1 |
mlosch |
1.1 |
% $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.8 2009/05/13 12:54:45 mlosch Exp $ |
2 |
|
|
% $Name: $ |
3 |
|
|
|
4 |
|
|
\subsection{SHELFICE Package} |
5 |
|
|
\label{sec:pkg:shelfice} |
6 |
|
|
\begin{rawhtml} |
7 |
|
|
<!-- CMIREDIR:package_shelfice: --> |
8 |
|
|
\end{rawhtml} |
9 |
|
|
|
10 |
|
|
Authors: Martin Losch, Jean-Michel Campin |
11 |
|
|
|
12 |
|
|
%---------------------------------------------------------------------- |
13 |
|
|
\subsubsection{Introduction |
14 |
|
|
\label{sec:pkg:exf:intro}} |
15 |
|
|
|
16 |
|
|
|
17 |
|
|
Package ``shelfice'' provides a thermodynamic model for basal melting |
18 |
|
|
underneath floating ice shelves. |
19 |
|
|
|
20 |
|
|
CPP options enable or disable different aspects of the package |
21 |
|
|
(Section \ref{sec:pkg:shelfice:config}). |
22 |
|
|
Run-Time options, flags, filenames and field-related dates/times are |
23 |
|
|
set in \texttt{data.shelfice} |
24 |
|
|
(Section \ref{sec:pkg:shelfice:runtime}). |
25 |
|
|
A description of key subroutines is given in Section |
26 |
|
|
\ref{sec:pkg:shelfice:subroutines}. |
27 |
|
|
Input fields, units and sign conventions are summarized in |
28 |
|
|
Section \ref{sec:pkg:shelfice:fields_units}, and available diagnostics |
29 |
|
|
output is listed in Section \ref{sec:pkg:shelfice:fields_diagnostics}. |
30 |
|
|
|
31 |
|
|
%---------------------------------------------------------------------- |
32 |
|
|
|
33 |
|
|
\subsubsection{SHELFICE configuration, compiling \& running} |
34 |
|
|
|
35 |
|
|
\paragraph{Compile-time options |
36 |
|
|
\label{sec:pkg:shelfice:config}} |
37 |
|
|
~ |
38 |
|
|
|
39 |
|
|
As with all MITgcm packages, SHELFICE can be turned on or off at compile time |
40 |
|
|
% |
41 |
|
|
\begin{itemize} |
42 |
|
|
% |
43 |
|
|
\item |
44 |
|
|
using the \texttt{packages.conf} file by adding \texttt{shelfice} to it, |
45 |
|
|
% |
46 |
|
|
\item |
47 |
|
|
or using \texttt{genmake2} adding |
48 |
|
|
\texttt{-enable=shelfice} or \texttt{-disable=shelfice} switches |
49 |
|
|
% |
50 |
|
|
\item |
51 |
|
|
\textit{required packages and CPP options}: \\ |
52 |
|
|
SHELFICE does not require any additional packages, but it will only |
53 |
|
|
work with conventional vertical $z$-coordinates (pressure coordinates |
54 |
|
|
are not implemented, yet). If you use it together with vertical mixing |
55 |
|
|
schemes, be aware, that non-local parameterizations have been turned |
56 |
|
|
off, e.g.\ for KPP (\ref{sec:pkg:kpp}). |
57 |
|
|
% |
58 |
|
|
\end{itemize} |
59 |
|
|
(see Section \ref{sect:buildingCode}). |
60 |
|
|
|
61 |
|
|
Parts of the SHELFICE code can be enabled or disabled at compile time |
62 |
|
|
via CPP preprocessor flags. These options are set |
63 |
|
|
\texttt{SHELFICE\_OPTIONS.h}. |
64 |
|
|
Table \ref{tab:pkg:shelfice:cpp} summarizes these options. |
65 |
|
|
|
66 |
|
|
\begin{table}[h!] |
67 |
|
|
\centering |
68 |
|
|
\label{tab:pkg:shelfice:cpp} |
69 |
|
|
{\footnotesize |
70 |
|
|
\begin{tabular}{|l|l|} |
71 |
|
|
\hline |
72 |
|
|
\textbf{CPP option} & \textbf{Description} \\ |
73 |
|
|
\hline \hline |
74 |
|
|
\texttt{ALLOW\_SHELFICE\_DEBUG} & |
75 |
|
|
Include code for enhanged diagnosis \\ |
76 |
|
|
\texttt{ALLOW\_ISOMIP\_TD} & |
77 |
|
|
Include code for simplifed ISOMIP thermodynamics \\ |
78 |
|
|
\hline |
79 |
|
|
\end{tabular} |
80 |
|
|
} |
81 |
|
|
\caption{Available CPP-flags to be set in \texttt{SHELFICE\_OPTIONS.h}} |
82 |
|
|
\end{table} |
83 |
|
|
|
84 |
|
|
%---------------------------------------------------------------------- |
85 |
|
|
|
86 |
|
|
\subsubsection{Run-time parameters |
87 |
|
|
\label{sec:pkg:shelfice:runtime}} |
88 |
|
|
|
89 |
|
|
Run-time parameters are set in files |
90 |
|
|
\texttt{data.pkg} (read in \texttt{packages\_readparms.F}), |
91 |
|
|
and \texttt{data.shelfice} (read in \texttt{shelfice\_readparms.F}). |
92 |
|
|
|
93 |
|
|
\paragraph{Enabling the package} |
94 |
|
|
~ \\ |
95 |
|
|
% |
96 |
|
|
A package is switched on/off at run-time by setting |
97 |
|
|
(e.g. for SHELFICE) \texttt{useSHELFICE = .TRUE.} in \texttt{data.pkg}. |
98 |
|
|
|
99 |
|
|
\paragraph{General flags and parameters} |
100 |
|
|
~ \\ |
101 |
|
|
% |
102 |
|
|
Table~\ref{tab:pkg:shelfice:runtimeparms} lists all run-time parameters. |
103 |
|
|
\begin{table}[h!] |
104 |
|
|
\caption{Run-time parameters and default values |
105 |
|
|
\label{tab:pkg:shelfice:runtimeparms}} |
106 |
|
|
{\footnotesize |
107 |
|
|
% \hspace*{-1.5in} |
108 |
|
|
\begin{tabular}{|lp{4cm}p{4cm}c|} |
109 |
|
|
\hline |
110 |
|
|
& & & \\ |
111 |
|
|
\textbf{Name} & \textbf{Default value} |
112 |
|
|
& \textbf{Description} & \textbf{Reference} \\ |
113 |
|
|
& & & \\ |
114 |
|
|
\hline \hline |
115 |
|
|
useISOMIPTD & F |
116 |
|
|
& use simplified ISOMIP thermodynamics instead of default |
117 |
|
|
& %---ref--- |
118 |
|
|
\\ |
119 |
|
|
SHELFICEconserve & F |
120 |
|
|
& use conservative form of temperature boundary conditions |
121 |
|
|
& %---ref--- |
122 |
|
|
\\ |
123 |
|
|
SHELFICEboundaryLayer & F |
124 |
|
|
& use simple boundary layer mixing parameterization |
125 |
|
|
& %---ref--- |
126 |
|
|
\\ |
127 |
|
|
SHELFICEloadAnomalyFile & UNSET |
128 |
|
|
& inital geopotential anomaly |
129 |
|
|
& %---ref--- |
130 |
|
|
\\ |
131 |
|
|
SHELFICEtopoFile & UNSET |
132 |
|
|
& under-ice topography of ice shelfes |
133 |
|
|
& %---ref--- |
134 |
|
|
\\ |
135 |
|
|
SHELFICElatentHeat & 334.0E+03 |
136 |
|
|
& latent heat of fusion ($L$) |
137 |
|
|
& %---ref--- |
138 |
|
|
\\ |
139 |
|
|
SHELFICEHeatCapacity\_Cp & 2000.0E+00 |
140 |
|
|
& latent heat of fusion ($c_{p,I}$) |
141 |
|
|
& %---ref--- |
142 |
|
|
\\ |
143 |
|
|
rhoShelfIce & 917.0E+00 |
144 |
|
|
& (constant) mean density of ice shelf ($\rho_{I}$) |
145 |
|
|
& %---ref--- |
146 |
|
|
\\ |
147 |
|
|
SHELFICEheatTransCoeff & 1.0E-04 |
148 |
|
|
& transfer coefficient (exchange velocity) for temperature |
149 |
|
|
($\gamma_T$) |
150 |
|
|
& %---ref--- |
151 |
|
|
\\ |
152 |
|
|
SHELFICEsaltTransCoeff & 5.05E-03 $\times$~SHELFICEheatTransCoeff |
153 |
|
|
& transfer coefficient (exchange velocity) for salinity |
154 |
|
|
($\gamma_S$) |
155 |
|
|
& %---ref--- |
156 |
|
|
\\ |
157 |
|
|
SHELFICEkappa & 1.54E-06 |
158 |
|
|
& temperature diffusion coefficient of the ice shelf ($kappa$) |
159 |
|
|
& %---ref--- |
160 |
|
|
\\ |
161 |
|
|
SHELFICEthetaSurface & -20.0E+00 |
162 |
|
|
& (constant) surface temperature above the ice shelf ($T_{S}$) |
163 |
|
|
& %---ref--- |
164 |
|
|
\\ |
165 |
|
|
no\_slip\_shelfice & no\_slip\_bottom (data) |
166 |
|
|
& flag for slip along bottom of ice shelf |
167 |
|
|
& %---ref--- |
168 |
|
|
\\ |
169 |
|
|
SHELFICEDragLinear & bottomDragLinear (data) |
170 |
|
|
& linear drag coefficient at bottom ice shelf |
171 |
|
|
& %---ref--- |
172 |
|
|
\\ |
173 |
|
|
SHELFICEDragQuadratic & bottomDragQuadratic (data) |
174 |
|
|
& quadratic drag coefficient at bottom ice shelf |
175 |
|
|
& %---ref--- |
176 |
|
|
\\ |
177 |
|
|
SHELFICEwriteState & F |
178 |
|
|
& write ice shelf state to file |
179 |
|
|
& %---ref--- |
180 |
|
|
\\ |
181 |
|
|
SHELFICE\_dumpFreq & dumpFreq (data) |
182 |
|
|
& dump frequency |
183 |
|
|
& %---ref--- |
184 |
|
|
\\ |
185 |
|
|
SHELFICE\_taveFreq & taveFreq (data) |
186 |
|
|
& time-averaging frequency |
187 |
|
|
& %---ref--- |
188 |
|
|
\\ |
189 |
|
|
SHELFICE\_tave\_mnc & timeave\_mnc (data.mnc) |
190 |
|
|
& write snap-shot using MNC |
191 |
|
|
& %---ref--- |
192 |
|
|
\\ |
193 |
|
|
SHELFICE\_dump\_mnc & snapshot\_mnc (data.mnc) |
194 |
|
|
& write TimeAverage using MNC |
195 |
|
|
& %---ref--- |
196 |
|
|
\\ |
197 |
|
|
\hline |
198 |
|
|
\end{tabular} |
199 |
|
|
} |
200 |
|
|
\end{table} |
201 |
|
|
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
%---------------------------------------------------------------------- |
205 |
|
|
\subsubsection{Description |
206 |
|
|
\label{sec:pkg:shelfice:descr}} |
207 |
|
|
|
208 |
|
|
In the light of isomorphic equations for pressure and height |
209 |
|
|
coordinates, the ice shelf topography on top of the water column has a |
210 |
|
|
similar role as (and in the language of \citet{marshall:04} is |
211 |
|
|
isomorphic to) the orography and the pressure boundary conditions at |
212 |
|
|
the bottom of the fluid for atmospheric and oceanic models in pressure |
213 |
|
|
coordinates. |
214 |
|
|
% |
215 |
|
|
|
216 |
|
|
The total pressure $p_{tot}$ in the ocean can be divided into the |
217 |
|
|
pressure at the top of the water column $p_{top}$, the hydrostatic |
218 |
|
|
pressure and the non-hydrostatic pressure contribution $p_{NH}$: |
219 |
|
|
\begin{equation} |
220 |
|
|
\label{eq:pressureocean} |
221 |
|
|
p_{tot} = p_{top} + \int_z^{\eta-h} g\,\rho\,dz + p_{NH}, |
222 |
|
|
\end{equation} |
223 |
|
|
with the gravitational acceleration $g$, the density $\rho$, the |
224 |
|
|
vertical coordinate $z$ (positive upwards), and the dynamic |
225 |
|
|
sea-surface height $\eta$. For the open ocean, $p_{top}=p_{a}$ |
226 |
|
|
(atmospheric pressure) and $h=0$. Underneath an ice-shelf that is |
227 |
|
|
assumed to be floating in isostatic equilibrium, $p_{top}$ at the top |
228 |
|
|
of the water column is the atmospheric pressure $p_{a}$ plus the |
229 |
|
|
weight of the ice-shelf. It is this weight of the ice-shelf that has |
230 |
|
|
to be provided as a boundary condition at the top of the water column |
231 |
|
|
(in run-time parameter \texttt{SHELFICEloadAnomalyFile}). |
232 |
|
|
The weight is conveniently computed by integrating a density profile |
233 |
|
|
$\rho^*$, that is constant in time and corresponds to the sea-water |
234 |
|
|
replaced by ice, from $z=0$ to a ``reference'' ice-shelf draft at |
235 |
|
|
$z=-h$ \citep{beckmann99}, so that |
236 |
|
|
\begin{equation} |
237 |
|
|
\label{eq:ptop} |
238 |
|
|
p_{top} = p_{a} + \int_{-h}^{0}g\,\rho^{*}\,dz. |
239 |
|
|
\end{equation} |
240 |
|
|
Underneath the ice shelf, the ``sea-surface height'' $\eta$ is the |
241 |
|
|
deviation from the ``reference'' ice-shelf draft $h$. During a model |
242 |
|
|
integration, $\eta$ adjusts so that the isostatic equilibrium is |
243 |
|
|
maintained for sufficiently slow and large scale motion. |
244 |
|
|
|
245 |
|
|
In the MITgcm, the total pressure anomaly $p'_{tot}$ which is used for |
246 |
|
|
pressure gradient computations is defined by substracting a purely |
247 |
|
|
depth dependent contribution $-g\rho_{0}z$ with a constant reference |
248 |
|
|
density $\rho_{0}$ from $p_{tot}$. Eq.~(\ref{eq:pressureocean}) becomes |
249 |
|
|
\begin{alignat}{2} |
250 |
|
|
\label{eq:pressure} |
251 |
|
|
p_{tot} =& \,p_{top} - g\,\rho_0\,(z+h) &+ g\,\rho_0\,\eta + \int_z^{\eta-h} |
252 |
|
|
g\,(\rho-\rho_0)\,dz + p_{NH}, \\ |
253 |
|
|
\intertext{and after rearranging} |
254 |
|
|
p'_{tot} =& \,p'_{top} |
255 |
|
|
&+ g\,\rho_0\,\eta + \int_z^{\eta-h}g\,(\rho-\rho_0)\,dz + p_{NH}, |
256 |
|
|
\end{alignat} |
257 |
|
|
with $p'_{tot} = p_{tot} + g\,\rho_0\,z$ and $p'_{top} = p_{top} - |
258 |
|
|
g\,\rho_0\,h$. The non-hydrostatic pressure contribution $p_{NH}$ is |
259 |
|
|
neglected in the following. |
260 |
|
|
|
261 |
|
|
In practice, the ice shelf contribution to $p_{top}$ is computed by |
262 |
|
|
integrating Eq.~(\ref{eq:ptop}) from $z=0$ to the bottom of the last |
263 |
|
|
fully dry cell within the ice shelf: |
264 |
|
|
\begin{equation} |
265 |
|
|
\label{eq:surfacepressure} |
266 |
|
|
p_{top} = g\,\sum_{k'=1}^{n-1}\rho_{k'}^{*}\Delta{z_{k'}} + p_{a} |
267 |
|
|
\end{equation} |
268 |
|
|
where $n$ is the vertical index of the first (at least partially) |
269 |
|
|
``wet'' cell and $\Delta{z_{k'}}$ is the thickness of the $k'$-th |
270 |
|
|
layer (counting downwards). The pressure anomaly for evaluating the pressure |
271 |
|
|
gradient is computed in the center of the ``wet'' cell $k$ as |
272 |
|
|
\begin{equation} |
273 |
|
|
\label{eq:discretizedpressure} |
274 |
|
|
p'_{k} = p'_{top} + g\rho_{n}\eta + |
275 |
|
|
g\,\sum_{k'=n}^{k}\left((\rho_{k'}-\rho_{0})\Delta{z_{k'}} |
276 |
|
|
\frac{1+H(k'-k)}{2}\right) |
277 |
|
|
\end{equation} |
278 |
|
|
where $H(k'-k)=1$ for $k'<k$ and $0$ otherwise. |
279 |
|
|
|
280 |
|
|
Setting \texttt{SHELFICEboundaryLayer=.true.} introduces a simple |
281 |
|
|
boundary layer that reduces the potential noise problem at the cost of |
282 |
|
|
increased vertical mixing. For this purpose the water temperature at |
283 |
|
|
the $k$-th layer abutting ice shelf topography for use in the heat |
284 |
|
|
flux parameterizations is computed as a mean temperature |
285 |
|
|
$\overline{\theta}_{k}$ over a boundary layer of the same thickness as |
286 |
|
|
the layer thickness $\Delta{z}_{k}$: |
287 |
|
|
\begin{equation} |
288 |
|
|
\label{eq:thetabl} |
289 |
|
|
\overline{\theta}_{k} = \theta_{k} h_{k} + \theta_{k+1} (1-h_{k}) |
290 |
|
|
\end{equation} |
291 |
|
|
where $h_{k}\in(0,1]$ is the fractional layer thickness of the $k$-th |
292 |
|
|
layer. The original contributions due to ice shelf-ocean interaction |
293 |
|
|
$g_{\theta}$ to the total tendency terms $G_{\theta}$ in the |
294 |
|
|
time-stepping equation |
295 |
|
|
%$\theta^{n+1} = \theta^{n} + \Delta{t}\, g_{\theta}^{n}$ |
296 |
|
|
$\theta^{n+1} = f(\theta^{n},\Delta{t},G_{\theta}^{n})$ |
297 |
|
|
% |
298 |
|
|
are |
299 |
|
|
\begin{equation} |
300 |
|
|
\label{eq:orgtendency} |
301 |
|
|
g_{\theta,k} = \frac{Q}{\rho_{0} c_{p} h_{k} \Delta{z}_{k}} |
302 |
|
|
\text{ and } g_{\theta,k+1} = 0 |
303 |
|
|
\end{equation} |
304 |
|
|
for layers $k$ and $k+1$ ($c_{p}$ is the heat capacity). Averaging |
305 |
|
|
these terms over a layer thickness $\Delta{z_{k}}$ (e.g., extending |
306 |
|
|
from the ice shelf base down to the dashed line in cell C) and |
307 |
|
|
applying the averaged tendency to cell A (in layer $k$) and to the |
308 |
|
|
appropriate fraction of cells C (in layer $k+1$) yields |
309 |
|
|
\begin{align} |
310 |
|
|
\label{eq:tendencyk} |
311 |
|
|
g_{\theta,k}^* &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} \\ |
312 |
|
|
\label{eq:tendencykp1} |
313 |
|
|
g_{\theta,k+1}^* |
314 |
|
|
&= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} |
315 |
|
|
\frac{ \Delta{z}_{k} ( 1- h_{k} )}{\Delta{z}_{k+1}}. |
316 |
|
|
\end{align} |
317 |
|
|
Eq.~(\ref{eq:tendencykp1}) describes averaging over the part of the |
318 |
|
|
grid cell $k+1$ that is part of the boundary layer with tendency |
319 |
|
|
$g_{\theta,k}^*$ and the part with no tendency. Salinity is treated in |
320 |
|
|
the same way. The momentum equations are not modified. |
321 |
|
|
|
322 |
|
|
\paragraph{Three-Equations-Thermodynamics} |
323 |
|
|
\label{sec:pkg:shelfice:thermodynamics} |
324 |
|
|
|
325 |
|
|
Freezing and melting form a boundary layer between ice shelf and |
326 |
|
|
ocean. % |
327 |
|
|
Phase transitions at the boundary between saline water and ice imply |
328 |
|
|
the following fluxes across the boundary: the freshwater mass flux |
329 |
|
|
$q$ ($<0$ for melting); the heat flux that consists of the diffusive |
330 |
|
|
flux through the ice, the latent heat flux due to melting and freezing |
331 |
|
|
and the heat that is carried by the mass flux; and the salinity that |
332 |
|
|
is carried by the mass flux, if the ice has a non-zero salinity $S_I$. |
333 |
|
|
Further, the position of the interface between ice and ocean changes |
334 |
|
|
because of $q$, so that, say, in the case of melting the volume of sea |
335 |
|
|
water increases. As a consequence salinity and temperature are |
336 |
|
|
modified. |
337 |
|
|
|
338 |
|
|
The turbulent exchange terms for tracers at the ice-ocean interface |
339 |
|
|
are generally expressed as diffusive fluxes. Following |
340 |
|
|
\citet{jenkins01}, the boundary conditions for a tracer take |
341 |
|
|
into account that this boundary is not a material surface. |
342 |
|
|
%The position of this surface changes when ice is melted or water freezes. % |
343 |
|
|
The implied upward freshwater flux $q$ (in mass units, negative for |
344 |
|
|
melting) is included in the boundary conditions for the temperature |
345 |
|
|
and salinity equation as an advective flux: |
346 |
|
|
\begin{equation} |
347 |
|
|
\label{eq:jenkinsbc} |
348 |
|
|
{\rho}K\frac{\partial{X}}{\partial{z}}\biggl|_{b} |
349 |
|
|
= (\rho\gamma_{X}-q) ( X_{b} - X ) |
350 |
|
|
\end{equation} |
351 |
|
|
where tracer $X$ stands for either temperature $T$ or salinity $S$. |
352 |
|
|
$X_b$ is the tracer at the interface (taken to be at freezing), $X$ is |
353 |
|
|
the tracer at the first interior grid point, $\rho$ is the density of |
354 |
|
|
seawater, and $\gamma_X$ is the turbulent exchange coefficient (in |
355 |
|
|
units of an exchange velocity). The left hand side of |
356 |
|
|
Eq.~(\ref{eq:jenkinsbc}) is shorthand for the (downward) flux of tracer $X$ |
357 |
|
|
across the boundary. $T_b$, $S_b$ and the freshwater flux $q$ are |
358 |
|
|
obtained from solving a system of three equations that is derived from |
359 |
|
|
the heat and freshwater balance at the ice ocean interface. |
360 |
|
|
|
361 |
|
|
In this so-called three-equation-model \citep[e.g.,][]{hellmer89, |
362 |
|
|
jenkins01} the heat balance at the ice-ocean interface is expressed |
363 |
|
|
as |
364 |
|
|
|
365 |
|
|
\begin{equation} |
366 |
|
|
\label{eq:hellmerheatbalance} |
367 |
|
|
c_{p} \rho \gamma_T (T - T_{b}) |
368 |
|
|
+\rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} |
369 |
|
|
= -Lq |
370 |
|
|
\end{equation} |
371 |
|
|
where % |
372 |
|
|
$\rho$ is the density of sea-water, % |
373 |
|
|
$c_{p} = 3974\text{\,J\,kg$^{-1}$\,K$^{-1}$}$ is the specific heat |
374 |
|
|
capacity of water and % |
375 |
|
|
$\gamma_T$ the turbulent exchange coefficient of temperature. % |
376 |
|
|
The value of $\gamma_T$ is discussed in \citet{holland99}. $L = |
377 |
|
|
334000\text{\,J\,kg$^{-1}$}$ is the latent heat of fusion. $\rho_{I} = |
378 |
|
|
920\text{\,kg\,m$^{-3}$}$, $c_{p,I} = |
379 |
|
|
2000\text{\,J\,kg$^{-1}$\,K$^{-1}$}$, and $T_{S}$ are the density, |
380 |
|
|
heat capacity and the surface temperature of the ice shelf; |
381 |
|
|
$\kappa=1.54\times10^{-6}\text{\,m$^2$\,s$^{-1}$}$ is the heat |
382 |
|
|
diffusivity through the ice-shelf and $h$ is the ice-shelf draft. The |
383 |
|
|
second term on the right hand side describes the heat flux through the |
384 |
|
|
ice shelf. A constant surface temperature $T_S=-20^{\circ}$ is |
385 |
|
|
imposed. $T$ is the temperature of the model cell adjacent to the |
386 |
|
|
ice-water interface. The temperature at the interface $T_{b}$ is |
387 |
|
|
assumed to be the in-situ freezing point temperature of sea-water |
388 |
|
|
$T_{f}$ which is computed from a linear equation of state |
389 |
|
|
|
390 |
|
|
\begin{equation} |
391 |
|
|
\label{eq:helmerfreeze} |
392 |
|
|
T_{f} = (0.0901 - 0.0575\ S_{b})^{\circ} |
393 |
|
|
- 7.61 \times 10^{-4}\frac{^{\circ}}{\text{dBar}}\ p_{b} |
394 |
|
|
\end{equation} |
395 |
|
|
with the salinity $S_{b}$ and the pressure $p_{b}$ (in dBar) in the |
396 |
|
|
cell at the ice-water interface. From the salt budget, the salt flux |
397 |
|
|
across the shelf ice-ocean interface is equal to the salt flux due to |
398 |
|
|
melting and freezing: |
399 |
|
|
\begin{equation} |
400 |
|
|
\label{eq:hellmersaltbalance} |
401 |
|
|
\rho \gamma_{S} (S - S_{b}) = - q\,(S_{b}-S_{I}), |
402 |
|
|
\end{equation} |
403 |
|
|
where $\gamma_S = 5.05\times10^{-3}\gamma_T$ is the turbulent salinity |
404 |
|
|
exchange coefficient, and $S$ and $S_{b}$ are defined in analogy to |
405 |
|
|
temperature as the salinity of the model cell adjacent to the |
406 |
|
|
ice-water interface and at the interface, respectively. Note, that the |
407 |
|
|
salinity of the ice shelf is generally neglected ($S_{I}=0$). |
408 |
|
|
Equations~(\ref{eq:hellmerheatbalance}) to (\ref{eq:hellmersaltbalance}) can |
409 |
|
|
be solved for $S_{b}$, $T_{b}$, and the freshwater flux $q$ due to |
410 |
|
|
melting. These values are substituted into expression~(\ref{eq:jenkinsbc}) |
411 |
|
|
to obtain the boundary conditions for the temperature and salinity |
412 |
|
|
equations of the ocean model. |
413 |
|
|
% Then upward heat and (virtual) salt fluxes out of the ocean |
414 |
|
|
%are computed following \citet[their equations 6, 7, 25, 28, and 29, note |
415 |
|
|
%that $q = -\text{their melt rate $m$}\times\text{density of |
416 |
|
|
% freshwater}$, and that salinity within the ice is assumed to be |
417 |
|
|
%zero]{jenkins01} |
418 |
|
|
%\begin{align} |
419 |
|
|
% \label{eq:hellmerthetaflux} |
420 |
|
|
% K\frac{\partial{T}}{\partial{z}}\biggl|_{b} =& |
421 |
|
|
% (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag |
422 |
|
|
% =& - q \left[ \frac{L}{c_{p}} + (T - T_{b}) \right] |
423 |
|
|
% - \frac{\rho_{I} c_{p,I} \kappa}{c_{p}} \frac{(T_{S} - T_{b})}{h} \\ |
424 |
|
|
% \label{eq:hellmersaltflux} |
425 |
|
|
% K\frac{\partial{S}}{\partial{z}}\bigg|_{b} =& |
426 |
|
|
% (\rho\gamma_{S}-q)(S_{b} - S) \\\notag |
427 |
|
|
% =& q\,S \\ |
428 |
|
|
% \label{eq:hellmerheatflux} |
429 |
|
|
%% Q =& qc_{p} (T - T_{b}) - qL - \rho_{I} c_{p,I} \kappa |
430 |
|
|
%% \frac{(T_{S} - T_{b})}{h} \\ |
431 |
|
|
% Q =& - c_{p} (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag |
432 |
|
|
% =& - q \left[ L + c_{p} (T - T_{b}) \right] |
433 |
|
|
% - \rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} \\ |
434 |
|
|
% \label{eq:hellmerfwflux} |
435 |
|
|
% Q_{S} =& (\rho\gamma_{S}-q)(S_{b} - S) \\\notag |
436 |
|
|
% =& q\,S |
437 |
|
|
%\end{align} |
438 |
|
|
|
439 |
|
|
This formulation tends to yield smaller melt rates than the simpler |
440 |
|
|
formulation of the ISOMIP protocol because the freshwater flux due to |
441 |
|
|
melting decreases the salinity which raises the freezing point |
442 |
|
|
temperature and thus leads to less melting at the interface. For a |
443 |
|
|
simpler thermodynamics model where $S_b$ is not computed explicitly, |
444 |
|
|
for example as in the ISOMIP protocol, equation~(\ref{eq:jenkinsbc}) cannot |
445 |
|
|
be applied directly. In this case equation~(\ref{eq:hellmersaltbalance}) |
446 |
|
|
can be used with Eq.~(\ref{eq:jenkinsbc}) to obtain: |
447 |
|
|
\begin{equation} |
448 |
|
|
\rho{K}\frac{\partial{S}}{\partial{z}}\biggl|_{b} = q\,(S-S_I). |
449 |
|
|
\end{equation} |
450 |
|
|
This formulation can be used for all cases for which |
451 |
|
|
equation~(\ref{eq:hellmersaltbalance}) is valid. Further, in this |
452 |
|
|
formulation it is obvious that melting ($q<0$) leads to a reduction of |
453 |
|
|
salinity. |
454 |
|
|
|
455 |
|
|
The default value of \texttt{SHELFICEconserve=.false.} removes the |
456 |
|
|
contribution $q ( X_{b}-X )$ from Eq.~(\ref{eq:jenkinsbc}), making the |
457 |
|
|
boundary conditions for temperature non-conservative. |
458 |
|
|
|
459 |
|
|
\paragraph{ISOMIP-Thermodynamics} |
460 |
|
|
\label{sec:pkg:shelfice:isomip} |
461 |
|
|
|
462 |
|
|
A simpler formulation follows the ISOMIP protocol |
463 |
|
|
(\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}). The |
464 |
|
|
freezing and melting in the boundary layer between ice shelf and ocean |
465 |
|
|
is parameterized following \citet{grosfeld97}. In this formulation |
466 |
|
|
Eq.~(\ref{eq:hellmerheatbalance}) reduces to |
467 |
|
|
\begin{equation} |
468 |
|
|
\label{eq:isomipheatbalance} |
469 |
|
|
c_{p} \rho \gamma_T (T - T_{b}) = -Lq |
470 |
|
|
\end{equation} |
471 |
|
|
and the fresh water flux $q$ is computed from |
472 |
|
|
\begin{equation} |
473 |
|
|
\label{eq:isomipfwflx} |
474 |
|
|
q = - \frac{c_{p} \rho \gamma_T (T - T_{b})}{L}. |
475 |
|
|
\end{equation} |
476 |
|
|
In order to use this formulation, set run-time parameter |
477 |
|
|
\texttt{useISOMIPTD=.true.} in data.shelfice. |
478 |
|
|
|
479 |
|
|
\paragraph{Remark} The shelfice package and experiments demonstrating |
480 |
|
|
its strenghts and weaknesses are also described in |
481 |
|
|
\citet{losch08}. However, note that unfortunately the description of |
482 |
|
|
the thermodynamics in the appendix of \citet{losch08} is wrong. |
483 |
|
|
|
484 |
|
|
|
485 |
|
|
%---------------------------------------------------------------------- |
486 |
|
|
|
487 |
|
|
\subsubsection{Key subroutines |
488 |
|
|
\label{sec:pkg:shelfice:subroutines}} |
489 |
|
|
|
490 |
|
|
Top-level routine: \texttt{shelfice\_model.F} |
491 |
|
|
|
492 |
|
|
{\footnotesize |
493 |
|
|
\begin{verbatim} |
494 |
|
|
C !CALLING SEQUENCE: |
495 |
|
|
C ... |
496 |
|
|
C |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! ) |
497 |
|
|
C ... |
498 |
|
|
C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization |
499 |
|
|
C ... |
500 |
|
|
C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics |
501 |
|
|
C with diagnostics |
502 |
|
|
C ... |
503 |
|
|
C | |-THERMODYNAMICS :: theta, salt + tracer equations driver. |
504 |
|
|
C ... |
505 |
|
|
C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature. |
506 |
|
|
C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model |
507 |
|
|
C ... |
508 |
|
|
C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for temperature. |
509 |
|
|
C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model |
510 |
|
|
C ... |
511 |
|
|
C | |-DYNAMICS :: Momentum equations driver. |
512 |
|
|
C ... |
513 |
|
|
C | | |-MOM_FLUXFORM :: Flux form mom eqn. package ( see |
514 |
|
|
C ... |
515 |
|
|
C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation |
516 |
|
|
C with diagnostics |
517 |
|
|
C ... |
518 |
|
|
C | | |-MOM_VECINV :: Vector invariant form mom eqn. package ( see |
519 |
|
|
C ... |
520 |
|
|
C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation |
521 |
|
|
C with diagnostics |
522 |
|
|
C ... |
523 |
|
|
C o |
524 |
|
|
\end{verbatim} |
525 |
|
|
} |
526 |
|
|
|
527 |
|
|
|
528 |
|
|
%---------------------------------------------------------------------- |
529 |
|
|
|
530 |
|
|
\subsubsection{SHELFICE diagnostics |
531 |
|
|
\label{sec:pkg:shelfice:diagnostics}} |
532 |
|
|
|
533 |
|
|
Diagnostics output is available via the diagnostics package |
534 |
|
|
(see Section \ref{sec:pkg:diagnostics}). |
535 |
|
|
Available output fields are summarized in |
536 |
|
|
Table \ref{tab:pkg:shelfice:diagnostics}. |
537 |
|
|
|
538 |
|
|
\begin{table}[h!] |
539 |
|
|
\centering |
540 |
|
|
\label{tab:pkg:shelfice:diagnostics} |
541 |
|
|
{\footnotesize |
542 |
|
|
\begin{verbatim} |
543 |
|
|
---------+----+----+----------------+----------------- |
544 |
|
|
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
545 |
|
|
---------+----+----+----------------+----------------- |
546 |
|
|
SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward) |
547 |
|
|
SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward) |
548 |
|
|
SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag |
549 |
|
|
SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag |
550 |
|
|
SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta |
551 |
|
|
SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt |
552 |
|
|
\end{verbatim} |
553 |
|
|
} |
554 |
|
|
\caption{Available diagnostics of the shelfice-package} |
555 |
|
|
\end{table} |
556 |
|
|
|
557 |
|
|
|
558 |
|
|
%\subsubsection{Package Reference} |
559 |
|
|
|
560 |
|
|
\subsubsection{Experiments and tutorials that use shelfice} |
561 |
|
|
\label{sec:pkg:shelfice:experiments} |
562 |
|
|
|
563 |
|
|
\begin{itemize} |
564 |
|
|
\item{ISOMIP, Experiment 1 |
565 |
|
|
(\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}) |
566 |
|
|
in isomip verification directory.} |
567 |
|
|
\end{itemize} |
568 |
|
|
|
569 |
|
|
|
570 |
|
|
%%% Local Variables: |
571 |
|
|
%%% mode: latex |
572 |
|
|
%%% TeX-master: "../manual" |
573 |
|
|
%%% End: |