guess of $\delta\vek{x}^{k}_{0} = 0$. For the preconditioning matrix
452 \mat{P} we choose a simplified form of the system matrix
453 $\mat{A}(\vek{x}^{k-1})$ \citep{lemieux10} where $\vek{x}^{k-1}$ is
454 the estimate of the previous Newton step $k-1$. The transformed
455 equation\,(\ref{eq:jfnklin}) becomes
456 \begin{equation}
457 \label{eq:jfnklinpc}
458 \mat{J}(\vek{x}^{k-1})\,\mat{P}^{-1}\delta\vek{z} =
459 -\vek{F}(\vek{x}^{k-1}),
460 \quad\text{with}\quad \delta\vek{z}=\mat{P}\delta\vek{x}^{k}.
461 \end{equation}
462 The Krylov method iteratively improves the approximate solution
463 to~(\ref{eq:jfnklinpc}) in subspace ($\vek{r}_0$,
464 $\mat{J}\mat{P}^{-1}\vek{r}_0$, $(\mat{J}\mat{P}^{-1})^2\vek{r}_0$,
465 \ldots, $(\mat{J}\mat{P}^{-1})^m\vek{r}_0$) with increasing $m$;
466 $\vek{r}_0 = -\vek{F}(\vek{x}^{k-1})
467 -\mat{J}(\vek{x}^{k-1})\,\delta\vek{x}^{k}_{0}$
468 %-\vek{F}(\vek{x}^{k-1})
469 %-\mat{J}(\vek{x}^{k-1})\,\mat{P}^{-1}\delta\vek{z}$
470 is the initial residual of
471 (\ref{eq:jfnklin}); $\vek{r}_0=-\vek{F}(\vek{x}^{k-1})$ with the first
472 guess $\delta\vek{x}^{k}_{0}=0$. We allow a Krylov-subspace of
473 dimension~$m=50$ and we do not use restarts. The preconditioning operation
474 involves applying $\mat{P}^{-1}$ to the basis vectors $\vek{v}_0,
475 \vek{v}_1, \vek{v}_2, \ldots, \vek{v}_m$ of the Krylov subspace. This
476 operation is approximated by solving the linear system
477 $\mat{P}\,\vek{w}=\vek{v}_i$. Because $\mat{P} \approx
478 \mat{A}(\vek{x}^{k-1})$, we can use the LSR-algorithm \citep{zhang97}
479 already implemented in the Picard solver. Each preconditioning
480 operation uses a fixed number of 10~LSR-iterations avoiding any
481 termination criterion. More details and results can be found in
482 \citet{lemieux10, losch14:_jfnk}.
483
484 To use the JFNK-solver set \code{SEAICEuseJFNK = .TRUE.} in the
485 namelist file \code{data.seaice}; \code{SEAICE\_ALLOW\_JFNK} needs to
486 be defined in \code{SEAICE\_OPTIONS.h} and we recommend using a smooth
487 regularization of $\zeta$ by defining \code{SEAICE\_ZETA\_SMOOTHREG}
488 (see above) for better convergence. The non-linear Newton iteration
489 is terminated when the $L_2$-norm of the residual is reduced by
490 $\gamma_{\mathrm{nl}}$ (runtime parameter \code{JFNKgamma\_nonlin =
491 1.e-4} will already lead to expensive simulations) with respect to
492 the initial norm: $\|\vek{F}(\vek{x}^k)\| <
493 \gamma_{\mathrm{nl}}\|\vek{F}(\vek{x}^0)\|$. Within a non-linear
494 iteration, the linear FGMRES solver is terminated when the residual is
495 smaller than $\gamma_k\|\vek{F}(\vek{x}^{k-1})\|$ where $\gamma_k$ is
496 determined by
497 \begin{equation}
498 \label{eq:jfnkgammalin}
499 \gamma_k =
500 \begin{cases}
501 \gamma_0 &\text{for $\|\vek{F}(\vek{x}^{k-1})\| \geq r$}, \\
502 \max\left(\gamma_{\min},
503 \frac{\|\vek{F}(\vek{x}^{k-1})\|}{\|\vek{F}(\vek{x}^{k-2})\|}\right)
504 % \phi\left(\frac{\|\vek{F}(\vek{x}^{k-1})\|}{\|\vek{F}(\vek{x}^{k-2})\|}\right)^\alpha\right)
505 &\text{for $\|\vek{F}(\vek{x}^{k-1})\| < r$,}
506 \end{cases}
507 \end{equation}
508 so that the linear tolerance parameter $\gamma_k$ decreases with the
509 non-linear Newton step as the non-linear solution is approached. This
510 inexact Newton method is generally more robust and computationally
511 more efficient than exact methods \citep[e.g.,][]{knoll04:_jfnk}.
512 % \footnote{The general idea behind
513 % inexact Newton methods is this: The Krylov solver is ``only''
514 % used to find an intermediate solution of the linear
515 % equation\,(\ref{eq:jfnklin}) that is used to improve the approximation of
516 % the actual equation\,(\ref{eq:matrixmom}). With the choice of a
517 % relatively weak lower limit for FGMRES convergence
518 % $\gamma_{\min}$ we make sure that the time spent in the FGMRES
519 % solver is reduced at the cost of more Newton iterations. Newton
520 % iterations are cheaper than Krylov iterations so that this choice
521 % improves the overall efficiency.}
522 Typical parameter choices are
523 $\gamma_0=\code{JFNKgamma\_lin\_max}=0.99$,
524 $\gamma_{\min}=\code{JFNKgamma\_lin\_min}=0.1$, and $r =
525 \code{JFNKres\_tFac}\times\|\vek{F}(\vek{x}^{0})\|$ with
526 $\code{JFNKres\_tFac} = \frac{1}{2}$. We recommend a maximum number of
527 non-linear iterations $\code{SEAICEnewtonIterMax} = 100$ and a maximum
528 number of Krylov iterations $\code{SEAICEkrylovIterMax} = 50$, because
529 the Krylov subspace has a fixed dimension of 50.
530
531 Setting \code{SEAICEuseStrImpCpl = .TRUE.,} turns on ``strength
532 implicit coupling'' \citep{hutchings04} in the LSR-solver and in the
533 LSR-preconditioner for the JFNK-solver. In this mode, the different
534 contributions of the stress divergence terms are re-ordered in order
535 to increase the diagonal dominance of the system
536 matrix. Unfortunately, the convergence rate of the LSR solver is
537 increased only slightly, while the JFNK-convergence appears to be
538 unaffected.
539
540 \paragraph{Elastic-Viscous-Plastic (EVP) Dynamics\label{sec:pkg:seaice:EVPdynamics}}~\\
541 %
542 \citet{hun97}'s introduced an elastic contribution to the strain
543 rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
544 the resulting elastic-viscous-plastic (EVP) and VP models are
545 identical at steady state,
546 \begin{equation}
547 \label{eq:evpequation}
548 \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
549 \frac{1}{2\eta}\sigma_{ij}
550 + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
551 + \frac{P}{4\zeta}\delta_{ij}
552 = \dot{\epsilon}_{ij}.
553 \end{equation}
554 %In the EVP model, equations for the components of the stress tensor
555 %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
556 %used and compared the present sea-ice model study.
557 The EVP-model uses an explicit time stepping scheme with a short
558 timestep. According to the recommendation of \citet{hun97}, the
559 EVP-model should be stepped forward in time 120 times
560 ($\code{SEAICE\_deltaTevp} = \code{SEAICIE\_deltaTdyn}/120$) within
561 the physical ocean model time step (although this parameter is under
562 debate), to allow for elastic waves to disappear. Because the scheme
563 does not require a matrix inversion it is fast in spite of the small
564 internal timestep and simple to implement on parallel computers
565 \citep{hun97}. For completeness, we repeat the equations for the
566 components of the stress tensor $\sigma_{1} =
567 \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
568 $\sigma_{12}$. Introducing the divergence $D_D =
569 \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
570 and shearing strain rates, $D_T =
571 \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
572 2\dot{\epsilon}_{12}$, respectively, and using the above
573 abbreviations, the equations~\ref{eq:evpequation} can be written as:
574 \begin{align}
575 \label{eq:evpstresstensor1}
576 \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
577 \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
578 \label{eq:evpstresstensor2}
579 \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
580 &= \frac{P}{2T\Delta} D_T \\
581 \label{eq:evpstresstensor12}
582 \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
583 &= \frac{P}{4T\Delta} D_S
584 \end{align}
585 Here, the elastic parameter $E$ is redefined in terms of a damping
586 timescale $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
587 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external
588 (long) timestep $\Delta{t}$. $E_{0} = \frac{1}{3}$ is the default
589 value in the code and close to what \citet{hun97} and
590 \citet{hun01} recommend.
591
592 To use the EVP solver, make sure that both \code{SEAICE\_CGRID} and
593 \code{SEAICE\_ALLOW\_EVP} are defined in \code{SEAICE\_OPTIONS.h}
594 (default). The solver is turned on by setting the sub-cycling time
595 step \code{SEAICE\_deltaTevp} to a value larger than zero. The
596 choice of this time step is under debate. \citet{hun97} recommend
597 order(120) time steps for the EVP solver within one model time step
598 $\Delta{t}$ (\code{deltaTmom}). One can also choose order(120) time
599 steps within the forcing time scale, but then we recommend adjusting
600 the damping time scale $T$ accordingly, by setting either
601 \code{SEAICE\_elasticParm} ($E_{0}$), so that
602 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
603 \code{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
604
605 \paragraph{More stable variants of Elastic-Viscous-Plastic Dynamics:
606 EVP* , mEVP, and aEVP \label{sec:pkg:seaice:EVPstar}}~\\
607 %
608 The genuine EVP schemes appears to give noisy solutions \citep{hun01,
609 lemieux12, bouillon13}. This has lead to a modified EVP or EVP*
610 \citep{lemieux12, bouillon13, kimmritz15}; here, we refer to these
611 variants by modified EVP (mEVP) and adaptive EVP (aEVP)
612 \citep{kimmritz16}. The main idea is to modify the ``natural''
613 time-discretization of the momentum equations:
614 \begin{equation}
615 \label{eq:evpstar}
616 m\frac{D\vec{u}}{Dt} \approx m\frac{u^{p+1}-u^{n}}{\Delta{t}}
617 + \beta^{*}\frac{u^{p+1}-u^{p}}{\Delta{t}_{\mathrm{EVP}}}
618 \end{equation}
619 where $n$ is the previous time step index, and $p$ is the previous
620 sub-cycling index. The extra ``intertial'' term
621 $m\,(u^{p+1}-u^{n})/\Delta{t})$ allows the definition of a residual
622 $|u^{p+1}-u^{p}|$ that, as $u^{p+1} \rightarrow u^{n+1}$, converges to
623 $0$. In this way EVP can be re-interpreted as a pure iterative solver
624 where the sub-cycling has no association with time-relation (through
625 $\Delta{t}_{\mathrm{EVP}}$) \citep{bouillon13, kimmritz15}. Using the
626 terminology of \citet{kimmritz15}, the evolution equations of stress
627 $\sigma_{ij}$ and momentum $\vec{u}$ can be written as:
628 \begin{align}
629 \label{eq:evpstarsigma}
630 \sigma_{ij}^{p+1}&=\sigma_{ij}^p+\frac{1}{\alpha}
631 \Big(\sigma_{ij}(\vec{u}^p)-\sigma_{ij}^p\Big),
632 \phantom{\int}\\
633 \label{eq:evpstarmom}
634 \vec{u}^{p+1}&=\vec{u}^p+\frac{1}{\beta}
635 \Big(\frac{\Delta t}{m}\nabla \cdot{\bf \sigma}^{p+1}+
636 \frac{\Delta t}{m}\vec{R}^{p}+\vec{u}_n-\vec{u}^p\Big).
637 \end{align}
638 $\vec{R}$ contains all terms in the momentum equations except for the
639 rheology terms and the time derivative; $\alpha$ and $\beta$ are free
640 parameters (\code{SEAICE\_evpAlpha}, \code{SEAICE\_evpBeta}) that
641 replace the time stepping parameters \code{SEAICE\_deltaTevp}
642 ($\Delta{T}_{\mathrm{EVP}}$), \code{SEAICE\_elasticParm} ($E_{0}$), or
643 \code{SEAICE\_evpTauRelax} ($T$). $\alpha$ and $\beta$ determine the
644 speed of convergence and the stability. Usually, it makes sense to use
645 $\alpha = \beta$, and \code{SEAICEnEVPstarSteps} $\gg
646 (\alpha,\,\beta)$ \citep{kimmritz15}. Currently, there is no
647 termination criterion and the number of mEVP iterations is fixed to
648 \code{SEAICEnEVPstarSteps}.
649
650 In order to use mEVP in the MITgcm, set \code{SEAICEuseEVPstar =
651 .TRUE.,} in \code{data.seaice}. If \code{SEAICEuseEVPrev =.TRUE.,}
652 the actual form of equations (\ref{eq:evpstarsigma}) and
653 (\ref{eq:evpstarmom}) is used with fewer implicit terms and the factor
654 of $e^{2}$ dropped in the stress equations (\ref{eq:evpstresstensor2})
655 and (\ref{eq:evpstresstensor12}). Although this modifies the original
656 EVP-equations, it turns out to improve convergence \citep{bouillon13}.
657
658 Another variant is the aEVP scheme \citep{kimmritz16}, where the value
659 of $\alpha$ is set dynamically based on the stability criterion
660 \begin{equation}
661 \label{eq:aevpalpha}
662 \alpha = \beta = \max\left( \tilde{c}\pi\sqrt{c \frac{\zeta}{A_{c}}
663 \frac{\Delta{t}}{\max(m,10^{-4}\text{\,kg})}},\alpha_{\min} \right)
664 \end{equation}
665 with the grid cell area $A_c$ and the ice and snow mass $m$. This
666 choice sacrifices speed of convergence for stability with the result
667 that aEVP converges quickly to VP where $\alpha$ can be small and more
668 slowly in areas where the equations are stiff. In practice, aEVP leads
669 to an overall better convergence than mEVP \citep{kimmritz16}.
670 %
671 To use aEVP in the MITgcm set \code{SEAICEaEVPcoeff} $= \tilde{c}$;
672 this also sets the default values of \code{SEAICEaEVPcStar} ($c=4$)
673 and \code{SEAICEaEVPalphaMin} ($\alpha_{\min}=5$). Good convergence
674 has been obtained with setting these values \citep{kimmritz16}:
675 \code{SEAICEaEVPcoeff = 0.5, SEAICEnEVPstarSteps = 500,
676 SEAICEuseEVPstar = .TRUE., SEAICEuseEVPrev = .TRUE.}
677
678 Note, that probably because of the C-grid staggering of velocities and
679 stresses, mEVP may not converge as successfully as in
680 \citet{kimmritz15}, and that convergence at very high resolution
681 (order 5\,km) has not been studied yet.
682
683 \paragraph{Truncated ellipse method (TEM) for yield curve \label{sec:pkg:seaice:TEM}}~\\
684 %
685 In the so-called truncated ellipse method the shear viscosity $\eta$
686 is capped to suppress any tensile stress \citep{hibler97, geiger98}:
687 \begin{equation}
688 \label{eq:etatem}
689 \eta = \min\left(\frac{\zeta}{e^2},
690 \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
691 {\sqrt{\max(\Delta_{\min}^{2},(\dot{\epsilon}_{11}-\dot{\epsilon}_{22})^2
692 +4\dot{\epsilon}_{12}^2})}\right).
693 \end{equation}
694 To enable this method, set \code{\#define SEAICE\_ALLOW\_TEM} in
695 \code{SEAICE\_OPTIONS.h} and turn it on with
696 \code{SEAICEuseTEM} in \code{data.seaice}.
697
698 \paragraph{Ice-Ocean stress \label{sec:pkg:seaice:iceoceanstress}}~\\
699 %
700 Moving sea ice exerts a stress on the ocean which is the opposite of
701 the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
702 applied directly to the surface layer of the ocean model. An
703 alternative ocean stress formulation is given by \citet{hibler87}.
704 Rather than applying $\vtau_{ocean}$ directly, the stress is derived
705 from integrating over the ice thickness to the bottom of the oceanic
706 surface layer. In the resulting equation for the \emph{combined}
707 ocean-ice momentum, the interfacial stress cancels and the total
708 stress appears as the sum of windstress and divergence of internal ice
709 stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
710 Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
711 now the velocity in the surface layer of the ocean that is used to
712 advect tracers, is really an average over the ocean surface
713 velocity and the ice velocity leading to an inconsistency as the ice
714 temperature and salinity are different from the oceanic variables.
715 To turn on the stress formulation of \citet{hibler87}, set
716 \code{useHB87StressCoupling=.TRUE.} in \code{data.seaice}.
717
718
719 % Our discretization differs from \citet{zhang97, zhang03} in the
720 % underlying grid, namely the Arakawa C-grid, but is otherwise
721 % straightforward. The EVP model, in particular, is discretized
722 % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
723 % center points and $\sigma_{12}$ on the corner (or vorticity) points of
724 % the grid. With this choice all derivatives are discretized as central
725 % differences and averaging is only involved in computing $\Delta$ and
726 % $P$ at vorticity points.
727
728 \paragraph{Finite-volume discretization of the stress tensor
729 divergence\label{sec:pkg:seaice:discretization}}~\\
730 %
731 On an Arakawa C~grid, ice thickness and concentration and thus ice
732 strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
733 naturally defined a C-points in the center of the grid
734 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
735 vorticity or Z-points (or $\zeta$-points, but here we use Z in order
736 avoid confusion with the bulk viscosity) at the bottom left corner of
737 the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
738 the following, the superscripts indicate location at Z or C points,
739 distance across the cell (F), along the cell edge (G), between
740 $u$-points (U), $v$-points (V), and C-points (C). The control volumes
741 of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
742 $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
743 (which follow the model code documentation except that $\zeta$-points
744 have been renamed to Z-points), the strain rates are discretized as:
745 \begin{align}
746 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
747 => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
748 + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
749 \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
750 => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
751 + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
752 \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
753 \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
754 \biggr) \\ \notag
755 => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
756 \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
757 + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
758 &\phantom{=\frac{1}{2}\biggl(}
759 - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
760 - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
761 \biggr),
762 \end{align}
763 so that the diagonal terms of the strain rate tensor are naturally
764 defined at C-points and the symmetric off-diagonal term at
765 Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
766 $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
767 ``ghost-points''; for free slip boundary conditions
768 $(\epsilon_{12})^Z=0$ on boundaries.
769
770 For a spherical polar grid, the coefficients of the metric terms are
771 $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
772 the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
773 \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
774 general orthogonal curvilinear grid, $k_{1}$ and
775 $k_{2}$ can be approximated by finite differences of the cell widths:
776 \begin{align}
777 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
778 \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
779 k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
780 \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
781 k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
782 \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
783 k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
784 \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
785 \end{align}
786
787 The stress tensor is given by the constitutive viscous-plastic
788 relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
789 [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
790 ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
791 $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
792 discretized in finite volumes \citep[see
793 also][]{losch10:_mitsim}. This conveniently avoids dealing with
794 further metric terms, as these are ``hidden'' in the differential cell
795 widths. For the $u$-equation ($\alpha=1$) we have:
796 \begin{align}
797 (\nabla\sigma)_{1}: \phantom{=}&
798 \frac{1}{A_{i,j}^w}
799 \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
800 \\\notag
801 =& \frac{1}{A_{i,j}^w} \biggl\{
802 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
803 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
804 \biggr\} \\ \notag
805 \approx& \frac{1}{A_{i,j}^w} \biggl\{
806 \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
807 + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
808 \biggr\} \\ \notag
809 =& \frac{1}{A_{i,j}^w} \biggl\{
810 (\Delta{x}_2\sigma_{11})_{i,j}^C -
811 (\Delta{x}_2\sigma_{11})_{i-1,j}^C
812 \\\notag
813 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
814 + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
815 \biggr\}
816 \end{align}
817 with
818 \begin{align}
819 (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
820 \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
821 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
822 &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
823 k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
824 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
825 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
826 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
827 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
828 \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
829 (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
830 \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
831 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
832 & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
833 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
834 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
835 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
836 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
837 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
838 \end{align}
839
840 Similarly, we have for the $v$-equation ($\alpha=2$):
841 \begin{align}
842 (\nabla\sigma)_{2}: \phantom{=}&
843 \frac{1}{A_{i,j}^s}
844 \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
845 \\\notag
846 =& \frac{1}{A_{i,j}^s} \biggl\{
847 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
848 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
849 \biggr\} \\ \notag
850 \approx& \frac{1}{A_{i,j}^s} \biggl\{
851 \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
852 + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
853 \biggr\} \\ \notag
854 =& \frac{1}{A_{i,j}^s} \biggl\{
855 (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
856 \\ \notag
857 \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
858 + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
859 \biggr\}
860 \end{align}
861 with
862 \begin{align}
863 (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
864 \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
865 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
866 \\\notag &
867 + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
868 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
869 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
870 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
871 \\\notag &
872 - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
873 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
874 (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
875 \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
876 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
877 &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
878 k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
879 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
880 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
881 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
882 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
883 & -\Delta{x}_{i,j}^{F} \frac{P}{2}
884 \end{align}
885
886 Again, no slip boundary conditions are realized via ghost points and
887 $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
888 free slip boundary conditions the lateral stress is set to zeros. In
889 analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
890 $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
891
892 \paragraph{Thermodynamics\label{sec:pkg:seaice:thermodynamics}}~\\
893 %
894 \noindent\textbf{NOTE: THIS SECTION IS TERRIBLY OUT OF DATE}\\
895 In its original formulation the sea ice model \citep{menemenlis05}
896 uses simple thermodynamics following the appendix of
897 \citet{sem76}. This formulation does not allow storage of heat,
898 that is, the heat capacity of ice is zero. Upward conductive heat flux
899 is parameterized assuming a linear temperature profile and together
900 with a constant ice conductivity. It is expressed as
901 $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
902 thickness, and $T_{w}-T_{0}$ the difference between water and ice
903 surface temperatures. This type of model is often refered to as a
904 ``zero-layer'' model. The surface heat flux is computed in a similar
905 way to that of \citet{parkinson79} and \citet{manabe79}.
906
907 The conductive heat flux depends strongly on the ice thickness $h$.
908 However, the ice thickness in the model represents a mean over a
909 potentially very heterogeneous thickness distribution. In order to
910 parameterize a sub-grid scale distribution for heat flux computations,
911 the mean ice thickness $h$ is split into $N$ thickness categories
912 $H_{n}$ that are equally distributed between $2h$ and a minimum
913 imposed ice thickness of $5\text{\,cm}$ by $H_n= \frac{2n-1}{7}\,h$
914 for $n\in[1,N]$. The heat fluxes computed for each thickness category
915 is area-averaged to give the total heat flux \citep{hibler84}. To use
916 this thickness category parameterization set \code{SEAICE\_multDim} to
917 the number of desired categories (7 is a good guess, for anything
918 larger than 7 modify \code{SEAICE\_SIZE.h}) in
919 \code{data.seaice}; note that this requires different restart files
920 and switching this flag on in the middle of an integration is not
921 advised. In order to include the same distribution for snow, set
922 \code{SEAICE\_useMultDimSnow = .TRUE.}; only then, the
923 parameterization of always having a fraction of thin ice is efficient
924 and generally thicker ice is produced \citep{castro-morales14}.
925
926
927 The atmospheric heat flux is balanced by an oceanic heat flux from
928 below. The oceanic flux is proportional to
929 $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
930 the density and heat capacity of sea water and $T_{fr}$ is the local
931 freezing point temperature that is a function of salinity. This flux
932 is not assumed to instantaneously melt or create ice, but a time scale
933 of three days (run-time parameter \code{SEAICE\_gamma\_t}) is used
934 to relax $T_{w}$ to the freezing point.
935 %
936 The parameterization of lateral and vertical growth of sea ice follows
937 that of \citet{hib79, hib80}; the so-called lead closing parameter
938 $h_{0}$ (run-time parameter \code{HO}) has a default value of
939 0.5~meters.
940
941 On top of the ice there is a layer of snow that modifies the heat flux
942 and the albedo \citep{zha98a}. Snow modifies the effective
943 conductivity according to
944 \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
945 where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
946 If enough snow accumulates so that its weight submerges the ice and
947 the snow is flooded, a simple mass conserving parameterization of
948 snowice formation (a flood-freeze algorithm following Archimedes'
949 principle) turns snow into ice until the ice surface is back at $z=0$
950 \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
951 \code{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
952 \code{SEAICEuseFlooding=.true.}.
953
954 \paragraph{Advection of thermodynamic variables\label{sec:pkg:seaice:advection}}~\\
955 %
956 Effective ice thickness (ice volume per unit area,
957 $c\cdot{h}$), concentration $c$ and effective snow thickness
958 ($c\cdot{h}_{s}$) are advected by ice velocities:
959 \begin{equation}
960 \label{eq:advection}
961 \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
962 \Gamma_{X} + D_{X}
963 \end{equation}
964 where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
965 diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
966 %
967 From the various advection scheme that are available in the MITgcm, we
968 recommend flux-limited schemes \citep[multidimensional 2nd and
969 3rd-order advection scheme with flux limiter][]{roe:85, hundsdorfer94}
970 to preserve sharp gradients and edges that are typical of sea ice
971 distributions and to rule out unphysical over- and undershoots
972 (negative thickness or concentration). These schemes conserve volume
973 and horizontal area and are unconditionally stable, so that we can set
974 $D_{X}=0$. Run-timeflags: \code{SEAICEadvScheme} (default=2, is the
975 historic 2nd-order, centered difference scheme), \code{DIFF1} =
976 $D_{X}/\Delta{x}$
977 (default=0.004).
978
979 The MITgcm sea ice model provides the option to use
980 the thermodynamics model of \citet{win00}, which in turn is based on
981 the 3-layer model of \citet{sem76} and which treats brine content by
982 means of enthalpy conservation; the corresponding package
983 \code{thsice} is described in section~\ref{sec:pkg:thsice}. This
984 scheme requires additional state variables, namely the enthalpy of the
985 two ice layers (instead of effective ice salinity), to be advected by
986 ice velocities.
987 %
988 The internal sea ice temperature is inferred from ice enthalpy. To
989 avoid unphysical (negative) values for ice thickness and
990 concentration, a positive 2nd-order advection scheme with a SuperBee
991 flux limiter \citep{roe:85} should be used to advect all
992 sea-ice-related quantities of the \citet{win00} thermodynamic model
993 (runtime flag \code{thSIceAdvScheme=77} and
994 \code{thSIce\_diffK}=$D_{X}$=0 in \code{data.ice}, defaults are 0). Because of the
995 non-linearity of the advection scheme, care must be taken in advecting
996 these quantities: when simply using ice velocity to advect enthalpy,
997 the total energy (i.e., the volume integral of enthalpy) is not
998 conserved. Alternatively, one can advect the energy content (i.e.,
999 product of ice-volume and enthalpy) but then false enthalpy extrema
1000 can occur, which then leads to unrealistic ice temperature. In the
1001 currently implemented solution, the sea-ice mass flux is used to
1002 advect the enthalpy in order to ensure conservation of enthalpy and to
1003 prevent false enthalpy extrema. %
1004
1005 %----------------------------------------------------------------------
1006
1007 \subsubsection{Key subroutines
1008 \label{sec:pkg:seaice:subroutines}}
1009
1010 Top-level routine: \code{seaice\_model.F}
1011
1012 {\footnotesize
1013 \begin{verbatim}
1014
1015 C !CALLING SEQUENCE:
1016 c ...
1017 c seaice_model (TOP LEVEL ROUTINE)
1018 c |
1019 c |-- #ifdef SEAICE_CGRID
1020 c | SEAICE_DYNSOLVER
1021 c | |
1022 c | |-- < compute proxy for geostrophic velocity >
1023 c | |
1024 c | |-- < set up mass per unit area and Coriolis terms >
1025 c | |
1026 c | |-- < dynamic masking of areas with no ice >
1027 c | |
1028 c | |
1029
1030 c | #ELSE
1031 c | DYNSOLVER
1032 c | #ENDIF
1033 c |
1034 c |-- if ( useOBCS )
1035 c | OBCS_APPLY_UVICE
1036 c |
1037 c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
1038 c | SEAICE_ADVDIFF
1039 c |
1040 c |-- if ( usePW79thermodynamics )
1041 c | SEAICE_GROWTH
1042 c |
1043 c |-- if ( useOBCS )
1044 c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
1045 c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
1046 c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
1047 c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
1048 c |
1049 c |-- < do various exchanges >
1050 c |
1051 c |-- < do additional diagnostics >
1052 c |
1053 c o
1054
1055 \end{verbatim}
1056 }
1057
1058
1059 %----------------------------------------------------------------------
1060
1061 \subsubsection{SEAICE diagnostics
1062 \label{sec:pkg:seaice:diagnostics}}
1063
1064 Diagnostics output is available via the diagnostics package
1065 (see Section \ref{sec:pkg:diagnostics}).
1066 Available output fields are summarized in
1067 Table \ref{tab:pkg:seaice:diagnostics}.
1068
1069 \input{s_phys_pkgs/text/seaice_diags.tex}
1070
1071 %\subsubsection{Package Reference}
1072
1073 \subsubsection{Experiments and tutorials that use seaice}
1074 \label{sec:pkg:seaice:experiments}
1075
1076 \begin{itemize}
1077 \item{Labrador Sea experiment in \code{lab\_sea} verification directory. }
1078 \item \code{seaice\_obcs}, based on \code{lab\_sea}
1079 \item \code{offline\_exf\_seaice/input.seaicetd}, based on \code{lab\_sea}
1080 \item \code{global\_ocean.cs32x15/input.icedyn} and
1081 \code{global\_ocean.cs32x15/input.seaice}, global
1082 cubed-sphere-experiment with combinations of \code{seaice} and
1083 \code{thsice}
1084 \end{itemize}
1085
1086
1087 %%% Local Variables:
1088 %%% mode: latex
1089 %%% TeX-master: "../../manual"
1090 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22