/[MITgcm]/manual/s_phys_pkgs/text/shelfice.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/shelfice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu May 14 10:19:12 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
File MIME type: application/x-tex
add a first description for the ice shelf package "shelfice"

1 mlosch 1.1 % $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.8 2009/05/13 12:54:45 mlosch Exp $
2     % $Name: $
3    
4     \subsection{SHELFICE Package}
5     \label{sec:pkg:shelfice}
6     \begin{rawhtml}
7     <!-- CMIREDIR:package_shelfice: -->
8     \end{rawhtml}
9    
10     Authors: Martin Losch, Jean-Michel Campin
11    
12     %----------------------------------------------------------------------
13     \subsubsection{Introduction
14     \label{sec:pkg:exf:intro}}
15    
16    
17     Package ``shelfice'' provides a thermodynamic model for basal melting
18     underneath floating ice shelves.
19    
20     CPP options enable or disable different aspects of the package
21     (Section \ref{sec:pkg:shelfice:config}).
22     Run-Time options, flags, filenames and field-related dates/times are
23     set in \texttt{data.shelfice}
24     (Section \ref{sec:pkg:shelfice:runtime}).
25     A description of key subroutines is given in Section
26     \ref{sec:pkg:shelfice:subroutines}.
27     Input fields, units and sign conventions are summarized in
28     Section \ref{sec:pkg:shelfice:fields_units}, and available diagnostics
29     output is listed in Section \ref{sec:pkg:shelfice:fields_diagnostics}.
30    
31     %----------------------------------------------------------------------
32    
33     \subsubsection{SHELFICE configuration, compiling \& running}
34    
35     \paragraph{Compile-time options
36     \label{sec:pkg:shelfice:config}}
37     ~
38    
39     As with all MITgcm packages, SHELFICE can be turned on or off at compile time
40     %
41     \begin{itemize}
42     %
43     \item
44     using the \texttt{packages.conf} file by adding \texttt{shelfice} to it,
45     %
46     \item
47     or using \texttt{genmake2} adding
48     \texttt{-enable=shelfice} or \texttt{-disable=shelfice} switches
49     %
50     \item
51     \textit{required packages and CPP options}: \\
52     SHELFICE does not require any additional packages, but it will only
53     work with conventional vertical $z$-coordinates (pressure coordinates
54     are not implemented, yet). If you use it together with vertical mixing
55     schemes, be aware, that non-local parameterizations have been turned
56     off, e.g.\ for KPP (\ref{sec:pkg:kpp}).
57     %
58     \end{itemize}
59     (see Section \ref{sect:buildingCode}).
60    
61     Parts of the SHELFICE code can be enabled or disabled at compile time
62     via CPP preprocessor flags. These options are set
63     \texttt{SHELFICE\_OPTIONS.h}.
64     Table \ref{tab:pkg:shelfice:cpp} summarizes these options.
65    
66     \begin{table}[h!]
67     \centering
68     \label{tab:pkg:shelfice:cpp}
69     {\footnotesize
70     \begin{tabular}{|l|l|}
71     \hline
72     \textbf{CPP option} & \textbf{Description} \\
73     \hline \hline
74     \texttt{ALLOW\_SHELFICE\_DEBUG} &
75     Include code for enhanged diagnosis \\
76     \texttt{ALLOW\_ISOMIP\_TD} &
77     Include code for simplifed ISOMIP thermodynamics \\
78     \hline
79     \end{tabular}
80     }
81     \caption{Available CPP-flags to be set in \texttt{SHELFICE\_OPTIONS.h}}
82     \end{table}
83    
84     %----------------------------------------------------------------------
85    
86     \subsubsection{Run-time parameters
87     \label{sec:pkg:shelfice:runtime}}
88    
89     Run-time parameters are set in files
90     \texttt{data.pkg} (read in \texttt{packages\_readparms.F}),
91     and \texttt{data.shelfice} (read in \texttt{shelfice\_readparms.F}).
92    
93     \paragraph{Enabling the package}
94     ~ \\
95     %
96     A package is switched on/off at run-time by setting
97     (e.g. for SHELFICE) \texttt{useSHELFICE = .TRUE.} in \texttt{data.pkg}.
98    
99     \paragraph{General flags and parameters}
100     ~ \\
101     %
102     Table~\ref{tab:pkg:shelfice:runtimeparms} lists all run-time parameters.
103     \begin{table}[h!]
104     \caption{Run-time parameters and default values
105     \label{tab:pkg:shelfice:runtimeparms}}
106     {\footnotesize
107     % \hspace*{-1.5in}
108     \begin{tabular}{|lp{4cm}p{4cm}c|}
109     \hline
110     & & & \\
111     \textbf{Name} & \textbf{Default value}
112     & \textbf{Description} & \textbf{Reference} \\
113     & & & \\
114     \hline \hline
115     useISOMIPTD & F
116     & use simplified ISOMIP thermodynamics instead of default
117     & %---ref---
118     \\
119     SHELFICEconserve & F
120     & use conservative form of temperature boundary conditions
121     & %---ref---
122     \\
123     SHELFICEboundaryLayer & F
124     & use simple boundary layer mixing parameterization
125     & %---ref---
126     \\
127     SHELFICEloadAnomalyFile & UNSET
128     & inital geopotential anomaly
129     & %---ref---
130     \\
131     SHELFICEtopoFile & UNSET
132     & under-ice topography of ice shelfes
133     & %---ref---
134     \\
135     SHELFICElatentHeat & 334.0E+03
136     & latent heat of fusion ($L$)
137     & %---ref---
138     \\
139     SHELFICEHeatCapacity\_Cp & 2000.0E+00
140     & latent heat of fusion ($c_{p,I}$)
141     & %---ref---
142     \\
143     rhoShelfIce & 917.0E+00
144     & (constant) mean density of ice shelf ($\rho_{I}$)
145     & %---ref---
146     \\
147     SHELFICEheatTransCoeff & 1.0E-04
148     & transfer coefficient (exchange velocity) for temperature
149     ($\gamma_T$)
150     & %---ref---
151     \\
152     SHELFICEsaltTransCoeff & 5.05E-03 $\times$~SHELFICEheatTransCoeff
153     & transfer coefficient (exchange velocity) for salinity
154     ($\gamma_S$)
155     & %---ref---
156     \\
157     SHELFICEkappa & 1.54E-06
158     & temperature diffusion coefficient of the ice shelf ($kappa$)
159     & %---ref---
160     \\
161     SHELFICEthetaSurface & -20.0E+00
162     & (constant) surface temperature above the ice shelf ($T_{S}$)
163     & %---ref---
164     \\
165     no\_slip\_shelfice & no\_slip\_bottom (data)
166     & flag for slip along bottom of ice shelf
167     & %---ref---
168     \\
169     SHELFICEDragLinear & bottomDragLinear (data)
170     & linear drag coefficient at bottom ice shelf
171     & %---ref---
172     \\
173     SHELFICEDragQuadratic & bottomDragQuadratic (data)
174     & quadratic drag coefficient at bottom ice shelf
175     & %---ref---
176     \\
177     SHELFICEwriteState & F
178     & write ice shelf state to file
179     & %---ref---
180     \\
181     SHELFICE\_dumpFreq & dumpFreq (data)
182     & dump frequency
183     & %---ref---
184     \\
185     SHELFICE\_taveFreq & taveFreq (data)
186     & time-averaging frequency
187     & %---ref---
188     \\
189     SHELFICE\_tave\_mnc & timeave\_mnc (data.mnc)
190     & write snap-shot using MNC
191     & %---ref---
192     \\
193     SHELFICE\_dump\_mnc & snapshot\_mnc (data.mnc)
194     & write TimeAverage using MNC
195     & %---ref---
196     \\
197     \hline
198     \end{tabular}
199     }
200     \end{table}
201    
202    
203    
204     %----------------------------------------------------------------------
205     \subsubsection{Description
206     \label{sec:pkg:shelfice:descr}}
207    
208     In the light of isomorphic equations for pressure and height
209     coordinates, the ice shelf topography on top of the water column has a
210     similar role as (and in the language of \citet{marshall:04} is
211     isomorphic to) the orography and the pressure boundary conditions at
212     the bottom of the fluid for atmospheric and oceanic models in pressure
213     coordinates.
214     %
215    
216     The total pressure $p_{tot}$ in the ocean can be divided into the
217     pressure at the top of the water column $p_{top}$, the hydrostatic
218     pressure and the non-hydrostatic pressure contribution $p_{NH}$:
219     \begin{equation}
220     \label{eq:pressureocean}
221     p_{tot} = p_{top} + \int_z^{\eta-h} g\,\rho\,dz + p_{NH},
222     \end{equation}
223     with the gravitational acceleration $g$, the density $\rho$, the
224     vertical coordinate $z$ (positive upwards), and the dynamic
225     sea-surface height $\eta$. For the open ocean, $p_{top}=p_{a}$
226     (atmospheric pressure) and $h=0$. Underneath an ice-shelf that is
227     assumed to be floating in isostatic equilibrium, $p_{top}$ at the top
228     of the water column is the atmospheric pressure $p_{a}$ plus the
229     weight of the ice-shelf. It is this weight of the ice-shelf that has
230     to be provided as a boundary condition at the top of the water column
231     (in run-time parameter \texttt{SHELFICEloadAnomalyFile}).
232     The weight is conveniently computed by integrating a density profile
233     $\rho^*$, that is constant in time and corresponds to the sea-water
234     replaced by ice, from $z=0$ to a ``reference'' ice-shelf draft at
235     $z=-h$ \citep{beckmann99}, so that
236     \begin{equation}
237     \label{eq:ptop}
238     p_{top} = p_{a} + \int_{-h}^{0}g\,\rho^{*}\,dz.
239     \end{equation}
240     Underneath the ice shelf, the ``sea-surface height'' $\eta$ is the
241     deviation from the ``reference'' ice-shelf draft $h$. During a model
242     integration, $\eta$ adjusts so that the isostatic equilibrium is
243     maintained for sufficiently slow and large scale motion.
244    
245     In the MITgcm, the total pressure anomaly $p'_{tot}$ which is used for
246     pressure gradient computations is defined by substracting a purely
247     depth dependent contribution $-g\rho_{0}z$ with a constant reference
248     density $\rho_{0}$ from $p_{tot}$. Eq.~(\ref{eq:pressureocean}) becomes
249     \begin{alignat}{2}
250     \label{eq:pressure}
251     p_{tot} =& \,p_{top} - g\,\rho_0\,(z+h) &+ g\,\rho_0\,\eta + \int_z^{\eta-h}
252     g\,(\rho-\rho_0)\,dz + p_{NH}, \\
253     \intertext{and after rearranging}
254     p'_{tot} =& \,p'_{top}
255     &+ g\,\rho_0\,\eta + \int_z^{\eta-h}g\,(\rho-\rho_0)\,dz + p_{NH},
256     \end{alignat}
257     with $p'_{tot} = p_{tot} + g\,\rho_0\,z$ and $p'_{top} = p_{top} -
258     g\,\rho_0\,h$. The non-hydrostatic pressure contribution $p_{NH}$ is
259     neglected in the following.
260    
261     In practice, the ice shelf contribution to $p_{top}$ is computed by
262     integrating Eq.~(\ref{eq:ptop}) from $z=0$ to the bottom of the last
263     fully dry cell within the ice shelf:
264     \begin{equation}
265     \label{eq:surfacepressure}
266     p_{top} = g\,\sum_{k'=1}^{n-1}\rho_{k'}^{*}\Delta{z_{k'}} + p_{a}
267     \end{equation}
268     where $n$ is the vertical index of the first (at least partially)
269     ``wet'' cell and $\Delta{z_{k'}}$ is the thickness of the $k'$-th
270     layer (counting downwards). The pressure anomaly for evaluating the pressure
271     gradient is computed in the center of the ``wet'' cell $k$ as
272     \begin{equation}
273     \label{eq:discretizedpressure}
274     p'_{k} = p'_{top} + g\rho_{n}\eta +
275     g\,\sum_{k'=n}^{k}\left((\rho_{k'}-\rho_{0})\Delta{z_{k'}}
276     \frac{1+H(k'-k)}{2}\right)
277     \end{equation}
278     where $H(k'-k)=1$ for $k'<k$ and $0$ otherwise.
279    
280     Setting \texttt{SHELFICEboundaryLayer=.true.} introduces a simple
281     boundary layer that reduces the potential noise problem at the cost of
282     increased vertical mixing. For this purpose the water temperature at
283     the $k$-th layer abutting ice shelf topography for use in the heat
284     flux parameterizations is computed as a mean temperature
285     $\overline{\theta}_{k}$ over a boundary layer of the same thickness as
286     the layer thickness $\Delta{z}_{k}$:
287     \begin{equation}
288     \label{eq:thetabl}
289     \overline{\theta}_{k} = \theta_{k} h_{k} + \theta_{k+1} (1-h_{k})
290     \end{equation}
291     where $h_{k}\in(0,1]$ is the fractional layer thickness of the $k$-th
292     layer. The original contributions due to ice shelf-ocean interaction
293     $g_{\theta}$ to the total tendency terms $G_{\theta}$ in the
294     time-stepping equation
295     %$\theta^{n+1} = \theta^{n} + \Delta{t}\, g_{\theta}^{n}$
296     $\theta^{n+1} = f(\theta^{n},\Delta{t},G_{\theta}^{n})$
297     %
298     are
299     \begin{equation}
300     \label{eq:orgtendency}
301     g_{\theta,k} = \frac{Q}{\rho_{0} c_{p} h_{k} \Delta{z}_{k}}
302     \text{ and } g_{\theta,k+1} = 0
303     \end{equation}
304     for layers $k$ and $k+1$ ($c_{p}$ is the heat capacity). Averaging
305     these terms over a layer thickness $\Delta{z_{k}}$ (e.g., extending
306     from the ice shelf base down to the dashed line in cell C) and
307     applying the averaged tendency to cell A (in layer $k$) and to the
308     appropriate fraction of cells C (in layer $k+1$) yields
309     \begin{align}
310     \label{eq:tendencyk}
311     g_{\theta,k}^* &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}} \\
312     \label{eq:tendencykp1}
313     g_{\theta,k+1}^*
314     &= \frac{Q}{\rho_{0} c_{p} \Delta{z}_{k}}
315     \frac{ \Delta{z}_{k} ( 1- h_{k} )}{\Delta{z}_{k+1}}.
316     \end{align}
317     Eq.~(\ref{eq:tendencykp1}) describes averaging over the part of the
318     grid cell $k+1$ that is part of the boundary layer with tendency
319     $g_{\theta,k}^*$ and the part with no tendency. Salinity is treated in
320     the same way. The momentum equations are not modified.
321    
322     \paragraph{Three-Equations-Thermodynamics}
323     \label{sec:pkg:shelfice:thermodynamics}
324    
325     Freezing and melting form a boundary layer between ice shelf and
326     ocean. %
327     Phase transitions at the boundary between saline water and ice imply
328     the following fluxes across the boundary: the freshwater mass flux
329     $q$ ($<0$ for melting); the heat flux that consists of the diffusive
330     flux through the ice, the latent heat flux due to melting and freezing
331     and the heat that is carried by the mass flux; and the salinity that
332     is carried by the mass flux, if the ice has a non-zero salinity $S_I$.
333     Further, the position of the interface between ice and ocean changes
334     because of $q$, so that, say, in the case of melting the volume of sea
335     water increases. As a consequence salinity and temperature are
336     modified.
337    
338     The turbulent exchange terms for tracers at the ice-ocean interface
339     are generally expressed as diffusive fluxes. Following
340     \citet{jenkins01}, the boundary conditions for a tracer take
341     into account that this boundary is not a material surface.
342     %The position of this surface changes when ice is melted or water freezes. %
343     The implied upward freshwater flux $q$ (in mass units, negative for
344     melting) is included in the boundary conditions for the temperature
345     and salinity equation as an advective flux:
346     \begin{equation}
347     \label{eq:jenkinsbc}
348     {\rho}K\frac{\partial{X}}{\partial{z}}\biggl|_{b}
349     = (\rho\gamma_{X}-q) ( X_{b} - X )
350     \end{equation}
351     where tracer $X$ stands for either temperature $T$ or salinity $S$.
352     $X_b$ is the tracer at the interface (taken to be at freezing), $X$ is
353     the tracer at the first interior grid point, $\rho$ is the density of
354     seawater, and $\gamma_X$ is the turbulent exchange coefficient (in
355     units of an exchange velocity). The left hand side of
356     Eq.~(\ref{eq:jenkinsbc}) is shorthand for the (downward) flux of tracer $X$
357     across the boundary. $T_b$, $S_b$ and the freshwater flux $q$ are
358     obtained from solving a system of three equations that is derived from
359     the heat and freshwater balance at the ice ocean interface.
360    
361     In this so-called three-equation-model \citep[e.g.,][]{hellmer89,
362     jenkins01} the heat balance at the ice-ocean interface is expressed
363     as
364    
365     \begin{equation}
366     \label{eq:hellmerheatbalance}
367     c_{p} \rho \gamma_T (T - T_{b})
368     +\rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h}
369     = -Lq
370     \end{equation}
371     where %
372     $\rho$ is the density of sea-water, %
373     $c_{p} = 3974\text{\,J\,kg$^{-1}$\,K$^{-1}$}$ is the specific heat
374     capacity of water and %
375     $\gamma_T$ the turbulent exchange coefficient of temperature. %
376     The value of $\gamma_T$ is discussed in \citet{holland99}. $L =
377     334000\text{\,J\,kg$^{-1}$}$ is the latent heat of fusion. $\rho_{I} =
378     920\text{\,kg\,m$^{-3}$}$, $c_{p,I} =
379     2000\text{\,J\,kg$^{-1}$\,K$^{-1}$}$, and $T_{S}$ are the density,
380     heat capacity and the surface temperature of the ice shelf;
381     $\kappa=1.54\times10^{-6}\text{\,m$^2$\,s$^{-1}$}$ is the heat
382     diffusivity through the ice-shelf and $h$ is the ice-shelf draft. The
383     second term on the right hand side describes the heat flux through the
384     ice shelf. A constant surface temperature $T_S=-20^{\circ}$ is
385     imposed. $T$ is the temperature of the model cell adjacent to the
386     ice-water interface. The temperature at the interface $T_{b}$ is
387     assumed to be the in-situ freezing point temperature of sea-water
388     $T_{f}$ which is computed from a linear equation of state
389    
390     \begin{equation}
391     \label{eq:helmerfreeze}
392     T_{f} = (0.0901 - 0.0575\ S_{b})^{\circ}
393     - 7.61 \times 10^{-4}\frac{^{\circ}}{\text{dBar}}\ p_{b}
394     \end{equation}
395     with the salinity $S_{b}$ and the pressure $p_{b}$ (in dBar) in the
396     cell at the ice-water interface. From the salt budget, the salt flux
397     across the shelf ice-ocean interface is equal to the salt flux due to
398     melting and freezing:
399     \begin{equation}
400     \label{eq:hellmersaltbalance}
401     \rho \gamma_{S} (S - S_{b}) = - q\,(S_{b}-S_{I}),
402     \end{equation}
403     where $\gamma_S = 5.05\times10^{-3}\gamma_T$ is the turbulent salinity
404     exchange coefficient, and $S$ and $S_{b}$ are defined in analogy to
405     temperature as the salinity of the model cell adjacent to the
406     ice-water interface and at the interface, respectively. Note, that the
407     salinity of the ice shelf is generally neglected ($S_{I}=0$).
408     Equations~(\ref{eq:hellmerheatbalance}) to (\ref{eq:hellmersaltbalance}) can
409     be solved for $S_{b}$, $T_{b}$, and the freshwater flux $q$ due to
410     melting. These values are substituted into expression~(\ref{eq:jenkinsbc})
411     to obtain the boundary conditions for the temperature and salinity
412     equations of the ocean model.
413     % Then upward heat and (virtual) salt fluxes out of the ocean
414     %are computed following \citet[their equations 6, 7, 25, 28, and 29, note
415     %that $q = -\text{their melt rate $m$}\times\text{density of
416     % freshwater}$, and that salinity within the ice is assumed to be
417     %zero]{jenkins01}
418     %\begin{align}
419     % \label{eq:hellmerthetaflux}
420     % K\frac{\partial{T}}{\partial{z}}\biggl|_{b} =&
421     % (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag
422     % =& - q \left[ \frac{L}{c_{p}} + (T - T_{b}) \right]
423     % - \frac{\rho_{I} c_{p,I} \kappa}{c_{p}} \frac{(T_{S} - T_{b})}{h} \\
424     % \label{eq:hellmersaltflux}
425     % K\frac{\partial{S}}{\partial{z}}\bigg|_{b} =&
426     % (\rho\gamma_{S}-q)(S_{b} - S) \\\notag
427     % =& q\,S \\
428     % \label{eq:hellmerheatflux}
429     %% Q =& qc_{p} (T - T_{b}) - qL - \rho_{I} c_{p,I} \kappa
430     %% \frac{(T_{S} - T_{b})}{h} \\
431     % Q =& - c_{p} (\rho\gamma_{T}-q) ( T_{b} - T ) \\\notag
432     % =& - q \left[ L + c_{p} (T - T_{b}) \right]
433     % - \rho_{I} c_{p,I} \kappa \frac{(T_{S} - T_{b})}{h} \\
434     % \label{eq:hellmerfwflux}
435     % Q_{S} =& (\rho\gamma_{S}-q)(S_{b} - S) \\\notag
436     % =& q\,S
437     %\end{align}
438    
439     This formulation tends to yield smaller melt rates than the simpler
440     formulation of the ISOMIP protocol because the freshwater flux due to
441     melting decreases the salinity which raises the freezing point
442     temperature and thus leads to less melting at the interface. For a
443     simpler thermodynamics model where $S_b$ is not computed explicitly,
444     for example as in the ISOMIP protocol, equation~(\ref{eq:jenkinsbc}) cannot
445     be applied directly. In this case equation~(\ref{eq:hellmersaltbalance})
446     can be used with Eq.~(\ref{eq:jenkinsbc}) to obtain:
447     \begin{equation}
448     \rho{K}\frac{\partial{S}}{\partial{z}}\biggl|_{b} = q\,(S-S_I).
449     \end{equation}
450     This formulation can be used for all cases for which
451     equation~(\ref{eq:hellmersaltbalance}) is valid. Further, in this
452     formulation it is obvious that melting ($q<0$) leads to a reduction of
453     salinity.
454    
455     The default value of \texttt{SHELFICEconserve=.false.} removes the
456     contribution $q ( X_{b}-X )$ from Eq.~(\ref{eq:jenkinsbc}), making the
457     boundary conditions for temperature non-conservative.
458    
459     \paragraph{ISOMIP-Thermodynamics}
460     \label{sec:pkg:shelfice:isomip}
461    
462     A simpler formulation follows the ISOMIP protocol
463     (\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html}). The
464     freezing and melting in the boundary layer between ice shelf and ocean
465     is parameterized following \citet{grosfeld97}. In this formulation
466     Eq.~(\ref{eq:hellmerheatbalance}) reduces to
467     \begin{equation}
468     \label{eq:isomipheatbalance}
469     c_{p} \rho \gamma_T (T - T_{b}) = -Lq
470     \end{equation}
471     and the fresh water flux $q$ is computed from
472     \begin{equation}
473     \label{eq:isomipfwflx}
474     q = - \frac{c_{p} \rho \gamma_T (T - T_{b})}{L}.
475     \end{equation}
476     In order to use this formulation, set run-time parameter
477     \texttt{useISOMIPTD=.true.} in data.shelfice.
478    
479     \paragraph{Remark} The shelfice package and experiments demonstrating
480     its strenghts and weaknesses are also described in
481     \citet{losch08}. However, note that unfortunately the description of
482     the thermodynamics in the appendix of \citet{losch08} is wrong.
483    
484    
485     %----------------------------------------------------------------------
486    
487     \subsubsection{Key subroutines
488     \label{sec:pkg:shelfice:subroutines}}
489    
490     Top-level routine: \texttt{shelfice\_model.F}
491    
492     {\footnotesize
493     \begin{verbatim}
494     C !CALLING SEQUENCE:
495     C ...
496     C |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! )
497     C ...
498     C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization
499     C ...
500     C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics
501     C with diagnostics
502     C ...
503     C | |-THERMODYNAMICS :: theta, salt + tracer equations driver.
504     C ...
505     C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.
506     C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model
507     C ...
508     C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for temperature.
509     C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model
510     C ...
511     C | |-DYNAMICS :: Momentum equations driver.
512     C ...
513     C | | |-MOM_FLUXFORM :: Flux form mom eqn. package ( see
514     C ...
515     C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation
516     C with diagnostics
517     C ...
518     C | | |-MOM_VECINV :: Vector invariant form mom eqn. package ( see
519     C ...
520     C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation
521     C with diagnostics
522     C ...
523     C o
524     \end{verbatim}
525     }
526    
527    
528     %----------------------------------------------------------------------
529    
530     \subsubsection{SHELFICE diagnostics
531     \label{sec:pkg:shelfice:diagnostics}}
532    
533     Diagnostics output is available via the diagnostics package
534     (see Section \ref{sec:pkg:diagnostics}).
535     Available output fields are summarized in
536     Table \ref{tab:pkg:shelfice:diagnostics}.
537    
538     \begin{table}[h!]
539     \centering
540     \label{tab:pkg:shelfice:diagnostics}
541     {\footnotesize
542     \begin{verbatim}
543     ---------+----+----+----------------+-----------------
544     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
545     ---------+----+----+----------------+-----------------
546     SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward)
547     SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward)
548     SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag
549     SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag
550     SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta
551     SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt
552     \end{verbatim}
553     }
554     \caption{Available diagnostics of the shelfice-package}
555     \end{table}
556    
557    
558     %\subsubsection{Package Reference}
559    
560     \subsubsection{Experiments and tutorials that use shelfice}
561     \label{sec:pkg:shelfice:experiments}
562    
563     \begin{itemize}
564     \item{ISOMIP, Experiment 1
565     (\url{http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html})
566     in isomip verification directory.}
567     \end{itemize}
568    
569    
570     %%% Local Variables:
571     %%% mode: latex
572     %%% TeX-master: "../manual"
573     %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22