1 |
C $Header: /u/gcmpack/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_forcing_surf.F,v 1.4 2014/05/01 21:30:48 atn Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "KPP_OPTIONS.h" |
5 |
#ifdef ALLOW_SALT_PLUME |
6 |
#include "SALT_PLUME_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: KPP_FORCING_SURF |
11 |
|
12 |
C !INTERFACE: ========================================================== |
13 |
SUBROUTINE KPP_FORCING_SURF( |
14 |
I rhoSurf, surfForcU, surfForcV, |
15 |
I surfForcT, surfForcS, surfForcTice, |
16 |
I Qsw, |
17 |
#ifdef ALLOW_SALT_PLUME |
18 |
I SPforcS,SPforcT, |
19 |
#endif /* ALLOW_SALT_PLUME */ |
20 |
I ttalpha, ssbeta, |
21 |
O ustar, bo, bosol, |
22 |
#ifdef ALLOW_SALT_PLUME |
23 |
O boplume, |
24 |
#endif /* ALLOW_SALT_PLUME */ |
25 |
O dVsq, |
26 |
I ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid ) |
27 |
|
28 |
C !DESCRIPTION: \bv |
29 |
C /==========================================================\ |
30 |
C | SUBROUTINE KPP_FORCING_SURF | |
31 |
C | o Compute all surface related KPP fields: | |
32 |
C | - friction velocity ustar | |
33 |
C | - turbulent and radiative surface buoyancy forcing, | |
34 |
C | bo and bosol, and surface haline buoyancy forcing | |
35 |
C | boplume | |
36 |
C | - velocity shear relative to surface squared (this is | |
37 |
C | not really a surface affected quantity unless it is | |
38 |
C | computed with respect to some resolution independent | |
39 |
C | reference level, that is KPP_ESTIMATE_UREF defined ) | |
40 |
C |==========================================================| |
41 |
C \==========================================================/ |
42 |
IMPLICIT NONE |
43 |
|
44 |
c taux / rho = surfForcU (N/m^2) |
45 |
c tauy / rho = surfForcV (N/m^2) |
46 |
c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s) |
47 |
c bo = - g * ( alpha*surfForcT + |
48 |
c beta *surfForcS ) / rho (m^2/s^3) |
49 |
c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3) |
50 |
c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3) |
51 |
c------------------------------------------------------------------------ |
52 |
|
53 |
c \ev |
54 |
|
55 |
C !USES: =============================================================== |
56 |
#include "SIZE.h" |
57 |
#include "EEPARAMS.h" |
58 |
#include "PARAMS.h" |
59 |
#include "GRID.h" |
60 |
#include "DYNVARS.h" |
61 |
#include "KPP_PARAMS.h" |
62 |
|
63 |
C !INPUT PARAMETERS: =================================================== |
64 |
C Routine arguments |
65 |
C ikppkeyb - key for storing trajectory for adjoint (taf) |
66 |
c imin, imax, jmin, jmax - array computation indices |
67 |
C bi, bj - array indices on which to apply calculations |
68 |
C myTime - Current time in simulation |
69 |
C myThid - Current thread id |
70 |
c rhoSurf- density of surface layer (kg/m^3) |
71 |
C surfForcU units are r_unit.m/s^2 (=m^2/s^2 if r=z) |
72 |
C surfForcV units are r_unit.m/s^2 (=m^2/s^-2 if r=z) |
73 |
C surfForcS units are r_unit.psu/s (=psu.m/s if r=z) |
74 |
C - EmPmR * S_surf plus salinity relaxation*drF(1) |
75 |
C surfForcT units are r_unit.Kelvin/s (=Kelvin.m/s if r=z) |
76 |
C - Qnet (+Qsw) plus temp. relaxation*drF(1) |
77 |
C -> calculate -lambda*(T(model)-T(clim)) |
78 |
C Qnet assumed to be net heat flux including ShortWave rad. |
79 |
C surfForcTice |
80 |
C - equivalent Temperature flux in the top level that corresponds |
81 |
C to the melting or freezing of sea-ice. |
82 |
C Note that the surface level temperature is modified |
83 |
C directly by the sea-ice model in order to maintain |
84 |
C water temperature under sea-ice at the freezing |
85 |
C point. But we need to keep track of the |
86 |
C equivalent amount of heat that this surface-level |
87 |
C temperature change implies because it is used by |
88 |
C the KPP package (kpp_calc.F and kpp_transport_t.F). |
89 |
C Units are r_unit.K/s (=Kelvin.m/s if r=z) (>0 for ocean warming). |
90 |
C |
91 |
C Qsw - surface shortwave radiation (upwards positive) |
92 |
C saltPlumeFlux - salt rejected during freezing (downward = positive) |
93 |
C ttalpha - thermal expansion coefficient without 1/rho factor |
94 |
C d(rho{k,k})/d(T(k)) (kg/m^3/C) |
95 |
C ssbeta - salt expansion coefficient without 1/rho factor |
96 |
C d(rho{k,k})/d(S(k)) (kg/m^3/PSU) |
97 |
C !OUTPUT PARAMETERS: |
98 |
C ustar (nx,ny) - surface friction velocity (m/s) |
99 |
C bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3) |
100 |
C bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3) |
101 |
C boplume(nx,ny,Nr+1) - surface haline buoyancy forcing (m^2/s^3) |
102 |
C dVsq (nx,ny,Nr) - velocity shear re surface squared |
103 |
C at grid levels for bldepth (m^2/s^2) |
104 |
|
105 |
INTEGER ikppkey |
106 |
INTEGER iMin, iMax, jMin, jMax |
107 |
INTEGER bi, bj |
108 |
INTEGER myThid |
109 |
_RL myTime |
110 |
|
111 |
_RL rhoSurf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
112 |
_RL surfForcU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
113 |
_RL surfForcV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
114 |
_RL surfForcT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
115 |
_RL surfForcS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
116 |
_RL surfForcTice(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
117 |
_RS Qsw (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
118 |
_RL TTALPHA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1) |
119 |
_RL SSBETA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1) |
120 |
|
121 |
_RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
122 |
_RL bo ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
123 |
_RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
124 |
#ifdef ALLOW_SALT_PLUME |
125 |
_RL SPforcS (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr ) |
126 |
_RL SPforcT (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr ) |
127 |
_RL boplume (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, 0:Nr ) |
128 |
_RL temparray (1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
129 |
#endif /* ALLOW_SALT_PLUME */ |
130 |
_RL dVsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr ) |
131 |
|
132 |
C !LOCAL VARIABLES: ==================================================== |
133 |
c Local constants |
134 |
c minusone, p0, p5, p25, p125, p0625 |
135 |
_RL p0 , p5 , p125 |
136 |
parameter( p0=0.0, p5=0.5, p125=0.125 ) |
137 |
integer i, j, k, im1, ip1, jm1, jp1 |
138 |
_RL tempvar2 |
139 |
|
140 |
_RL work3 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
141 |
|
142 |
#ifdef KPP_ESTIMATE_UREF |
143 |
_RL tempvar1, dBdz1, dBdz2, ustarX, ustarY |
144 |
_RL z0 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
145 |
_RL zRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
146 |
_RL uRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
147 |
_RL vRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
148 |
#endif |
149 |
CEOP |
150 |
|
151 |
c------------------------------------------------------------------------ |
152 |
c friction velocity, turbulent and radiative surface buoyancy forcing |
153 |
c ------------------------------------------------------------------- |
154 |
c taux / rho = surfForcU (N/m^2) |
155 |
c tauy / rho = surfForcV (N/m^2) |
156 |
c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s) |
157 |
c bo = - g * ( alpha*surfForcT + |
158 |
c beta *surfForcS ) / rho (m^2/s^3) |
159 |
c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3) |
160 |
c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3) |
161 |
c------------------------------------------------------------------------ |
162 |
|
163 |
c initialize arrays to zero |
164 |
DO j = 1-OLy, sNy+OLy |
165 |
DO i = 1-OLx, sNx+OLx |
166 |
ustar(i,j) = p0 |
167 |
bo (I,J) = p0 |
168 |
bosol(I,J) = p0 |
169 |
#ifdef ALLOW_SALT_PLUME |
170 |
DO k = 1, Nr |
171 |
boplume(I,J,k) = p0 |
172 |
ENDDO |
173 |
boplume(I,J,0) = p0 |
174 |
#endif /* ALLOW_SALT_PLUME */ |
175 |
END DO |
176 |
END DO |
177 |
|
178 |
DO j = jmin, jmax |
179 |
jp1 = j + 1 |
180 |
DO i = imin, imax |
181 |
ip1 = i+1 |
182 |
work3(i,j) = |
183 |
& (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) * |
184 |
& (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) + |
185 |
& (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) * |
186 |
& (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) |
187 |
END DO |
188 |
END DO |
189 |
cph( |
190 |
CADJ store work3 = comlev1_kpp, key = ikppkey |
191 |
cph) |
192 |
DO j = jmin, jmax |
193 |
jp1 = j + 1 |
194 |
DO i = imin, imax |
195 |
ip1 = i+1 |
196 |
|
197 |
if ( work3(i,j) .lt. (phepsi*phepsi*drF(1)*drF(1)) ) then |
198 |
ustar(i,j) = SQRT( phepsi * p5 * drF(1) ) |
199 |
else |
200 |
tempVar2 = SQRT( work3(i,j) ) * p5 |
201 |
ustar(i,j) = SQRT( tempVar2 ) |
202 |
endif |
203 |
|
204 |
END DO |
205 |
END DO |
206 |
|
207 |
DO j = jmin, jmax |
208 |
jp1 = j + 1 |
209 |
DO i = imin, imax |
210 |
ip1 = i+1 |
211 |
bo(I,J) = - gravity * |
212 |
& ( TTALPHA(I,J,1) * (surfForcT(i,j,bi,bj)+ |
213 |
& surfForcTice(i,j,bi,bj)) + |
214 |
& SSBETA(I,J,1) * surfForcS(i,j,bi,bj) ) |
215 |
& / rhoSurf(I,J) |
216 |
bosol(I,J) = gravity * TTALPHA(I,J,1) * Qsw(i,j,bi,bj) * |
217 |
& recip_Cp*recip_rhoConst |
218 |
& / rhoSurf(I,J) |
219 |
END DO |
220 |
END DO |
221 |
|
222 |
#ifdef ALLOW_SALT_PLUME |
223 |
Catn: need check sign of SPforcT |
224 |
Cnote: on input, if notdef salt_plume_volume, SPforc[S,T](k>1)=!0 |
225 |
IF ( useSALT_PLUME ) THEN |
226 |
DO j = jmin, jmax |
227 |
DO i = imin, imax |
228 |
DO k = 1, Nr |
229 |
temparray(I,J) = - gravity * |
230 |
& ( SSBETA(I,J,k) * SPforcS(i,j,k) + |
231 |
& TTALPHA(I,J,k)* SPforcT(i,j,k) * recip_Cp ) |
232 |
& * recip_rhoConst / rhoSurf(I,J) |
233 |
boplume(I,J,k) = boplume(I,J,k-1)+temparray(I,J) |
234 |
ENDDO |
235 |
END DO |
236 |
END DO |
237 |
ENDIF |
238 |
#endif /* ALLOW_SALT_PLUME */ |
239 |
|
240 |
cph( |
241 |
CADJ store ustar = comlev1_kpp, key = ikppkey |
242 |
cph) |
243 |
|
244 |
#ifdef ALLOW_DIAGNOSTICS |
245 |
IF ( useDiagnostics ) THEN |
246 |
CALL DIAGNOSTICS_FILL(bo ,'KPPbo ',0,1,2,bi,bj,myThid) |
247 |
CALL DIAGNOSTICS_FILL(bosol ,'KPPbosol',0,1,2,bi,bj,myThid) |
248 |
#ifdef ALLOW_SALT_PLUME |
249 |
CALL DIAGNOSTICS_FILL(boplume,'KPPboplm',1,1,2,bi,bj,myThid) |
250 |
#endif /* ALLOW_SALT_PLUME */ |
251 |
ENDIF |
252 |
#endif /* ALLOW_DIAGNOSTICS */ |
253 |
|
254 |
c------------------------------------------------------------------------ |
255 |
c velocity shear |
256 |
c -------------- |
257 |
c Get velocity shear squared, averaged from "u,v-grid" |
258 |
c onto "t-grid" (in (m/s)**2): |
259 |
c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels |
260 |
c------------------------------------------------------------------------ |
261 |
|
262 |
c initialize arrays to zero |
263 |
DO k = 1, Nr |
264 |
DO j = 1-OLy, sNy+OLy |
265 |
DO i = 1-OLx, sNx+OLx |
266 |
dVsq(i,j,k) = p0 |
267 |
END DO |
268 |
END DO |
269 |
END DO |
270 |
|
271 |
c dVsq computation |
272 |
|
273 |
#ifdef KPP_ESTIMATE_UREF |
274 |
|
275 |
c Get rid of vertical resolution dependence of dVsq term by |
276 |
c estimating a surface velocity that is independent of first level |
277 |
c thickness in the model. First determine mixed layer depth hMix. |
278 |
c Second zRef = espilon * hMix. Third determine roughness length |
279 |
c scale z0. Third estimate reference velocity. |
280 |
|
281 |
DO j = jmin, jmax |
282 |
jp1 = j + 1 |
283 |
DO i = imin, imax |
284 |
ip1 = i + 1 |
285 |
|
286 |
c Determine mixed layer depth hMix as the shallowest depth at which |
287 |
c dB/dz exceeds 5.2e-5 s^-2. |
288 |
work1(i,j) = nzmax(i,j,bi,bj) |
289 |
DO k = 1, Nr |
290 |
IF ( k .LT. nzmax(i,j,bi,bj) .AND. |
291 |
& maskC(I,J,k,bi,bj) .GT. 0. .AND. |
292 |
& dbloc(i,j,k) / drC(k+1) .GT. dB_dz ) |
293 |
& work1(i,j) = k |
294 |
ENDDO |
295 |
|
296 |
c Linearly interpolate to find hMix. |
297 |
k = work1(i,j) |
298 |
IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN |
299 |
zRef(i,j) = p0 |
300 |
ELSEIF ( k .EQ. 1) THEN |
301 |
dBdz2 = dbloc(i,j,1) / drC(2) |
302 |
zRef(i,j) = drF(1) * dB_dz / dBdz2 |
303 |
ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN |
304 |
dBdz1 = dbloc(i,j,k-1) / drC(k ) |
305 |
dBdz2 = dbloc(i,j,k ) / drC(k+1) |
306 |
zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) / |
307 |
& MAX ( phepsi, dBdz2 - dBdz1 ) |
308 |
ELSE |
309 |
zRef(i,j) = rF(k+1) |
310 |
ENDIF |
311 |
|
312 |
c Compute roughness length scale z0 subject to 0 < z0 |
313 |
tempVar1 = p5 * ( |
314 |
& (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) * |
315 |
& (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) + |
316 |
& (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) * |
317 |
& (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) + |
318 |
& (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) * |
319 |
& (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) + |
320 |
& (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) * |
321 |
& (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) ) |
322 |
IF ( tempVar1 .lt. (epsln*epsln) ) THEN |
323 |
tempVar2 = epsln |
324 |
ELSE |
325 |
tempVar2 = SQRT ( tempVar1 ) |
326 |
ENDIF |
327 |
z0(i,j) = rF(2) * |
328 |
& ( rF(3) * LOG ( rF(3) / rF(2) ) / |
329 |
& ( rF(3) - rF(2) ) - |
330 |
& tempVar2 * vonK / |
331 |
& MAX ( ustar(i,j), phepsi ) ) |
332 |
z0(i,j) = MAX ( z0(i,j), phepsi ) |
333 |
|
334 |
c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1) |
335 |
zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) ) |
336 |
zRef(i,j) = MIN ( zRef(i,j), drF(1) ) |
337 |
|
338 |
c Estimate reference velocity uRef and vRef. |
339 |
uRef(i,j) = p5 * ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) ) |
340 |
vRef(i,j) = p5 * ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) ) |
341 |
IF ( zRef(i,j) .LT. drF(1) ) THEN |
342 |
ustarX = ( surfForcU(i, j,bi,bj) + |
343 |
& surfForcU(ip1,j,bi,bj) ) * p5 *recip_drF(1) |
344 |
ustarY = ( surfForcV(i,j, bi,bj) + |
345 |
& surfForcV(i,jp1,bi,bj) ) * p5 *recip_drF(1) |
346 |
tempVar1 = ustarX * ustarX + ustarY * ustarY |
347 |
if ( tempVar1 .lt. (epsln*epsln) ) then |
348 |
tempVar2 = epsln |
349 |
else |
350 |
tempVar2 = SQRT ( tempVar1 ) |
351 |
endif |
352 |
tempVar2 = ustar(i,j) * |
353 |
& ( LOG ( zRef(i,j) / rF(2) ) + |
354 |
& z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) / |
355 |
& vonK / tempVar2 |
356 |
uRef(i,j) = uRef(i,j) + ustarX * tempVar2 |
357 |
vRef(i,j) = vRef(i,j) + ustarY * tempVar2 |
358 |
ENDIF |
359 |
|
360 |
ENDDO |
361 |
ENDDO |
362 |
|
363 |
DO k = 1, Nr |
364 |
DO j = jmin, jmax |
365 |
jm1 = j - 1 |
366 |
jp1 = j + 1 |
367 |
DO i = imin, imax |
368 |
im1 = i - 1 |
369 |
ip1 = i + 1 |
370 |
dVsq(i,j,k) = p5 * ( |
371 |
$ (uRef(i,j) - uVel(i, j, k,bi,bj)) * |
372 |
$ (uRef(i,j) - uVel(i, j, k,bi,bj)) + |
373 |
$ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) * |
374 |
$ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) + |
375 |
$ (vRef(i,j) - vVel(i, j, k,bi,bj)) * |
376 |
$ (vRef(i,j) - vVel(i, j, k,bi,bj)) + |
377 |
$ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) * |
378 |
$ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) ) |
379 |
#ifdef KPP_SMOOTH_DVSQ |
380 |
dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( |
381 |
$ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) * |
382 |
$ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) + |
383 |
$ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) * |
384 |
$ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) + |
385 |
$ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) * |
386 |
$ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) + |
387 |
$ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) * |
388 |
$ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) + |
389 |
$ (vRef(i,j) - vVel(im1,j, k,bi,bj)) * |
390 |
$ (vRef(i,j) - vVel(im1,j, k,bi,bj)) + |
391 |
$ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) * |
392 |
$ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) + |
393 |
$ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) * |
394 |
$ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) + |
395 |
$ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) * |
396 |
$ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) ) |
397 |
#endif /* KPP_SMOOTH_DVSQ */ |
398 |
ENDDO |
399 |
ENDDO |
400 |
ENDDO |
401 |
|
402 |
#else /* KPP_ESTIMATE_UREF */ |
403 |
|
404 |
DO k = 1, Nr |
405 |
DO j = jmin, jmax |
406 |
jm1 = j - 1 |
407 |
jp1 = j + 1 |
408 |
DO i = imin, imax |
409 |
im1 = i - 1 |
410 |
ip1 = i + 1 |
411 |
dVsq(i,j,k) = p5 * ( |
412 |
$ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) * |
413 |
$ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) + |
414 |
$ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) * |
415 |
$ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) + |
416 |
$ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) * |
417 |
$ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) + |
418 |
$ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) * |
419 |
$ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) ) |
420 |
#ifdef KPP_SMOOTH_DVSQ |
421 |
dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( |
422 |
$ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) * |
423 |
$ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) + |
424 |
$ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) * |
425 |
$ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) + |
426 |
$ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) * |
427 |
$ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) + |
428 |
$ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) * |
429 |
$ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) + |
430 |
$ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) * |
431 |
$ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) + |
432 |
$ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) * |
433 |
$ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) + |
434 |
$ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) * |
435 |
$ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) + |
436 |
$ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) * |
437 |
$ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) ) |
438 |
#endif /* KPP_SMOOTH_DVSQ */ |
439 |
ENDDO |
440 |
ENDDO |
441 |
ENDDO |
442 |
|
443 |
#endif /* KPP_ESTIMATE_UREF */ |
444 |
|
445 |
RETURN |
446 |
END |
447 |
|